Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Expert Review
  • Published:

PET imaging of neuroinflammation: any credible alternatives to TSPO yet?

Abstract

Over the last decades, the role of neuroinflammation in neuropsychiatric conditions has attracted an exponentially growing interest. A key driver for this trend was the ability to image brain inflammation in vivo using PET radioligands targeting the Translocator Protein 18 kDa (TSPO), which is known to be expressed in activated microglia and astrocytes upon inflammatory events as well as constitutively in endothelial cells. TSPO is a mitochondrial protein that is expressed mostly by microglial cells upon activation but is also expressed by astrocytes in some conditions and constitutively by endothelial cells. Therefore, our current understanding of neuroinflammation dynamics is hampered by the lack of alternative targets available for PET imaging. We performed a systematic search and review on radiotracers developed for neuroinflammation PET imaging apart from TSPO. The following targets of interest were identified through literature screening (including previous narrative reviews): P2Y12R, P2X7R, CSF1R, COX (microglial targets), MAO-B, I2BS (astrocytic targets), CB2R & S1PRs (not specific of a single cell type). We determined the level of development and provided a scoping review for each target. Strikingly, astrocytic biomarker MAO-B has progressed in clinical investigations the furthest, while few radiotracers (notably targeting S1P1Rs, CSF1R) are being implemented in clinical investigations. Other targets such as CB2R and P2X7R have proven disappointing in clinical studies (e.g. poor signal, lack of changes in disease conditions, etc.). While astrocytic targets are promising, development of new biomarkers and tracers specific for microglial activation has proven challenging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Development stages of radiotracers for the currently explored microglial targets.
Fig. 2: Development stages of radiotracers for the currently explored astrocytic targets.
Fig. 3: Development stage of radiotracers for CB2R and S1PRs targets.

Similar content being viewed by others

References

  1. Jones HB. Some instances of the contrast between delirium tremens and inflammation of the brain, as regards the quantity of phosphoric acid excreted by the kidneys. Med Chir Trans. 1847;30:21–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gomez-Nicola D, Perry VH. Microglial dynamics and role in the healthy and diseased brain: a paradigm of functional plasticity. Neuroscientist. 2015;21:169–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Allan SM, Rothwell NJ. Cytokines and acute neurodegeneration. Nat Rev Neurosci. 2001;2:734–44.

    Article  CAS  PubMed  Google Scholar 

  4. Benavides J, Quarteronet D, Imbault F, Malgouris C, Uzan A, Renault C, et al. Labelling of “peripheral-type” benzodiazepine binding sites in the rat brain by using [3H]PK 11195, an isoquinoline carboxamide derivative: kinetic studies and autoradiographic localization. J Neurochem. 1983;41:1744–50.

    Article  CAS  PubMed  Google Scholar 

  5. Le Fur G, Vaucher N, Perrier ML, Flamier A, Benavides J, Renault C, et al. Differentiation between two ligands for peripheral benzodiazepine binding sites, [3H]RO5-4864 and [3H]PK 11195, by thermodynamic studies. Life Sci. 1983;33:449–57.

    Article  PubMed  Google Scholar 

  6. Papadopoulos V, Baraldi M, Guilarte TR, Knudsen TB, Lacapere JJ, Lindemann P, et al. Translocator protein (18kDa): new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function. Trends Pharmacol Sci. 2006;27:402–9.

    Article  CAS  PubMed  Google Scholar 

  7. Banati RB. Visualising microglial activation in vivo. Glia. 2002;40:206–17.

    Article  PubMed  Google Scholar 

  8. Owen DR, Matthews PM. Imaging brain microglial activation using positron emission tomography and translocator protein-specific radioligands. Int Rev Neurobiol. 2011;101:19–39.

    Article  CAS  PubMed  Google Scholar 

  9. Chauveau F, Boutin H, Van Camp N, Dolle F, Tavitian B. Nuclear imaging of neuroinflammation: a comprehensive review of [11C]PK11195 challengers. Eur J Nucl Med Mol Imaging. 2008;35:2304–19.

    Article  PubMed  Google Scholar 

  10. Wimberley C, Buvat I, Boutin H. Imaging translocator protein expression with positron emission tomography. Eur J Nucl Med Mol Imaging. 2021;49:74–76.

    Article  CAS  PubMed  Google Scholar 

  11. Chauveau F, Becker G, Boutin H. Have (R)-[(11)C]PK11195 challengers fulfilled the promise? A scoping review of clinical TSPO PET studies. Eur J Nucl Med Mol Imaging. 2021;49:201–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Owen DR, Yeo AJ, Gunn RN, Song K, Wadsworth G, Lewis A, et al. An 18-kDa translocator protein (TSPO) polymorphism explains differences in binding affinity of the PET radioligand PBR28. J Cereb Blood Flow Metab. 2012;32:1–5.

    Article  CAS  PubMed  Google Scholar 

  13. Owen DR, Gunn RN, Rabiner EA, Bennacef I, Fujita M, Kreisl WC, et al. Mixed-affinity binding in humans with 18-kDa translocator protein ligands. J Nucl Med. 2011;52:24–32.

    Article  CAS  PubMed  Google Scholar 

  14. Tiwari AK, Ji B, Yui J, Fujinaga M, Yamasaki T, Xie L, et al. 18F]FEBMP: positron emission tomography imaging of TSPO in a model of neuroinflammation in rats, and in vitro autoradiograms of the human brain. Theranostics. 2015;5:961–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. MacAskill MG, Stadulyte A, Williams L, Morgan TEF, Sloan NL, Alcaide-Corral CJ, et al. Quantification of macrophage-driven inflammation during myocardial infarction with (18)F-LW223, a novel TSPO radiotracer with binding independent of the rs6971 human polymorphism. J Nucl Med. 2021;62:536–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gui Y, Marks JD, Das S, Hyman BT, Serrano-Pozo A. Characterization of the 18 kDa translocator protein (TSPO) expression in post-mortem normal and Alzheimer’s disease brains. Brain Pathol. 2020;30:151–64.

    Article  CAS  PubMed  Google Scholar 

  17. Rizzo G, Veronese M, Tonietto M, Bodini B, Stankoff B, Wimberley C, et al. Generalization of endothelial modelling of TSPO PET imaging: Considerations on tracer affinities. J Cereb Blood Flow Metab. 2019;39:874–85.

    Article  CAS  PubMed  Google Scholar 

  18. Wimberley C, Lavisse S, Brulon V, Peyronneau MA, Leroy C, Bodini B, et al. Impact of endothelial 18-kDa translocator protein on the quantification of (18)F-DPA-714. J Nucl Med. 2018;59:307–14.

    Article  CAS  PubMed  Google Scholar 

  19. Veronese M, Reis Marques T, Bloomfield PS, Rizzo G, Singh N, Jones D, et al. Kinetic modelling of [(11)C]PBR28 for 18 kDa translocator protein PET data: a validation study of vascular modelling in the brain using XBD173 and tissue analysis. J Cereb Blood Flow Metab. 2018;38:1227–42.

    Article  CAS  PubMed  Google Scholar 

  20. Setiawan E, Wilson AA, Mizrahi R, Rusjan PM, Miler L, Rajkowska G, et al. Role of translocator protein density, a marker of neuroinflammation, in the brain during major depressive episodes. JAMA Psychiatry. 2015;72:268–75.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Su L, Faluyi YO, Hong YT, Fryer TD, Mak E, Gabel S, et al. Neuroinflammatory and morphological changes in late-life depression: the NIMROD study. Br J Psychiatry. 2016;209:525–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Holmes SE, Hinz R, Conen S, Gregory CJ, Matthews JC, Anton-Rodriguez JM, et al. Elevated translocator protein in anterior cingulate in major depression and a role for inflammation in suicidal thinking: a positron emission tomography study. Biol Psychiatry. 2018;83:61–69.

    Article  CAS  PubMed  Google Scholar 

  23. Meyer JH, Cervenka S, Kim MJ, Kreisl WC, Henter ID, Innis RB. Neuroinflammation in psychiatric disorders: PET imaging and promising new targets. Lancet Psychiatry. 2020;7:1064–74.

    Article  PubMed  PubMed Central  Google Scholar 

  24. van Berckel BN, Bossong MG, Boellaard R, Kloet R, Schuitemaker A, Caspers E, et al. Microglia activation in recent-onset schizophrenia: a quantitative (R)-[11C]PK11195 positron emission tomography study. Biol Psychiatry. 2008;64:820–2.

    Article  PubMed  Google Scholar 

  25. Doorduin J, de Vries EF, Willemsen AT, de Groot JC, Dierckx RA, Klein HC. Neuroinflammation in schizophrenia-related psychosis: a PET study. J Nucl Med. 2009;50:1801–7.

    Article  PubMed  Google Scholar 

  26. Bloomfield PS, Selvaraj S, Veronese M, Rizzo G, Bertoldo A, Owen DR, et al. Microglial activity in people at ultra high risk of psychosis and in schizophrenia: an [(11)C]PBR28 PET brain imaging study. Am J Psychiatry. 2016;173:44–52.

    Article  PubMed  Google Scholar 

  27. Takano A, Arakawa R, Ito H, Tateno A, Takahashi H, Matsumoto R, et al. Peripheral benzodiazepine receptors in patients with chronic schizophrenia: a PET study with [11C]DAA1106. The international journal of neuropsychopharmacology. 2010;13:943–50.

    Article  CAS  PubMed  Google Scholar 

  28. Kenk M, Selvanathan T, Rao N, Suridjan I, Rusjan P, Remington G, et al. Imaging neuroinflammation in gray and white matter in schizophrenia: an in-vivo PET study with [18F]-FEPPA. Schizophr Bull. 2015;41:85–93.

    Article  PubMed  Google Scholar 

  29. Holmes SE, Hinz R, Drake RJ, Gregory CJ, Conen S, Matthews JC, et al. In vivo imaging of brain microglial activity in antipsychotic-free and medicated schizophrenia: a [(11)C](R)-PK11195 positron emission tomography study. Mol Psychiatry. 2016;21:1672–9.

    Article  CAS  PubMed  Google Scholar 

  30. van der Doef TF, de Witte LD, Sutterland AL, Jobse E, Yaqub M, Boellaard R, et al. In vivo (R)-[(11)C]PK11195 PET imaging of 18kDa translocator protein in recent onset psychosis. NPJ Schizophr. 2016;2:16031.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Di Biase MA, Zalesky A, O’Keefe G, Laskaris L, Baune BT, Weickert CS, et al. PET imaging of putative microglial activation in individuals at ultra-high risk for psychosis, recently diagnosed and chronically ill with schizophrenia. Transl Psychiatry. 2017;7:e1225.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hafizi S, Tseng HH, Rao N, Selvanathan T, Kenk M, Bazinet RP, et al. Imaging microglial activation in untreated first-episode psychosis: a PET study with [(18)F]FEPPA. Am J Psychiatry. 2017;174:118–24.

    Article  PubMed  Google Scholar 

  33. Conen S, Gregory CJ, Hinz R, Smallman R, Corsi-Zuelli F, Deakin B, et al. Neuroinflammation as measured by positron emission tomography in patients with recent onset and established schizophrenia: implications for immune pathogenesis. Mol Psychiatry. 2021;26:5398–406.

    Article  CAS  PubMed  Google Scholar 

  34. Collste K, Plaven-Sigray P, Fatouros-Bergman H, Victorsson P, Schain M, Forsberg A, et al. Lower levels of the glial cell marker TSPO in drug-naive first-episode psychosis patients as measured using PET and [(11)C]PBR28. Mol Psychiatry. 2017;22:850–6.

    Article  CAS  PubMed  Google Scholar 

  35. De Picker LJ, Haarman BCM. Applicability, potential and limitations of TSPO PET imaging as a clinical immunopsychiatry biomarker. Eur J Nucl Med Mol Imaging. 2021;49:164–73.

    Article  PubMed  Google Scholar 

  36. Iliopoulou SM, Tsartsalis S, Kaiser S, Millet P, Tournier BB. Dopamine and neuroinflammation in schizophrenia - interpreting the findings from translocator protein (18kDa) PET imaging. Neuropsychiatr Dis Treat. 2021;17:3345–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Coughlin JM, Wang Y, Ambinder EB, Ward RE, Minn I, Vranesic M, et al. In vivo markers of inflammatory response in recent-onset schizophrenia: a combined study using [(11)C]DPA-713 PET and analysis of CSF and plasma. Transl Psychiatry. 2016;6:e777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Narayanaswami V, Dahl K, Bernard-Gauthier V, Josephson L, Cumming P, Vasdev N. Emerging PET radiotracers and targets for imaging of neuroinflammation in neurodegenerative diseases: outlook beyond TSPO. Mol Imaging. 2018;17:1536012118792317.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Janssen B, Vugts DJ, Windhorst AD, Mach RH. PET imaging of microglial activation-beyond targeting TSPO. Molecules 2018; 23: https://doi.org/10.3390/molecules23030607.

  40. Suzuki Y, Nakamura Y, Yamada K, Kurabe S, Okamoto K, Aoki H, et al. Aquaporin positron emission tomography differentiates between grade III and IV human astrocytoma. Neurosurgery. 2018;82:842–6.

    Article  PubMed  Google Scholar 

  41. Chen Z, Yang A, Zhang J, Chen A, Zhang Y, Huang C, et al. CXCR4-Directed PET/CT with [(68)Ga]pentixafor in central nervous system lymphoma: a comparison with [(18)F]FDG PET/CT. Mol Imaging Biol. 2022;24:416–24.

    Article  CAS  PubMed  Google Scholar 

  42. Starzer AM, Berghoff AS, Traub-Weidinger T, Haug AR, Widhalm G, Hacker M, et al. Assessment of central nervous system lymphoma based on CXCR4 expression in vivo using 68Ga-pentixafor PET/MRI. Clin Nucl Med. 2021;46:16–20.

    Article  PubMed  PubMed Central  Google Scholar 

  43. van der Wildt B, Wilhelmus MM, Bijkerk J, Haveman LY, Kooijman EJ, Schuit RC, et al. Development of carbon-11 labeled acryl amides for selective PET imaging of active tissue transglutaminase. Nucl Med Biol. 2016;43:232–42.

    Article  PubMed  Google Scholar 

  44. Ackermann U, Jager L, Rigopoulos A, Burvenich IJG, O’Keefe GJ, Scott AM. (18)F-labeling and initial in vivo evaluation of a Hitomi peptide for imaging tissue transglutaminase 2. Nucl Med Biol. 2023;116-117:108308.

  45. Meyer PT, Elmenhorst D, Matusch A, Winz O, Zilles K, Bauer A. A1 adenosine receptor PET using [18F]CPFPX: displacement studies in humans. Neuroimage. 2006;32:1100–5.

    Article  PubMed  Google Scholar 

  46. Barret O, Hannestad J, Vala C, Alagille D, Tavares A, Laruelle M, et al. Characterization in humans of 18F-MNI-444, a PET radiotracer for brain adenosine 2A receptors. J Nucl Med. 2015;56:586–91.

    Article  CAS  PubMed  Google Scholar 

  47. Joya A, Ardaya M, Montilla A, Garbizu M, Plaza-Garcia S, Gomez-Vallejo V, et al. In vivo multimodal imaging of adenosine A(1) receptors in neuroinflammation after experimental stroke. Theranostics. 2021;11:410–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rissanen E, Virta JR, Paavilainen T, Tuisku J, Helin S, Luoto P, et al. Adenosine A2A receptors in secondary progressive multiple sclerosis: a [(11)C]TMSX brain PET study. J Cereb Blood Flow Metab. 2013;33:1394–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Karasawa A, Kawate T. Structural basis for subtype-specific inhibition of the P2X7 receptor. Elife 2016;5:e22153.

  50. McCarthy AE, Yoshioka C, Mansoor SE. Full-length P2X(7) structures reveal how palmitoylation prevents channel desensitization. Cell. 2019;179:659–670 e613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Burnstock G, Boeynaems JM. Purinergic signalling and immune cells. Purinergic Signal. 2014;10:529–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Di Virgilio F, Dal Ben D, Sarti AC, Giuliani AL, Falzoni S. The P2X7 receptor in infection and inflammation. Immunity. 2017;47:15–31.

    Article  PubMed  Google Scholar 

  53. Beltran-Lobo P, Reid MJ, Jimenez-Sanchez M, Verkhratsky A, Perez-Nievas BG, Noble W. Astrocyte adaptation in Alzheimer’s disease: a focus on astrocytic P2X7R. Essays Biochem. 2023;67:119–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Illes P, Verkhratsky A, Burnstock G, Franke H. P2X receptors and their roles in astroglia in the central and peripheral nervous system. Neuroscientist. 2012;18:422–38.

    Article  PubMed  Google Scholar 

  55. Bhattacharya A, Biber K. The microglial ATP-gated ion channel P2X7 as a CNS drug target. Glia. 2016;64:1772–87.

    Article  PubMed  Google Scholar 

  56. Illes P, Khan TM, Rubini P. Neuronal P2X7 receptors revisited: do they really exist? J Neurosci. 2017;37:7049–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Adinolfi E, Capece M, Amoroso F, De Marchi E, Franceschini A. Emerging roles of P2X receptors in cancer. Curr Med Chem. 2015;22:878–90.

    Article  CAS  PubMed  Google Scholar 

  58. Burnstock G. Purinergic signalling and disorders of the central nervous system. Nat Rev Drug Discov. 2008;7:575–90.

    Article  CAS  PubMed  Google Scholar 

  59. Monif M, Burnstock G, Williams DA. Microglia: proliferation and activation driven by the P2X7 receptor. Int J Biochem Cell Biol. 2010;42:1753–6.

    Article  CAS  PubMed  Google Scholar 

  60. Oliveira-Giacomelli A, Petiz LL, Andrejew R, Turrini N, Silva JB, Sack U, et al. Role of P2X7 receptors in immune responses during neurodegeneration. Front Cell Neurosci. 2021;15:662935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Territo PR, Zarrinmayeh H. P2X(7) receptors in neurodegeneration: potential therapeutic applications from basic to clinical approaches. Front Cell Neurosci. 2021;15:617036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. von Mucke-Heim IA, Deussing JM. The P2X7 receptor in mood disorders: emerging target in immunopsychiatry, from bench to bedside. Neuropharmacology. 2023;224:109366.

    Article  Google Scholar 

  63. Janssen B, Vugts DJ, Funke U, Spaans A, Schuit RC, Kooijman E, et al. Synthesis and initial preclinical evaluation of the P2X7 receptor antagonist [(1)(1)C]A-740003 as a novel tracer of neuroinflammation. J Labelled Comp Radiopharm. 2014;57:509–16.

    Article  CAS  PubMed  Google Scholar 

  64. Gao M, Wang M, Green MA, Hutchins GD, Zheng QH. Synthesis of [(11)C]GSK1482160 as a new PET agent for targeting P2X(7) receptor. Bioorg Med Chem Lett. 2015;25:1965–70.

    Article  CAS  PubMed  Google Scholar 

  65. Schmidt S, Isaak A, Junker A. Spotlight on P2X7 Receptor PET Imaging: A Bright Target or a Failing Star? Int J Mol Sci. 2023;24:1374.

  66. Territo PR, Meyer JA, Peters JS, Riley AA, McCarthy BP, Gao M, et al. Characterization of (11)C-GSK1482160 for targeting the P2X7 receptor as a biomarker for neuroinflammation. J Nucl Med. 2017;58:458–65.

    Article  CAS  PubMed  Google Scholar 

  67. Huang G, Lu X, Qiu Y, Bi L, Ye P, Yang M, et al. Hetero-aryl bromide precursor fluorine-18 radiosynthesis and preclinical evaluation of a novel positron emission tomography (PET) tracer [(18)F]GSK1482160. Bioorg Med Chem. 2022;73:116996.

    Article  CAS  PubMed  Google Scholar 

  68. Hagens MHJ, Golla SSV, Janssen B, Vugts DJ, Beaino W, Windhorst AD, et al. The P2X7 receptor tracer [(11)C]SMW139 as an in vivo marker of neuroinflammation in multiple sclerosis: a first-in man study. Eur J Nucl Med Mol Imaging. 2020;47:379–89.

    Article  CAS  PubMed  Google Scholar 

  69. Ory D, Celen S, Gijsbers R, Van Den Haute C, Postnov A, Koole M, et al. Preclinical evaluation of a P2X7 receptor-selective radiotracer: PET studies in a rat model with local overexpression of the human P2X7 receptor and in nonhuman primates. J Nucl Med. 2016;57:1436–41.

    Article  CAS  PubMed  Google Scholar 

  70. Kolb HC, Barret O, Bhattacharya A, Chen G, Constantinescu C, Huang C, et al. Preclinical evaluation and nonhuman primate receptor occupancy study of (18)F-JNJ-64413739, a PET radioligand for P2X7 receptors. J Nucl Med. 2019;60:1154–9.

    Article  CAS  PubMed  Google Scholar 

  71. Van Weehaeghe D, Koole M, Schmidt ME, Deman S, Jacobs AH, Souche E.et al. (11)C]JNJ54173717, a novel P2X7 receptor radioligand as marker for neuroinflammation: human biodistribution, dosimetry, brain kinetic modelling and quantification of brain P2X7 receptors in patients with Parkinson’s disease and healthy volunteers. Eur J Nucl Med Mol Imaging. 2019;46:2051–64.

  72. Koole M, Schmidt ME, Hijzen A, Ravenstijn P, Vandermeulen C, Van Weehaeghe D.et al. (18)F-JNJ-64413739, a novel PET ligand for the P2X7 ion channel: radiation dosimetry, kinetic modeling, test-retest variability, and occupancy of the P2X7 antagonist JNJ-54175446. J Nucl Med. 2019;60:683–90.

  73. Mertens N, Schmidt ME, Hijzen A, Van Weehaeghe D, Ravenstijn P, Depre M, et al. Minimally invasive quantification of cerebral P2X7R occupancy using dynamic [(18)F]JNJ-64413739 PET and MRA-driven image derived input function. Sci Rep. 2021;11:16172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mikkelsen JD, Aripaka SS, Kaad S, Pazarlar BA, Pinborg L, Finsen B, et al. Characterization of the novel P2X7 receptor radioligand [(3)H]JNJ-64413739 in human brain tissue. ACS Chem Neurosci. 2023;14:111–8.

    Article  CAS  PubMed  Google Scholar 

  75. Notter T, Coughlin JM, Sawa A, Meyer U. Reconceptualization of translocator protein as a biomarker of neuroinflammation in psychiatry. Mol Psychiatry. 2018;23:36–47.

    Article  CAS  PubMed  Google Scholar 

  76. Van Weehaeghe D, Van Schoor E, De Vocht J, Koole M, Attili B, Celen S, et al. TSPO versus P2X7 as a target for neuroinflammation: an in vitro and in vivo study. J Nucl Med. 2020;61:604–7.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ, Gabriely G, et al. Identification of a unique TGF-beta-dependent molecular and functional signature in microglia. Nat Neurosci. 2014;17:131–43.

    Article  CAS  PubMed  Google Scholar 

  78. Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK, et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell. 2017;169:1276–1290 e1217.

    Article  CAS  PubMed  Google Scholar 

  79. Bennett ML, Bennett FC, Liddelow SA, Ajami B, Zamanian JL, Fernhoff NB, et al. New tools for studying microglia in the mouse and human CNS. Proc Natl Acad Sci USA. 2016;113:E1738–1746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhu C, Kros JM, van der Weiden M, Zheng P, Cheng C, Mustafa DA. Expression site of P2RY12 in residential microglial cells in astrocytomas correlates with M1 and M2 marker expression and tumor grade. Acta Neuropathol Commun. 2017;5:4.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Butovsky O, Weiner HL. Microglial signatures and their role in health and disease. Nat Rev Neurosci. 2018;19:622–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zrzavy T, Hametner S, Wimmer I, Butovsky O, Weiner HL, Lassmann H. Loss of ‘homeostatic’ microglia and patterns of their activation in active multiple sclerosis. Brain. 2017;140:1900–13.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Krasemann S, Madore C, Cialic R, Baufeld C, Calcagno N, El Fatimy R, et al. The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity. 2017;47:566–581 e569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Beaino W, Janssen B, Kooij G, van der Pol SMA, van Het Hof B, van Horssen J, et al. Purinergic receptors P2Y12R and P2X7R: potential targets for PET imaging of microglia phenotypes in multiple sclerosis. J Neuroinflammation. 2017;14:259.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Klein B, Mrowetz H, Barker CM, Lange S, Rivera FJ, Aigner L. Age influences microglial activation after cuprizone-induced demyelination. Front Aging Neurosci. 2018;10:278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Maeda J, Minamihisamatsu T, Shimojo M, Zhou X, Ono M, Matsuba Y, et al. Distinct microglial response against Alzheimer’s amyloid and tau pathologies characterized by P2Y12 receptor. Brain Commun. 2021;3:fcab011.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Baqi Y, Muller CE. Antithrombotic P2Y(12) receptor antagonists: recent developments in drug discovery. Drug Discov Today. 2019;24:325–33.

    Article  PubMed  Google Scholar 

  88. Janssen AL, Vugts DJ, Funke U, Molenaar GT, Kruijer PS, Dolle F et al. Synthesis of the first carbon-11 labelled P2Y12 receptor antagonist for PET imaging of microglial activation in neuroinflammation. Proc J Labelled Comp Radiopharmaceuticals. 2015;58:S44.

  89. Villa A, Klein B, Janssen B, Pedragosa J, Pepe G, Zinnhardt B, et al. Identification of new molecular targets for PET imaging of the microglial anti-inflammatory activation state. Theranostics. 2018;8:5400–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Jackson IM, Buccino PJ, Azevedo EC, Carlson ML, Luo ASZ, Deal EM, et al. Radiosynthesis and initial preclinical evaluation of [(11)C]AZD1283 as a potential P2Y12R PET radiotracer. Nucl Med Biol. 2022;114-115:143–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. van der Wildt B, Janssen B, Pekosak A, Steen EJL, Schuit RC, Kooijman EJM, et al. Novel thienopyrimidine-based PET Tracers for P2Y(12) receptor imaging in the brain. ACS Chem Neurosci. 2021;12:4465–74.

    Article  PubMed  Google Scholar 

  92. Xiang C, Li H, Tang W. Targeting CSF-1R represents an effective strategy in modulating inflammatory diseases. Pharmacol Res. 2023;187:106566.

    Article  CAS  PubMed  Google Scholar 

  93. Chitu V, Biundo F, Stanley ER. Colony stimulating factors in the nervous system. Semin Immunol. 2021;54:101511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Bernard-Gauthier V, Schirrmacher R. 5-(4-((4-[(18)F]Fluorobenzyl)oxy)-3-methoxybenzyl)pyrimidine-2,4-diamine: a selective dual inhibitor for potential PET imaging of Trk/CSF-1R. Bioorg Med Chem Lett. 2014;24:4784–90.

    Article  CAS  PubMed  Google Scholar 

  95. Singleton TA, Bdair H, Bailey JJ, Choi S, Aliaga A, Rosa-Neto P, et al. Efficient radiosynthesis and preclinical evaluation of [(18) F]FOMPyD as a positron emission tomography tracer candidate for TrkB/C receptor imaging. J Labelled Comp Radiopharm. 2020;63:144–50.

    Article  CAS  PubMed  Google Scholar 

  96. van der Wildt B, Miao Z, Reyes ST, Park JH, Klockow JL, Zhao N, et al. BLZ945 derivatives for PET imaging of colony stimulating factor-1 receptors in the brain. Nucl Med Biol. 2021;100-101:44–51.

    Article  PubMed  Google Scholar 

  97. Tanzey SS, Shao X, Stauff J, Arteaga J, Sherman P, Scott PJH, et al. Synthesis and initial in vivo evaluation of [(11)C]AZ683-A novel PET radiotracer for colony stimulating factor 1 receptor (CSF1R). Pharmaceuticals (Basel). 2018;11:136.

  98. Horti AG, Naik R, Foss CA, Minn I, Misheneva V, Du Y, et al. PET imaging of microglia by targeting macrophage colony-stimulating factor 1 receptor (CSF1R). Proc Natl Acad Sci USA. 2019;116:1686–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Mathews WB, Wu Y, Horti AG, Naik R, Hall AW, Holt DP, et al. Radiosynthesis and validation of [5-cyano-N-(4-(4-[(11) C]methylpiperazin-1-yl)-2-(piperidin-1-yl)phenyl) furan-2-carboxamide] ([(11) C]CPPC), a PET radiotracer for imaging CSF1R, a microglia-specific marker. J Labelled Comp Radiopharm. 2019;62:903–8.

  100. Coughlin JM, Du Y, Lesniak WG, Harrington CK, Brosnan MK, O’Toole R, et al. First-in-human use of (11)C-CPPC with positron emission tomography for imaging the macrophage colony-stimulating factor 1 receptor. EJNMMI Res. 2022;12:64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Knight AC, Varlow C, Zi T, Liang SH, Josephson L, Schmidt K, et al. In vitro evaluation of [(3)H]CPPC as a tool radioligand for CSF-1R. ACS Chem Neurosci. 2021;12:998–1006.

    Article  CAS  PubMed  Google Scholar 

  102. Rubin LH, Du Y, Sweeney SE, O’Toole R, Harrington CK, Jenkins K, et al. Pilot imaging of the colony stimulating factor 1 receptor in the brains of virally-suppressed individuals with HIV. AIDS. 2023;37:1419–24.

    Article  CAS  PubMed  Google Scholar 

  103. Venneti S, Wang G, Wiley CA. Activated macrophages in HIV encephalitis and a macaque model show increased [3H](R)-PK11195 binding in a PI3-kinase-dependent manner. Neurosci Lett. 2007;426:117–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Garvey LJ, Pavese N, Ramlackhansingh A, Thomson E, Allsop JM, Politis M, et al. Acute HCV/HIV coinfection is associated with cognitive dysfunction and cerebral metabolite disturbance, but not increased microglial cell activation. PLoS ONE. 2012;7:e38980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Coughlin JM, Wang Y, Ma S, Yue C, Kim PK, Adams AV, et al. Regional brain distribution of translocator protein using [(11)C]DPA-713 PET in individuals infected with HIV. J Neurovirol. 2014;20:219–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Garvey LJ, Pavese N, Politis M, Ramlackhansingh A, Brooks DJ, Taylor-Robinson SD, et al. Increased microglia activation in neurologically asymptomatic HIV-infected patients receiving effective ART. AIDS. 2014;28:67–72.

    Article  CAS  PubMed  Google Scholar 

  107. Vera JH, Guo Q, Cole JH, Boasso A, Greathead L, Kelleher P, et al. Neuroinflammation in treated HIV-positive individuals: a TSPO PET study. Neurology. 2016;86:1425–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Rubin LH, Sacktor N, Creighton J, Du Y, Endres CJ, Pomper MG, et al. Microglial activation is inversely associated with cognition in individuals living with HIV on effective antiretroviral therapy. AIDS. 2018;32:1661–7.

    Article  PubMed  Google Scholar 

  109. Boerwinkle AH, Strain JF, Burdo T, Doyle J, Christensen J, Su Y, et al. Comparison of [11C]-PBR28 binding between persons living with HIV and HIV-uninfected individuals. J Acquir Immune Defic Syndr. 2020;85:244–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zhou X, Ji B, Seki C, Nagai Y, Minamimoto T, Fujinaga M, et al. PET imaging of colony-stimulating factor 1 receptor: A head-to-head comparison of a novel radioligand, (11)C-GW2580, and (11)C-CPPC, in mouse models of acute and chronic neuroinflammation and a rhesus monkey. J Cereb Blood Flow Metab. 2021;41:2410–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Altomonte S, Yan X, Morse CL, Liow JS, Jenkins MD, Montero Santamaria JA, et al. Discovery of a high-affinity fluoromethyl analog of [(11)C]5-Cyano-N-(4-(4-methylpiperazin-1-yl)-2-(piperidin-1-yl)phenyl)furan-2-carboxamide ([(11)C]CPPC) and their comparison in mouse and monkey as colony-stimulating factor 1 receptor positron emission tomography radioligands. ACS Pharmacol Transl Sci. 2023;6:614–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. van der Wildt B, Nezam M, Kooijman EJM, Reyes ST, Shen B, Windhorst AD, et al. Evaluation of carbon-11 labeled 5-(1-methyl-1H-pyrazol-4-yl)-N-(2-methyl-5-(3-(trifluoromethyl)benzamido)phenyl)nicotinamide as PET tracer for imaging of CSF-1R expression in the brain. Bioorg Med Chem. 2021;42:116245.

    Article  PubMed  Google Scholar 

  113. van der Wildt B, Klockow JL, Miao Z, Reyes ST, Park JH, Shen B, et al. Discovery of a CSF-1R inhibitor and PET tracer for imaging of microglia and macrophages in the brain. Nucl Med Biol. 2022;114-115:99–107.

    Article  PubMed  Google Scholar 

  114. Pyonteck SM, Akkari L, Schuhmacher AJ, Bowman RL, Sevenich L, Quail DF, et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med. 2013;19:1264–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ramachandran SA, Jadhavar PS, Miglani SK, Singh MP, Kalane DP, Agarwal AK, et al. Design, synthesis and optimization of bis-amide derivatives as CSF1R inhibitors. Bioorg Med Chem Lett. 2017;27:2153–60.

    Article  CAS  PubMed  Google Scholar 

  116. Lee H, Park JH, Kim H, Woo SK, Choi JY, Lee KH, et al. Synthesis and evaluation of a (18)F-labeled ligand for PET imaging of colony-stimulating factor 1 receptor. Pharmaceuticals (Basel). 2022;15:276.

  117. An X, Wang J, Tong L, Zhang X, Fu H, Zhang J.et al. (18)F-Labeled o‑aminopyridyl alkynyl radioligands targeting colony-stimulating factor 1 receptor for neuroinflammation imaging. Bioorg Med Chem. 2023;83:117233.

  118. Xie Z, Wu B, Liu Y, Ren W, Tong L, Xiang C, et al. Novel class of colony-stimulating factor 1 receptor kinase inhibitors based on an o-aminopyridyl alkynyl scaffold as potential treatment for inflammatory disorders. J Med Chem. 2020;63:1397–414.

    Article  CAS  PubMed  Google Scholar 

  119. Ghazanfari N, van Waarde A, Dierckx R, Doorduin J, de Vries EFJ. Is cyclooxygenase-1 involved in neuroinflammation? J Neurosci Res. 2021;99:2976–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. McCarthy TJ, Sheriff AU, Graneto MJ, Talley JJ, Welch MJ. Radiosynthesis, in vitro validation, and in vivo evaluation of 18F-labeled COX-1 and COX-2 inhibitors. J Nucl Med. 2002;43:117–24.

    CAS  PubMed  Google Scholar 

  121. Prabhakaran J, Underwood MD, Parsey RV, Arango V, Majo VJ, Simpson NR, et al. Synthesis and in vivo evaluation of [18F]-4-[5-(4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide as a PET imaging probe for COX-2 expression. Bioorg Med Chem. 2007;15:1802–7.

  122. Ji B, Kumata K, Onoe H, Kaneko H, Zhang MR, Seki C, et al. Assessment of radioligands for PET imaging of cyclooxygenase-2 in an ischemic neuronal injury model. Brain Res. 2013;1533:152–62.

    Article  CAS  PubMed  Google Scholar 

  123. Kumar JSD, Bai B, Zanderigo F, DeLorenzo C, Prabhakaran J, Parsey RV, et al. In vivo brain imaging, biodistribution, and radiation dosimetry estimation of [(11)C]Celecoxib, a COX-2 PET ligand, in nonhuman primates. Molecules. 2018;23:1929.

  124. de Vries EF, Doorduin J, Dierckx RA, van Waarde A. Evaluation of [(11)C]rofecoxib as PET tracer for cyclooxygenase 2 overexpression in rat models of inflammation. Nucl Med Biol. 2008;35:35–42.

    Article  PubMed  Google Scholar 

  125. Toyokuni T, Kumar JS, Walsh JC, Shapiro A, Talley JJ, Phelps ME, et al. Synthesis of 4-(5-[18F]fluoromethyl-3-phenylisoxazol-4-yl)benzenesulfonamide, a new [18F]fluorinated analogue of valdecoxib, as a potential radiotracer for imaging cyclooxygenase-2 with positron emission tomography. Bioorg Med Chem Lett. 2005;15:4699–702.

    Article  CAS  PubMed  Google Scholar 

  126. Prabhakaran J, Underwood M, Zanderigo F, Simpson NR, Cooper AR, Matthew J, et al. Radiosynthesis and in vivo evaluation of [(11)C]MOV as a PET imaging agent for COX-2. Bioorg Med Chem Lett. 2018;28:2432–5.

    Article  CAS  PubMed  Google Scholar 

  127. Yamamoto Y, Toyohara J, Ishiwata K, Sano K, Yamamoto F, Mukai T, et al. (1)C-labeled analogs of indomethacin esters and amides for brain cyclooxygenase-2 imaging: radiosynthesis, in vitro evaluation and in vivo characteristics in mice. Chem Pharm Bull (Tokyo). 2011;59:938–46.

  128. Yamamoto Y, Tago T, Toyohara J, Saito Y, Yamamoto F. Radiosynthesis and in vivo and ex vivo evaluation of isomeric [(11)C]methoxy analogs of nimesulide as brain cyclooxygenase-2-targeted imaging agents. Biol Pharm Bull. 2022;45:94–103.

    Article  CAS  PubMed  Google Scholar 

  129. Elie J, Vercouillie J, Arlicot N, Lemaire L, Bidault R, Bodard S, et al. Design of selective COX-2 inhibitors in the (aza)indazole series. Chemistry, in vitro studies, radiochemistry and evaluations in rats of a [(18)F] PET tracer. J Enzyme Inhib Med Chem. 2019;34:1–7.

    Article  CAS  PubMed  Google Scholar 

  130. Cortes-Salva MY, Shrestha S, Singh P, Morse CL, Jenko KJ, Montero Santamaria JA et al. 2-(4-methylsulfonylphenyl)pyrimidines as prospective radioligands for imaging cyclooxygenase-2 with PET-synthesis, triage, and radiolabeling. Molecules. 2018;23:2850.

  131. Kim MJ, Shrestha SS, Cortes M, Singh P, Morse C, Liow JS, et al. Evaluation of two potent and selective PET radioligands to image COX-1 and COX-2 in rhesus monkeys. J Nucl Med. 2018;59:1907–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Shrestha S, Kim MJ, Eldridge M, Lehmann ML, Frankland M, Liow JS, et al. PET measurement of cyclooxygenase-2 using a novel radioligand: upregulation in primate neuroinflammation and first-in-human study. J Neuroinflammation. 2020;17:140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Kumar JSD, Zanderigo F, Prabhakaran J, Rubin-Falcone H, Parsey RV, Mann JJ. In vivo evaluation of [(11)C]TMI, a COX-2 selective PET tracer, in baboons. Bioorg Med Chem Lett. 2018;28:3592–5.

    Article  CAS  PubMed  Google Scholar 

  134. Prabhakaran J, Molotkov A, Mintz A, Mann JJ. Progress in PET imaging of neuroinflammation targeting COX-2 enzyme. Molecules. 2021;26:3208.

  135. Shukuri M, Takashima-Hirano M, Tokuda K, Takashima T, Matsumura K, Inoue O, et al. In vivo expression of cyclooxygenase-1 in activated microglia and macrophages during neuroinflammation visualized by PET with 11C-ketoprofen methyl ester. J Nucl Med. 2011;52:1094–101.

    Article  PubMed  Google Scholar 

  136. Shukuri M, Mawatari A, Ohno M, Suzuki M, Doi H, Watanabe Y, et al. Detection of cyclooxygenase-1 in activated microglia during amyloid plaque progression: PET studies in Alzheimer’s disease model mice. J Nucl Med. 2016;57:291–6.

    Article  CAS  PubMed  Google Scholar 

  137. Shukuri M, Mawatari A, Takatani S, Tahara T, Inoue M, Arakaki W, et al. Synthesis and preclinical evaluation of (18)F-labeled ketoprofen methyl esters for cyclooxygenase-1 imaging in neuroinflammation. J Nucl Med. 2022;63:1761–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Singh P, Shrestha S, Cortes-Salva MY, Jenko KJ, Zoghbi SS, Morse CL, et al. 3-Substituted 1,5-Diaryl-1 H-1,2,4-triazoles as prospective PEt radioligands for imaging brain COX-1 in Monkey. Part 1: synthesis and pharmacology. ACS Chem Neurosci. 2018;9:2610–9.

    Article  CAS  PubMed  Google Scholar 

  139. Shrestha S, Singh P, Cortes-Salva MY, Jenko KJ, Ikawa M, Kim MJ, et al. 3-substituted 1,5-Diaryl-1 H-1,2,4-triazoles as prospective PET radioligands for imaging brain COX-1 in Monkey. Part 2: Selection and evaluation of [(11)C]PS13 for quantitative imaging. ACS Chem Neurosci. 2018;9:2620–7.

    Article  CAS  PubMed  Google Scholar 

  140. Kim MJ, Lee JH, Juarez Anaya F, Hong J, Miller W, Telu S, et al. First-in-human evaluation of [(11)C]PS13, a novel PET radioligand, to quantify cyclooxygenase-1 in the brain. Eur J Nucl Med Mol Imaging. 2020;47:3143–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Kim MJ, Anaya FJ, Manly LS, Lee JH, Hong J, Shrestha S, et al. Whole-body PET imaging in humans shows that (11)C-PS13 is selective for cyclooxygenase-1 and can measure the in vivo potency of nonsteroidal antiinflammatory drugs. J Nucl Med. 2023;64:159–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Taddei C, Morse CL, Kim MJ, Liow JS, Montero Santamaria J, Zhang A, et al. Synthesis of [(18)F]PS13 and evaluation as a PET radioligand for cyclooxygenase-1 in Monkey. ACS Chem Neurosci. 2021;12:517–30.

    Article  CAS  PubMed  Google Scholar 

  143. Escartin C, Galea E, Lakatos A, O’Callaghan JP, Petzold GC, Serrano-Pozo A, et al. Reactive astrocyte nomenclature, definitions, and future directions. Nat Neurosci. 2021;24:312–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Westlund KN, Denney RM, Kochersperger LM, Rose RM, Abell CW. Distinct monoamine oxidase A and B populations in primate brain. Science. 1985;230:181–3.

    Article  CAS  PubMed  Google Scholar 

  145. Fowler JS, MacGregor RR, Wolf AP, Arnett CD, Dewey SL, Schlyer D, et al. Mapping human brain monoamine oxidase A and B with 11C-labeled suicide inactivators and PET. Science. 1987;235:481–5.

    Article  CAS  PubMed  Google Scholar 

  146. Fowler JS, Logan J, Volkow ND, Wang GJ, MacGregor RR, Ding YS. Monoamine oxidase: radiotracer development and human studies. Methods. 2002;27:263–77.

    Article  CAS  PubMed  Google Scholar 

  147. Fowler JS, Wang GJ, Logan J, Xie S, Volkow ND, MacGregor RR, et al. Selective reduction of radiotracer trapping by deuterium substitution: comparison of carbon-11-L-deprenyl and carbon-11-deprenyl-D2 for MAO B mapping. J Nucl Med. 1995;36:1255–62.

    CAS  PubMed  Google Scholar 

  148. Kumlien E, Bergstrom M, Lilja A, Andersson J, Szekeres V, Westerberg CE, et al. Positron emission tomography with [11C]deuterium-deprenyl in temporal lobe epilepsy. Epilepsia. 1995;36:712–21.

    Article  CAS  PubMed  Google Scholar 

  149. Bergstrom M, Kumlien E, Lilja A, Tyrefors N, Westerberg G, Langstrom B. Temporal lobe epilepsy visualized with PET with 11C-L-deuterium-deprenyl-analysis of kinetic data. Acta Neurol Scand. 1998;98:224–31.

    Article  CAS  PubMed  Google Scholar 

  150. Kumlien E, Nilsson A, Hagberg G, Langstrom B, Bergstrom M. PET with 11C-deuterium-deprenyl and 18F-FDG in focal epilepsy. Acta Neurol Scand. 2001;103:360–6.

    Article  CAS  PubMed  Google Scholar 

  151. Fowler JS, Volkow ND, Cilento R, Wang GJ, Felder C, Logan J. Comparison of brain glucose metabolism and monoamine oxidase B (MAO B) in traumatic brain injury. Clin Positron Imaging. 1999;2:71–79.

    Article  PubMed  Google Scholar 

  152. Ekblom J, Jossan SS, Gillberg PG, Oreland L, Aquilonius SM. Monoamine oxidase-B in motor cortex: changes in amyotrophic lateral sclerosis. Neuroscience. 1992;49:763–9.

    Article  CAS  PubMed  Google Scholar 

  153. Aquilonius SM, Jossan SS, Ekblom JG, Askmark H, Gillberg PG. Increased binding of 3H-L-deprenyl in spinal cords from patients with amyotrophic lateral sclerosis as demonstrated by autoradiography. J Neural Transm Gen Sect. 1992;89:111–22.

    Article  CAS  PubMed  Google Scholar 

  154. Ekblom J, Jossan SS, Bergstrom M, Oreland L, Walum E, Aquilonius SM. Monoamine oxidase-B in astrocytes. Glia. 1993;8:122–32.

    Article  CAS  PubMed  Google Scholar 

  155. Johansson A, Engler H, Blomquist G, Scott B, Wall A, Aquilonius SM, et al. Evidence for astrocytosis in ALS demonstrated by [11C](L)-deprenyl-D2 PET. J Neurol Sci. 2007;255:17–22.

    Article  CAS  PubMed  Google Scholar 

  156. Fowler JS, Volkow ND, Wang GJ, Logan J, Pappas N, Shea C, et al. Age-related increases in brain monoamine oxidase B in living healthy human subjects. Neurobiol Aging. 1997;18:431–5.

    Article  CAS  PubMed  Google Scholar 

  157. Arakawa R, Stenkrona P, Takano A, Nag S, Maior RS, Halldin C. Test-retest reproducibility of [(11)C]-L-deprenyl-D(2) binding to MAO-B in the human brain. EJNMMI Res. 2017;7:54.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Varnas K, Finnema SJ, Johnstrom P, Arakawa R, Halldin C, Eriksson LI, et al. Effects of sevoflurane anaesthesia on radioligand binding to monoamine oxidase-B in vivo. Br J Anaesth. 2021;126:238–44.

    Article  PubMed  Google Scholar 

  159. Gulyas B, Pavlova E, Kasa P, Gulya K, Bakota L, Varszegi S, et al. Activated MAO-B in the brain of Alzheimer patients, demonstrated by [11C]-L-deprenyl using whole hemisphere autoradiography. Neurochem Int. 2011;58:60–68.

    Article  CAS  PubMed  Google Scholar 

  160. Kadir A, Marutle A, Gonzalez D, Scholl M, Almkvist O, Mousavi M, et al. Positron emission tomography imaging and clinical progression in relation to molecular pathology in the first Pittsburgh Compound B positron emission tomography patient with Alzheimer’s disease. Brain. 2011;134:301–17.

    Article  PubMed  Google Scholar 

  161. Farid K, Carter SF, Rodriguez-Vieitez E, Almkvist O, Andersen P, Wall A, et al. Case report of complex amyotrophic lateral sclerosis with cognitive impairment and cortical amyloid deposition. J Alzheimers Dis. 2015;47:661–7.

    Article  PubMed  Google Scholar 

  162. Kumar A, Fontana IC, Nordberg A. Reactive astrogliosis: a friend or foe in the pathogenesis of Alzheimer’s disease. J Neurochem. 2023;164:309–24.

    Article  CAS  PubMed  Google Scholar 

  163. Santillo AF, Gambini JP, Lannfelt L, Langstrom B, Ulla-Marja L, Kilander L, et al. In vivo imaging of astrocytosis in Alzheimer’s disease: an (1)(1)C-L-deuteriodeprenyl and PIB PET study. Eur J Nucl Med Mol Imaging. 2011;38:2202–8.

    Article  PubMed  Google Scholar 

  164. Rodriguez-Vieitez E, Ni R, Gulyas B, Toth M, Haggkvist J, Halldin C, et al. Astrocytosis precedes amyloid plaque deposition in Alzheimer APPswe transgenic mouse brain: a correlative positron emission tomography and in vitro imaging study. Eur J Nucl Med Mol Imaging. 2015;42:1119–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Carter SF, Scholl M, Almkvist O, Wall A, Engler H, Langstrom B, et al. Evidence for astrocytosis in prodromal Alzheimer disease provided by 11C-deuterium-L-deprenyl: a multitracer PET paradigm combining 11C-Pittsburgh compound B and 18F-FDG. J Nucl Med. 2012;53:37–46.

    Article  CAS  PubMed  Google Scholar 

  166. Choo IL, Carter SF, Scholl ML, Nordberg A. Astrocytosis measured by (1)(1)C-deprenyl PET correlates with decrease in gray matter density in the parahippocampus of prodromal Alzheimer’s patients. Eur J Nucl Med Mol Imaging. 2014;41:2120–6.

    Article  CAS  PubMed  Google Scholar 

  167. Scholl M, Carter SF, Westman E, Rodriguez-Vieitez E, Almkvist O, Thordardottir S, et al. Early astrocytosis in autosomal dominant Alzheimer’s disease measured in vivo by multi-tracer positron emission tomography. Sci Rep. 2015;5:16404.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Rodriguez-Vieitez E, Saint-Aubert L, Carter SF, Almkvist O, Farid K, Scholl M, et al. Diverging longitudinal changes in astrocytosis and amyloid PET in autosomal dominant Alzheimer’s disease. Brain. 2016;139:922–36.

    Article  PubMed  PubMed Central  Google Scholar 

  169. Carter SF, Chiotis K, Nordberg A, Rodriguez-Vieitez E. Longitudinal association between astrocyte function and glucose metabolism in autosomal dominant Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2019;46:348–56.

    Article  CAS  PubMed  Google Scholar 

  170. Vilaplana E, Rodriguez-Vieitez E, Ferreira D, Montal V, Almkvist O, Wall A, et al. Cortical microstructural correlates of astrocytosis in autosomal-dominant Alzheimer disease. Neurology. 2020;94:e2026–e2036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Lemoine L, Gillberg PG, Bogdanovic N, Nennesmo I, Saint-Aubert L, Viitanen M, et al. Amyloid, tau, and astrocyte pathology in autosomal-dominant Alzheimer’s disease variants: AbetaPParc and PSEN1DE9. Mol Psychiatry. 2021;26:5609–19.

    Article  CAS  PubMed  Google Scholar 

  172. Ni R, Rojdner J, Voytenko L, Dyrks T, Thiele A, Marutle A, et al. In vitro characterization of the regional binding distribution of amyloid PET tracer florbetaben and the glia tracers deprenyl and PK11195 in autopsy Alzheimer’s brain tissue. J Alzheimers Dis. 2021;80:1723–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Marutle A, Gillberg PG, Bergfors A, Yu W, Ni R, Nennesmo I.et al. (3)H-deprenyl and (3)H-PIB autoradiography show different laminar distributions of astroglia and fibrillar beta-amyloid in Alzheimer brain. J Neuroinflammation. 2013;10:90.

  174. Lemoine L, Saint-Aubert L, Nennesmo I, Gillberg PG, Nordberg A. Cortical laminar tau deposits and activated astrocytes in Alzheimer’s disease visualised by (3)H-THK5117 and (3)H-deprenyl autoradiography. Sci Rep. 2017;7:45496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Hirvonen J, Kailajarvi M, Haltia T, Koskimies S, Nagren K, Virsu P, et al. Assessment of MAO-B occupancy in the brain with PET and [11C]-L-deprenyl-D2: a dose-finding study with a novel MAO-B inhibitor, EVT 301. Clin Pharmacol Ther. 2009;85:506–12.

    Article  CAS  PubMed  Google Scholar 

  176. Sturm S, Forsberg A, Nave S, Stenkrona P, Seneca N, Varrone A, et al. Positron emission tomography measurement of brain MAO-B inhibition in patients with Alzheimer’s disease and elderly controls after oral administration of sembragiline. Eur J Nucl Med Mol Imaging. 2017;44:382–91.

    Article  CAS  PubMed  Google Scholar 

  177. Nag S, Lehmann L, Heinrich T, Thiele A, Kettschau G, Nakao R, et al. Synthesis of three novel fluorine-18 labeled analogues of L-deprenyl for positron emission tomography (PET) studies of monoamine oxidase B (MAO-B). J Med Chem. 2011;54:7023–9.

    Article  CAS  PubMed  Google Scholar 

  178. Nag S, Varrone A, Toth M, Thiele A, Kettschau G, Heinrich T, et al. In vivo evaluation in cynomolgus monkey brain and metabolism of [(1)(8)F]fluorodeprenyl: a new MAO-B pet radioligand. Synapse. 2012;66:323–30.

    Article  CAS  PubMed  Google Scholar 

  179. Nag S, Fazio P, Lehmann L, Kettschau G, Heinrich T, Thiele A, et al. In vivo and in vitro characterization of a novel MAO-B inhibitor radioligand, 18F-labeled deuterated fluorodeprenyl. J Nucl Med. 2016;57:315–20.

    Article  CAS  PubMed  Google Scholar 

  180. Ballweg A, Klaus C, Vogler L, Katzdobler S, Wind K, Zatcepin A.et al. (18)F]F-DED PET imaging of reactive astrogliosis in neurodegenerative diseases: preclinical proof of concept and first-in-human data. J Neuroinflammation. 2023;20:68.

  181. Vasdev N, Sadovski O, Moran MD, Parkes J, Meyer JH, Houle S, et al. Development of new radiopharmaceuticals for imaging monoamine oxidase B. Nucl Med Biol. 2011;38:933–43.

    Article  CAS  PubMed  Google Scholar 

  182. Dukic-Stefanovic S, Hang Lai T, Toussaint M, Clauss O, Jevtic II, Penjisevic JZ, et al. In vitro and in vivo evaluation of fluorinated indanone derivatives as potential positron emission tomography agents for the imaging of monoamine oxidase B in the brain. Bioorg Med Chem Lett. 2021;48:128254.

    Article  CAS  PubMed  Google Scholar 

  183. Nag S, Lehmann L, Kettschau G, Heinrich T, Thiele A, Varrone A, et al. Synthesis and evaluation of [(1)(8)F]fluororasagiline, a novel positron emission tomography (PET) radioligand for monoamine oxidase B (MAO-B). Bioorg Med Chem. 2012;20:3065–71.

    Article  CAS  PubMed  Google Scholar 

  184. Nag S, Lehmann L, Kettschau G, Toth M, Heinrich T, Thiele A, et al. Development of a novel fluorine-18 labeled deuterated fluororasagiline ([(18)F]fluororasagiline-D2) radioligand for PET studies of monoamino oxidase B (MAO-B). Bioorg Med Chem. 2013;21:6634–41.

    Article  CAS  PubMed  Google Scholar 

  185. Harada R, Hayakawa Y, Ezura M, Lerdsirisuk P, Du Y, Ishikawa Y, et al. (18)F-SMBT-1: a selective and reversible PET tracer for monoamine oxidase-B imaging. J Nucl Med. 2021;62:253–8.

  186. Villemagne VL, Harada R, Dore V, Furumoto S, Mulligan R, Kudo Y, et al. First-in-humans evaluation of (18)F-SMBT-1, a Novel (18)F-labeled monoamine oxidase-B PET tracer for imaging reactive astrogliosis. J Nucl Med. 2022;63:1551–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Villemagne VL, Harada R, Dore V, Furumoto S, Mulligan R, Kudo Y, et al. Assessing reactive astrogliosis with (18)F-SMBT-1 across the Alzheimer disease spectrum. J Nucl Med. 2022;63:1560–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Olsen M, Aguilar X, Sehlin D, Fang XT, Antoni G, Erlandsson A, et al. Astroglial responses to amyloid-beta progression in a mouse model of Alzheimer’s disease. Mol Imaging Biol. 2018;20:605–14.

    Article  CAS  PubMed  Google Scholar 

  189. Chatterjee P, Dore V, Pedrini S, Krishnadas N, Thota R, Bourgeat P, et al. Plasma glial fibrillary acidic protein is associated with 18F-SMBT-1 PET: two putative astrocyte reactivity biomarkers for Alzheimer’s disease. J Alzheimers Dis. 2023;92:615–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Dahl K, Bernard-Gauthier V, Nag S, Varnas K, Narayanaswami V, Mahdi Moein M, et al. Synthesis and preclinical evaluation of [(18)F]FSL25.1188, a reversible PET radioligand for monoamine oxidase-B. Bioorg Med Chem Lett. 2019;29:1624–7.

    Article  CAS  PubMed  Google Scholar 

  191. Hicks JW, Sadovski O, Parkes J, Houle S, Hay BA, Carter RL, et al. Radiosynthesis and ex vivo evaluation of [(18)F]-(S)-3-(6-(3-fluoropropoxy)benzo[d]isoxazol-3-yl)-5-(methoxymethyl)oxazolidin-2-one for imaging MAO-B with PET. Bioorg Med Chem Lett. 2015;25:288–91.

    Article  CAS  PubMed  Google Scholar 

  192. Saba W, Valette H, Peyronneau MA, Bramoulle Y, Coulon C, Curet O, et al. (11)C]SL25.1188, a new reversible radioligand to study the monoamine oxidase type B with PET: preclinical characterisation in nonhuman primate. Synapse. 2010;64:61–69.

  193. Rusjan PM, Wilson AA, Miler L, Fan I, Mizrahi R, Houle S, et al. Kinetic modeling of the monoamine oxidase B radioligand [(1)(1)C]SL25.1188 in human brain with high-resolution positron emission tomography. J Cereb Blood Flow Metab. 2014;34:883–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Moriguchi S, Wilson AA, Miler L, Rusjan PM, Vasdev N, Kish SJ, et al. Monoamine oxidase B total distribution volume in the prefrontal cortex of major depressive disorder: an [11C]SL25.1188 positron emission tomography study. JAMA Psychiatry. 2019;76:634–41.

    Article  PubMed  PubMed Central  Google Scholar 

  195. Gill T, Watling SE, Richardson JD, McCluskey T, Tong J, Meyer JH, et al. Imaging of astrocytes in posttraumatic stress disorder: A PET study with the monoamine oxidase B radioligand [(11)C]SL25.1188. Eur Neuropsychopharmacol. 2022;54:54–61.

    Article  CAS  PubMed  Google Scholar 

  196. Varnas K, Cselenyi Z, Arakawa R, Nag S, Stepanov V, Moein MM, et al. The pro-psychotic metabotropic glutamate receptor compounds fenobam and AZD9272 share binding sites with monoamine oxidase-B inhibitors in humans. Neuropharmacology. 2020;162:107809.

    Article  PubMed  Google Scholar 

  197. Koshimori Y, Cusimano MD, Vieira EL, Rusjan PM, Kish SJ, Vasdev N, et al. Astrogliosis marker 11C-SL25.1188 PET in traumatic brain injury with persistent symptoms. Brain. 2023;146:4469–75.

    Article  PubMed  PubMed Central  Google Scholar 

  198. Nag S, Jia Z, Svedberg M, Jackson A, Ahmad R, Luthra S, et al. Synthesis and autoradiography of novel F-18 labeled reversible radioligands for detection of monoamine oxidase B. ACS Chem Neurosci. 2020;11:4398–404.

    Article  CAS  PubMed  Google Scholar 

  199. Varnas K, Nag S, Halldin C, Farde L. PET evaluation of the novel F-18 labeled reversible radioligand [(18)F]GEH200449 for detection of monoamine oxidase-B in the non-human primate brain. ACS Chem Neurosci. 2023;14:3206–11.

    Article  PubMed  Google Scholar 

  200. Ruiz J, Martin I, Callado LF, Meana JJ, Barturen F, Garcia-Sevilla JA. Non-adrenoceptor [3H]idazoxan binding sites (I2-imidazoline sites) are increased in postmortem brain from patients with Alzheimer’s disease. Neurosci Lett. 1993;160:109–12.

    Article  CAS  PubMed  Google Scholar 

  201. Qiu WW, Zheng RY. Neuroprotective effects of receptor imidazoline 2 and its endogenous ligand agmatine. Neurosci Bull. 2006;22:187–91.

    CAS  PubMed  Google Scholar 

  202. Hudson AL, Tyacke RJ, Lalies MD, Davies N, Finn DP, Marti O, et al. Novel ligands for the investigation of imidazoline receptors and their binding proteins. Ann N Y Acad Sci. 2003;1009:302–8.

    Article  CAS  PubMed  Google Scholar 

  203. Saczewski F, Tabin P, Tyacke RJ, Maconie A, Saczewski J, Kornicka A, et al. 2-(4,5-dihydroimidazol-2-yl)benzimidazoles as highly selective imidazoline I2/adrenergic alpha2 receptor ligands. Bioorg Med Chem. 2006;14:6679–85.

    Article  CAS  PubMed  Google Scholar 

  204. Tyacke RJ, Fisher A, Robinson ES, Grundt P, Turner EM, Husbands SM, et al. Evaluation and initial in vitro and ex vivo characterization of the potential positron emission tomography ligand, BU99008 (2-(4,5-dihydro-1H-imidazol-2-yl)-1- methyl-1H-indole), for the imidazoline(2) binding site. Synapse. 2012;66:542–51.

    Article  CAS  PubMed  Google Scholar 

  205. Kealey S, Turner EM, Husbands SM, Salinas CA, Jakobsen S, Tyacke RJ, et al. Imaging imidazoline-I2 binding sites in porcine brain using 11C-BU99008. J Nucl Med. 2013;54:139–44.

    Article  CAS  PubMed  Google Scholar 

  206. Parker CA, Nabulsi N, Holden D, Lin SF, Cass T, Labaree D, et al. Evaluation of 11C-BU99008, a PET ligand for the imidazoline2 binding sites in rhesus brain. J Nucl Med. 2014;55:838–44.

    Article  CAS  PubMed  Google Scholar 

  207. Tyacke RJ, Myers JFM, Venkataraman A, Mick I, Turton S, Passchier J, et al. Evaluation of (11)C-BU99008, a PET Ligand for the Imidazoline(2) Binding Site in Human Brain. J Nucl Med. 2018;59:1597–602.

    Article  CAS  PubMed  Google Scholar 

  208. Venkataraman AV, Keat N, Myers JF, Turton S, Mick I, Gunn RN, et al. First evaluation of PET-based human biodistribution and radiation dosimetry of (11)C-BU99008, a tracer for imaging the imidazoline(2) binding site. EJNMMI Res. 2018;8:71.

    Article  PubMed  PubMed Central  Google Scholar 

  209. Kumar A, Koistinen NA, Malarte ML, Nennesmo I, Ingelsson M, Ghetti B, et al. Astroglial tracer BU99008 detects multiple binding sites in Alzheimer’s disease brain. Mol Psychiatry. 2021;26:5833–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Livingston NR, Calsolaro V, Hinz R, Nowell J, Raza S, Gentleman S, et al. Relationship between astrocyte reactivity, using novel (11)C-BU99008 PET, and glucose metabolism, grey matter volume and amyloid load in cognitively impaired individuals. Mol Psychiatry. 2022;27:2019–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Calsolaro V, Matthews PM, Donat CK, Livingston NR, Femminella GD, Guedes SS, et al. Astrocyte reactivity with late-onset cognitive impairment assessed in vivo using (11)C-BU99008 PET and its relationship with amyloid load. Mol Psychiatry. 2021;26:5848–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Wilson H, Dervenoulas G, Pagano G, Tyacke RJ, Polychronis S, Myers J, et al. Imidazoline 2 binding sites reflecting astroglia pathology in Parkinson’s disease: an in vivo11C-BU99008 PET study. Brain. 2019;142:3116–28.

    Article  PubMed  Google Scholar 

  213. Mohamed MA, Zeng Z, Gennaro M, Lao-Kaim NP, Myers JFM, Calsolaro V, et al. Astrogliosis in aging and Parkinson’s disease dementia: a new clinical study with (11)C-BU99008 PET. Brain Commun. 2022;4:fcac199.

    Article  PubMed  PubMed Central  Google Scholar 

  214. Kawamura K, Yui J, Konno F, Yamasaki T, Hatori A, Wakizaka H, et al. Synthesis and evaluation of PET probes for the imaging of I2 imidazoline receptors in peripheral tissues. Nucl Med Biol. 2012;39:89–99.

    Article  CAS  PubMed  Google Scholar 

  215. Kawamura K, Kimura Y, Yui J, Wakizaka H, Yamasaki T, Hatori A, et al. PET study using [11C]FTIMD with ultra-high specific activity to evaluate I2-imidazoline receptors binding in rat brains. Nucl Med Biol. 2012;39:199–206.

    Article  CAS  PubMed  Google Scholar 

  216. Kawamura K, Naganawa M, Konno F, Yui J, Wakizaka H, Yamasaki T, et al. Imaging of I2-imidazoline receptors by small-animal PET using 2-(3-fluoro-[4-11C]tolyl)-4,5-dihydro-1H-imidazole ([11C]FTIMD). Nucl Med Biol. 2010;37:625–35.

  217. Kawamura K, Maeda J, Hatori A, Okauchi T, Nagai Y, Higuchi M, et al. In vivo and in vitro imaging of I(2) imidazoline receptors in the monkey brain. Synapse. 2011;65:452–5.

    Article  CAS  PubMed  Google Scholar 

  218. Kawamura K, Shimoda Y, Kumata K, Fujinaga M, Yui J, Yamasaki T, et al. In vivo evaluation of a new (1)(8)F-labeled PET ligand, [(1)(8)F]FEBU, for the imaging of I(2)-imidazoline receptors. Nucl Med Biol. 2015;42:406–12.

    Article  CAS  PubMed  Google Scholar 

  219. Kawamura K, Yamasaki T, Zhang Y, Wakizaka H, Hatori A, Xie L, et al. Change in the Binding of [(11)C]BU99008 to imidazoline I2 receptor using brain PET in Zucker rats. Mol Imaging Biol. 2019;21:105–12.

    Article  CAS  PubMed  Google Scholar 

  220. Kawamura K, Shimoda Y, Yui J, Zhang Y, Yamasaki T, Wakizaka H, et al. A useful PET probe [(11)C]BU99008 with ultra-high specific radioactivity for small animal PET imaging of I(2)-imidazoline receptors in the hypothalamus. Nucl Med Biol. 2017;45:1–7.

    Article  CAS  PubMed  Google Scholar 

  221. Brunt TM, Bossong MG. The neuropharmacology of cannabinoid receptor ligands in central signaling pathways. Eur J Neurosci. 2022;55:909–21.

    Article  CAS  PubMed  Google Scholar 

  222. Komorowska-Muller JA, Schmole AC. CB2 receptor in microglia: the guardian of self-control. Int J Mol Sci. 2020;22:19.

  223. Di Marzo V, Stella N, Zimmer A. Endocannabinoid signalling and the deteriorating brain. Nat Rev Neurosci. 2015;16:30–42.

    Article  PubMed  PubMed Central  Google Scholar 

  224. Grabon W, Bodennec J, Rheims S, Belmeguenai A, Bezin L. Update on the controversial identity of cells expressing cnr2 gene in the nervous system. CNS Neurosci Ther. 2023;29:760–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Onaivi ES. Neuropsychobiological evidence for the functional presence and expression of cannabinoid CB2 receptors in the brain. Neuropsychobiology. 2006;54:231–46.

    Article  CAS  PubMed  Google Scholar 

  226. Van Sickle MD, Duncan M, Kingsley PJ, Mouihate A, Urbani P, Mackie K, et al. Identification and functional characterization of brainstem cannabinoid CB2 receptors. Science. 2005;310:329–32.

    Article  PubMed  Google Scholar 

  227. Kibret BG, Ishiguro H, Horiuchi Y, Onaivi ES. New insights and potential therapeutic targeting of CB2 cannabinoid receptors in CNS disorders. Int J Mol Sci. 2022; 23.

  228. García-Gutiérrez MS, Navarrete F, Gasparyan A, Manzanares J. Therapeutic potential of the cannabinoid receptor 2 in neuropsychiatry. Exploration of Neuroprotective Therapy 2021;1: 55–71.

  229. Evens N, Muccioli GG, Houbrechts N, Lambert DM, Verbruggen AM, Van Laere K, et al. Synthesis and biological evaluation of carbon-11- and fluorine-18-labeled 2-oxoquinoline derivatives for type 2 cannabinoid receptor positron emission tomography imaging. Nucl Med Biol. 2009;36:455–65.

    Article  CAS  PubMed  Google Scholar 

  230. Evens N, Vandeputte C, Coolen C, Janssen P, Sciot R, Baekelandt V, et al. Preclinical evaluation of [11C]NE40, a type 2 cannabinoid receptor PET tracer. Nucl Med Biol. 2012;39:389–99.

    Article  CAS  PubMed  Google Scholar 

  231. Vandeputte C, Casteels C, Struys T, Koole M, van Veghel D, Evens N, et al. Small-animal PET imaging of the type 1 and type 2 cannabinoid receptors in a photothrombotic stroke model. Eur J Nucl Med Mol Imaging. 2012;39:1796–806.

    Article  CAS  PubMed  Google Scholar 

  232. Ahmad R, Koole M, Evens N, Serdons K, Verbruggen A, Bormans G, et al. Whole-body biodistribution and radiation dosimetry of the cannabinoid type 2 receptor ligand [11C]-NE40 in healthy subjects. Mol Imaging Biol. 2013;15:384–90.

    Article  PubMed  Google Scholar 

  233. Hosoya T, Fukumoto D, Kakiuchi T, Nishiyama S, Yamamoto S, Ohba H, et al. In vivo TSPO and cannabinoid receptor type 2 availability early in post-stroke neuroinflammation in rats: a positron emission tomography study. J Neuroinflammation. 2017;14:69.

    Article  PubMed  PubMed Central  Google Scholar 

  234. Yamagishi S, Iga Y, Nakamura M, Takizawa C, Fukumoto D, Kakiuchi T, et al. Upregulation of cannabinoid receptor type 2, but not TSPO, in senescence-accelerated neuroinflammation in mice: a positron emission tomography study. J Neuroinflammation. 2019;16:208.

    Article  PubMed  PubMed Central  Google Scholar 

  235. Ahmad R, Postnov A, Bormans G, Versijpt J, Vandenbulcke M, Van Laere K. Decreased in vivo availability of the cannabinoid type 2 receptor in Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2016;43:2219–27.

    Article  CAS  PubMed  Google Scholar 

  236. Evens N, Bosier B, Lavey BJ, Kozlowski JA, Vermaelen P, Baudemprez L, et al. Labelling and biological evaluation of [(11)C]methoxy-Sch225336: a radioligand for the cannabinoid-type 2 receptor. Nucl Med Biol. 2008;35:793–800.

    Article  CAS  PubMed  Google Scholar 

  237. Vandeputte C, Evens N, Toelen J, Deroose CM, Bosier B, Ibrahimi A, et al. A PET brain reporter gene system based on type 2 cannabinoid receptors. J Nucl Med. 2011;52:1102–9.

    Article  CAS  PubMed  Google Scholar 

  238. Ahamed M, van Veghel D, Ullmer C, Van Laere K, Verbruggen A, Bormans GM. Synthesis, biodistribution and in vitro evaluation of brain permeable high affinity type 2 cannabinoid receptor agonists [(11)C]MA2 and [(18)F]MA3. Front Neurosci. 2016;10:431.

    Article  PubMed  PubMed Central  Google Scholar 

  239. Evens N, Vandeputte C, Muccioli GG, Lambert DM, Baekelandt V, Verbruggen AM, et al. Synthesis, in vitro and in vivo evaluation of fluorine-18 labelled FE-GW405833 as a PET tracer for type 2 cannabinoid receptor imaging. Bioorg Med Chem. 2011;19:4499–505.

    Article  CAS  PubMed  Google Scholar 

  240. Horti AG, Gao Y, Ravert HT, Finley P, Valentine H, Wong DF, et al. Synthesis and biodistribution of [11C]A-836339, a new potential radioligand for PET imaging of cannabinoid type 2 receptors (CB2). Bioorg Med Chem. 2010;18:5202–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Savonenko AV, Melnikova T, Wang Y, Ravert H, Gao Y, Koppel J, et al. Cannabinoid CB2 receptors in a mouse model of abeta amyloidosis: immunohistochemical analysis and suitability as a PET biomarker of neuroinflammation. PLoS One. 2015;10:e0129618.

    Article  PubMed  PubMed Central  Google Scholar 

  242. Pottier G, Gomez-Vallejo V, Padro D, Boisgard R, Dolle F, Llop J, et al. PET imaging of cannabinoid type 2 receptors with [(11)C]A-836339 did not evidence changes following neuroinflammation in rats. J Cereb Blood Flow Metab. 2017;37:1163–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Du Y, Coughlin JM, Brosnan MK, Chen A, Shinehouse LK, Abdallah R, et al. First-in-human imaging using [(11)C]MDTC: a radiotracer targeting the cannabinoid receptor type 2. Eur J Nucl Med Mol Imaging. 2023;50:2386–93.

    Article  CAS  PubMed  Google Scholar 

  244. Fujinaga M, Kumata K, Yanamoto K, Kawamura K, Yamasaki T, Yui J, et al. Radiosynthesis of novel carbon-11-labeled triaryl ligands for cannabinoid-type 2 receptor. Bioorg Med Chem Lett. 2010;20:1565–8.

    Article  CAS  PubMed  Google Scholar 

  245. Turkman N, Shavrin A, Paolillo V, Yeh HH, Flores L, Soghomonian S, et al. Synthesis and preliminary evaluation of [18F]-labeled 2-oxoquinoline derivatives for PET imaging of cannabinoid CB2 receptor. Nucl Med Biol. 2012;39:593–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Mu L, Bieri D, Slavik R, Drandarov K, Muller A, Cermak S, et al. Radiolabeling and in vitro /in vivo evaluation of N-(1-adamantyl)-8-methoxy-4-oxo-1-phenyl-1,4-dihydroquinoline-3-carboxamide as a PET probe for imaging cannabinoid type 2 receptor. J Neurochem. 2013;126:616–24.

    Article  CAS  PubMed  Google Scholar 

  247. Lueg C, Schepmann D, Gunther R, Brust P, Wunsch B. Development of fluorinated CB(2) receptor agonists for PET studies. Bioorg Med Chem. 2013;21:7481–98.

    Article  CAS  PubMed  Google Scholar 

  248. Slavik R, Bieri D, Cermak S, Muller A, Kramer SD, Weber M, et al. Development and evaluation of novel PET tracers for imaging cannabinoid receptor type 2 in brain. Chimia (Aarau). 2014;68:208–10.

    Article  CAS  PubMed  Google Scholar 

  249. Haider A, Muller Herde A, Slavik R, Weber M, Mugnaini C, Ligresti A, et al. Synthesis and biological evaluation of thiophene-based cannabinoid receptor type 2 radiotracers for PET imaging. Front Neurosci. 2016;10:350.

    Article  PubMed  PubMed Central  Google Scholar 

  250. Slavik R, Muller Herde A, Haider A, Kramer SD, Weber M, Schibli R, et al. Discovery of a fluorinated 4-oxo-quinoline derivative as a potential positron emission tomography radiotracer for imaging cannabinoid receptor type 2. J Neurochem. 2016;138:874–86.

    Article  CAS  PubMed  Google Scholar 

  251. Haider A, Spinelli F, Herde AM, Mu B, Keller C, Margelisch M, et al. Evaluation of 4-oxo-quinoline-based CB2 PET radioligands in R6/2 chorea huntington mouse model and human ALS spinal cord tissue. Eur J Med Chem. 2018;145:746–59.

    Article  CAS  PubMed  Google Scholar 

  252. Haider A, Kretz J, Gobbi L, Ahmed H, Atz K, Burkler M, et al. Structure-activity relationship studies of pyridine-based ligands and identification of a fluorinated derivative for positron emission tomography imaging of cannabinoid type 2 receptors. J Med Chem. 2019;62:11165–81.

    Article  CAS  PubMed  Google Scholar 

  253. Kecheliev V, Spinelli F, Herde A, Haider A, Mu L, Klohs J, et al. Evaluation of cannabinoid type 2 receptor expression and pyridine-based radiotracers in brains from a mouse model of Alzheimer’s disease. Front Aging Neurosci. 2022;14:1018610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Ueberham L, Gundel D, Kellert M, Deuther-Conrad W, Ludwig FA, Lonnecke P, et al. Development of the high-affinity carborane-based cannabinoid receptor type 2 PET ligand [(18)F]LUZ5-d(8). J Med Chem. 2023;66:5242–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Kallinen A, Mardon K, Lane S, Montgomery AP, Bhalla R, Stimson DHR, et al. Synthesis and preclinical evaluation of fluorinated 5-azaindoles as CB2 PET radioligands. ACS Chem Neurosci. 2023;14:2902–21.

    Article  CAS  PubMed  Google Scholar 

  256. Pascali G, Panetta D, De Simone M, Burchielli S, Lucchesi V, Sanguinetti E, et al. Preliminary investigation of a novel 18F radiopharmaceutical for imaging CB2 Receptors in a SOD Mouse Model. Australian Journal of Chemistry. 2021;74:443–52.

    Article  CAS  Google Scholar 

  257. Teodoro R, Gundel D, Deuther-Conrad W, Ueberham L, Toussaint M, Bormans G et al. Development of [(18)F]LU14 for PET imaging of cannabinoid receptor type 2 in the brain. Int J Mol Sci. 2021;22:8051.

  258. Gundel D, Deuther-Conrad W, Ueberham L, Kaur S, Otikova E, Teodoro R, et al. Structure-based design, optimization, and development of [(18)F]LU13: a novel radioligand for cannabinoid receptor type 2 imaging in the brain with PET. J Med Chem. 2022;65:9034–49.

    Article  PubMed  Google Scholar 

  259. Slavik R, Herde AM, Bieri D, Weber M, Schibli R, Kramer SD, et al. Synthesis, radiolabeling and evaluation of novel 4-oxo-quinoline derivatives as PET tracers for imaging cannabinoid type 2 receptor. Eur J Med Chem. 2015;92:554–64.

    Article  CAS  PubMed  Google Scholar 

  260. Slavik R, Grether U, Muller Herde A, Gobbi L, Fingerle J, Ullmer C, et al. Discovery of a high affinity and selective pyridine analog as a potential positron emission tomography imaging agent for cannabinoid type 2 receptor. J Med Chem. 2015;58:4266–77.

    Article  CAS  PubMed  Google Scholar 

  261. Moldovan RP, Teodoro R, Gao Y, Deuther-Conrad W, Kranz M, Wang Y, et al. Development of a high-affinity PET radioligand for imaging cannabinoid subtype 2 receptor. J Med Chem. 2016;59:7840–55.

    Article  CAS  PubMed  Google Scholar 

  262. Ni R, Muller Herde A, Haider A, Keller C, Louloudis G, Vaas M, et al. In vivo imaging of cannabinoid type 2 receptors: functional and structural alterations in mouse model of cerebral ischemia by PET and MRI. Mol Imaging Biol. 2022;24:700–9.

    Article  CAS  PubMed  Google Scholar 

  263. Bravo GA, Cedeno RR, Casadevall MP, Ramio-Torrenta L. Sphingosine-1-phosphate (S1P) and S1P signaling pathway modulators, from current insights to future perspectives. Cells. 2022; 11.

  264. McGinley MP, Cohen JA. Sphingosine 1-phosphate receptor modulators in multiple sclerosis and other conditions. Lancet. 2021;398:1184–94.

    Article  CAS  PubMed  Google Scholar 

  265. Chen H, Wang J, Zhang C, Ding P, Tian S, Chen J, et al. Sphingosine 1-phosphate receptor, a new therapeutic direction in different diseases. Biomed Pharmacother. 2022;153:113341.

    Article  CAS  PubMed  Google Scholar 

  266. Brinkmann V. FTY720 (fingolimod) in Multiple Sclerosis: therapeutic effects in the immune and the central nervous system. Br J Pharmacol. 2009;158:1173–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Briard E, Orain D, Beerli C, Billich A, Streiff M, Bigaud M, et al. BZM055, an iodinated radiotracer candidate for PET and SPECT imaging of myelin and FTY720 brain distribution. ChemMedChem. 2011;6:667–77.

    Article  CAS  PubMed  Google Scholar 

  268. Rokka J, Federico C, Jurttila J, Snellman A, Haaparanta M, Rinne JO, et al. 19F/18F exchange synthesis for a novel [18F]S1P3-radiopharmaceutical. J Labelled Comp Radiopharm. 2013;56:385–91.

    Article  CAS  PubMed  Google Scholar 

  269. Prasad VP, Wagner S, Keul P, Hermann S, Levkau B, Schafers M, et al. Synthesis of fluorinated analogues of sphingosine-1-phosphate antagonists as potential radiotracers for molecular imaging using positron emission tomography. Bioorg Med Chem. 2014;22:5168–81.

    Article  CAS  PubMed  Google Scholar 

  270. Briard E, Rudolph B, Desrayaud S, Krauser JA, Auberson YP. MS565: A SPECT tracer for evaluating the brain penetration of BAF312 (Siponimod). ChemMedChem. 2015;10:1008–18.

    Article  CAS  PubMed  Google Scholar 

  271. Rosenberg AJ, Liu H, Tu Z. A practical process for the preparation of [(32)P]S1P and binding assay for S1P receptor ligands. Appl Radiat Isot. 2015;102:5–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Liu H, Jin H, Yue X, Luo Z, Liu C, Rosenberg AJ, et al. PET imaging study of S1PR1 expression in a rat model of multiple sclerosis. Mol Imaging Biol. 2016;18:724–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Rosenberg AJ, Liu H, Jin H, Yue X, Riley S, Brown SJ, et al. Design, synthesis, and in vitro and in vivo evaluation of an (18)F-labeled sphingosine 1-phosphate receptor 1 (S1P1) PET Tracer. J Med Chem. 2016;59:6201–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Jin H, Yang H, Liu H, Zhang Y, Zhang X, Rosenberg AJ, et al. A promising carbon-11-labeled sphingosine-1-phosphate receptor 1-specific PET tracer for imaging vascular injury. J Nucl Cardiol. 2017;24:558–70.

    Article  PubMed  Google Scholar 

  275. Liu H, Jin H, Yue X, Han J, Baum P, Abendschein DR, et al. PET study of sphingosine-1-phosphate receptor 1 expression in response to vascular inflammation in a rat model of carotid injury. Mol Imaging. 2017;16:1536012116689770.

    Article  PubMed  PubMed Central  Google Scholar 

  276. Liu H, Jin H, Han J, Yue X, Yang H, Zayed MA, et al. Upregulated sphingosine 1-phosphate receptor 1 expression in human and murine atherosclerotic plaques. Mol Imaging Biol. 2018;20:448–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Jiang H, Joshi S, Liu H, Mansor S, Qiu L, Zhao H, et al. In vitro and in vivo investigation of S1PR1 expression in the central nervous system using [(3)H]CS1P1 and [(11)C]CS1P1. ACS Chem Neurosci. 2021;12:3733–44.

    Article  CAS  PubMed  Google Scholar 

  278. Chand GB, Jiang H, Miller JP, Rhodes CH, Tu Z, Wong DF. Differential sphingosine-1-phosphate receptor-1 protein expression in the dorsolateral prefrontal cortex between schizophrenia type 1 and type 2. Front Psychiatry. 2022;13:827981.

    Article  PubMed  PubMed Central  Google Scholar 

  279. Liu H, Laforest R, Gu J, Luo Z, Jones LA, Gropler RJ, et al. Acute rodent tolerability, toxicity, and radiation dosimetry estimates of the S1P1-specific radioligand [(11)C]CS1P1. Mol Imaging Biol. 2020;22:285–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Luo Z, Gu J, Dennett RC, Gaehle GG, Perlmutter JS, Chen DL, et al. Automated production of a sphingosine-1 phosphate receptor 1 (S1P1) PET radiopharmaceutical [(11)C]CS1P1 for human use. Appl Radiat Isot. 2019;152:30–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Brier MR, Hamdi M, Rajamanikam J, Zhao H, Mansor S, Jones LA, et al. Phase 1 evaluation of (11)C-CS1P1 to assess safety and dosimetry in human participants. J Nucl Med. 2022;63:1775–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  282. Qiu L, Jiang H, Yu Y, Gu J, Wang J, Zhao H, et al. Radiosynthesis and evaluation of a fluorine-18 radiotracer [(18)F]FS1P1 for imaging sphingosine-1-phosphate receptor 1. Org Biomol Chem. 2022;20:1041–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Liu H, Luo Z, Gu J, Jiang H, Joshi S, Shoghi KI, et al. In vivo characterization of four (18)F-labeled S1PR1 tracers for neuroinflammation. Mol Imaging Biol. 2020;22:1362–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Luo Z, Liu H, Yu Y, Gropler RJ, Klein RS, Tu Z. Synthesis and evaluation of highly selective quinazoline-2,4-dione ligands for sphingosine-1-phosphate receptor 2. RSC Med Chem. 2022;13:202–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Luo Z, Rosenberg AJ, Liu H, Han J, Tu Z. Syntheses and in vitro evaluation of new S1PR1 compounds and initial evaluation of a lead F-18 radiotracer in rodents. Eur J Med Chem. 2018;150:796–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Jiang H, Gu J, Zhao H, Joshi S, Perlmutter JS, Gropler RJ, et al. PET study of sphingosine-1-phosphate receptor 1 expression in response to S. aureus infection. Mol Imaging. 2021;2021:9982020.

    Article  PubMed  PubMed Central  Google Scholar 

  287. Luo Z, Han J, Liu H, Rosenberg AJ, Chen DL, Gropler RJ, et al. Syntheses and in vitro biological evaluation of S1PR1 ligands and PET studies of four F-18 labeled radiotracers in the brain of nonhuman primates. Org Biomol Chem. 2018;16:9171–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Qiu L, Jiang H, Zhou C, Wang J, Yu Y, Zhao H, et al. Discovery of a promising fluorine-18 positron emission tomography radiotracer for imaging sphingosine-1-phosphate receptor 1 in the brain. J Med Chem. 2023;66:4671–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Ye M, Gai Y, Ji H, Jiang Y, Qiao P, Wang W, et al. A novel radioimmune (99m)Tc-labeled tracer for imaging sphingosine 1-phosphate receptor 1 in tumor xenografts: an in vitro and in vivo study. Front Immunol. 2021;12:660842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Sehlin D, Syvanen S, Faculty M. Engineered antibodies: new possibilities for brain PET? Eur J Nucl Med Mol Imaging. 2019;46:2848–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was performed within the frameworks of LABEX PRIMES (ANR-11-LABX-0063, University of Lyon), the “Investissements d’Avenir” program (ANR-11-IDEX-0007, University of Lyon), the research program PURImaging (ANR-21-CE18-0067-01, University of Paris-Saclay, SHFJ-CEA Orsay), and the LABEX IRON (ANR-11-LABX-18-01, University of Tours) of the French National Research Agency (ANR). GB was supported by the “Fondation ARC pour la recherche sur le cancer” through the “passerelle 2023” grant.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the writing of this review. HB coordinated and collated the contributions of all authors into the final manuscript. GB finalised the figures of this review; FC made the online interactive one (https://infogram.com/radar-spider-1h984wv3llqnd2p).

Corresponding author

Correspondence to Hervé Boutin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauveau, F., Winkeler, A., Chalon, S. et al. PET imaging of neuroinflammation: any credible alternatives to TSPO yet?. Mol Psychiatry (2024). https://doi.org/10.1038/s41380-024-02656-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41380-024-02656-9

Search

Quick links