Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Systematic Review
  • Published:

Chronic social stressors and striatal dopamine functioning in humans: A systematic review of SPECT and PET studies

Abstract

The dopamine hypothesis of schizophrenia posits that elevated striatal dopamine functioning underlies the development of psychotic symptoms. Chronic exposure to social stressors increases psychosis risk, possibly by upregulating striatal dopamine functioning. Here we systematically review single photon emission computed tomography (SPECT) and positron emission tomography (PET) studies that examined the relationship between chronic social stress exposure and in vivo striatal dopamine functioning in humans. We searched the scientific databases PubMed and PsycINFO from inception to August 2023. The quality of the included studies was evaluated with the ten-item Observational Study Quality Evaluation (PROSPERO: CRD42022308883). Twenty-eight studies were included, which measured different aspects of striatal dopamine functioning including dopamine synthesis capacity (DSC), vesicular monoamine transporter type 2 binding, dopamine release following a pharmacological or behavioral challenge, D2/3 receptor binding, and dopamine transporter binding. We observed preliminary evidence of an association between childhood trauma and increased striatal DSC and dopamine release. However, exposure to low socioeconomic status, stressful life events, or other social stressors was not consistently associated with altered striatal dopamine functioning. The quality of available studies was generally low. In conclusion, there is insufficient evidence that chronic social stressors upregulate striatal dopamine functioning in humans. We propose avenues for future research, in particular to improve the measurement of chronic social stressors and the methodological quality of study designs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2: Schematic depiction of different components of striatal dopamine functioning and their associations with social stressors.

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Howes O, Kapur S. The dopamine hypothesis of schizophrenia: version III—the final common pathway. Schizophr Bull. 2009;35:549–62.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Brugger SP, Angelescu I, Abi-Dargham A, Mizrahi R, Shahrezaei V, Howes OD. Heterogeneity of striatal dopamine function in schizophrenia: Meta-analysis of variance. Biol Psychiatry. 2020;87:215–24.

    Article  CAS  PubMed  Google Scholar 

  3. Cheng PWC, Chang WC, Lo GG, Chan KWS, Lee HME, Hui LMC, et al. The role of dopamine dysregulation and evidence for the transdiagnostic nature of elevated dopamine synthesis in psychosis: a positron emission tomography (PET) study comparing schizophrenia, delusional disorder, and other psychotic disorders. Neuropsychopharmacology. 2020;45:1870–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Egerton A, Chaddock CA, Winton-Brown TT, Bloomfield MA, Bhattacharyya S, Allen P, et al. Presynaptic striatal dopamine dysfunction in people at ultra-high risk for psychosis: findings in a second cohort. Biol Psychiatry. 2013;74:106–12.

    Article  CAS  PubMed  Google Scholar 

  5. Jauhar S, Nour MM, Veronese M, Rogdaki M, Bonoldi I, Azis M, et al. A test of the transdiagnostic dopamine hypothesis of psychosis using positron emission tomographic imaging in bipolar affective disorder and schizophrenia. JAMA Psychiatry. 2017;74:1206–13.

    Article  PubMed  PubMed Central  Google Scholar 

  6. van Duin ED, Kasanova Z, Hernaus D, Ceccarini J, Heinzel A, Mottaghy F, et al. Striatal dopamine release and impaired reinforcement learning in adults with 22q11.2 deletion syndrome. Eur Neuropsychopharmacol. 2018;28:732–42.

    Article  PubMed  Google Scholar 

  7. Boot E, Booij J, Zinkstok JR, Baas F, Swillen A, Owen MJ, et al. COMT Val158Met genotype and striatal D2/3 receptor binding in adults with 22q11 deletion syndrome. Synapse. 2011;65:967–70.

    Article  CAS  PubMed  Google Scholar 

  8. D’Ambrosio E, Dahoun T, Pardinas AF, Veronese M, Bloomfield MA, Jauhar S, et al. The effect of a genetic variant at the schizophrenia associated AS3MT/BORCS7 locus on striatal dopamine function: a PET imaging study. Psychiatry Res Neuroimaging. 2019;291:34–41.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Howes OD, McCutcheon R, Owen MJ, Murray RM. The role of genes, stress, and dopamine in the development of schizophrenia. Biol Psychiatry. 2017;81:9–20.

    Article  CAS  PubMed  Google Scholar 

  10. Stokes PR, Shotbolt P, Mehta MA, Turkheimer E, Benecke A, Copeland C, et al. Nature or nurture? Determining the heritability of human striatal dopamine function: an [18F]-DOPA PET study. Neuropsychopharmacology. 2013;38:485–91.

    Article  CAS  PubMed  Google Scholar 

  11. Borg J, Cervenka S, Kuja-Halkola R, Matheson GJ, Jönsson E, Lichtenstein P, et al. Contribution of non-genetic factors to dopamine and serotonin receptor availability in the adult human brain. Mol Psychiatry. 2016;21:1077–84.

    Article  CAS  PubMed  Google Scholar 

  12. Van Winkel R, Van Nierop M, Myin-Germeys I, Van Os J. Childhood trauma as a cause of psychosis: linking genes, psychology, and biology. Can J Psychiatry. 2013;58:44–51.

    Article  PubMed  Google Scholar 

  13. Selten JP, van der Ven E, Termorshuizen F. Migration and psychosis: A meta-analysis of incidence studies. Psychol Med. 2020;50:303–13.

    Article  PubMed  Google Scholar 

  14. Beards S, Gayer-Anderson C, Borges S, Dewey ME, Fisher HL, Morgan C. Life events and psychosis: a review and meta-analysis. Schizophr Bull. 2013;39:740–7.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Howes OD, Murray RM. Schizophrenia: an integrated sociodevelopmental-cognitive model. Lancet. 2014;383:1677–87.

    Article  PubMed  Google Scholar 

  16. Selten JP, Ormel J. Low status, humiliation, dopamine and risk of schizophrenia. Psychol Med. 2023;53:609–13.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Morgan D, Grant KA, Gage HD, Mach RH, Kaplan JR, Prioleau O, et al. Social dominance in monkeys: dopamine D2 receptors and cocaine self-administration. Nat Neurosci. 2002;5:169–74.

    Article  CAS  PubMed  Google Scholar 

  18. Holly EN, Miczek KA. Ventral tegmental area dopamine revisited: Effects of acute and repeated stress. Psychopharmacology. 2016;233:163–86.

    Article  CAS  PubMed  Google Scholar 

  19. Czoty P, Gould R, Gage H, Nader MN. Effects of social reorganization on dopamine D2/D3 receptor availability and cocaine self-administration in male cynomolgus monkeys. Psychopharmacology. 2017;234:2673–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Longden E, Read J. Social adversity in the etiology of psychosis: A review of the evidence. Am J Psychother. 2016;70:5–33.

    Article  PubMed  Google Scholar 

  21. Morgan C, Knowles G, Hutchinson G. Migration, ethnicity and psychoses: evidence, models and future directions. World Psychiatry. 2019;18:247–58.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chen E, Miller GE. “Shift-and-persist” strategies: Why low socioeconomic status isn’t always bad for health. Perspect Psychol Sci. 2012;7:135–58.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Drukker M, Weltens I, van Hooijdonk CF, Vandenberk E, Bak M. Development of a methodological quality criteria list for observational studies: the observational study quality evaluation. Front Res Metr Anal. 2021;6:675071.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Mizrahi R, Addington J, Rusjan PM, Suridjan I, Ng A, Boileau I, et al. Increased stress-induced dopamine release in psychosis. Biol Psychiatry. 2012;71:561–7.

    Article  CAS  PubMed  Google Scholar 

  25. Egerton A, Howes OD, Houle S, McKenzie K, Valmaggia LR, Bagby MR, et al. Elevated striatal dopamine function in immigrants and their children: a risk mechanism for psychosis. Schizophr Bull. 2017;43:293–301.

    PubMed  PubMed Central  Google Scholar 

  26. Matuskey D, Gaiser EC, Gallezot J-D, Angarita GA, Pittman B, Nabulsi N, et al. A preliminary study of dopamine D2/3 receptor availability and social status in healthy and cocaine dependent humans imaged with [11C](+)PHNO. Drug Alcohol Depend. 2015;154:167–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Calakos KC, Rusowicz A, Pittman B, Gallezot J-D, Potenza MN, Cosgrove KP, et al. Relationships between dopamine D2/3 receptor availability and social-environmental factors in humans. Neurosci Lett. 2022;771:136463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wiers CE, Shokri-Kojori E, Cabrera E, Cunningham S, Wong C, Tomasi D, et al. Socioeconomic status is associated with striatal dopamine D2/D3 receptors in healthy volunteers but not in cocaine abusers. Neurosci Lett. 2016;617:27–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wiers CE, Towb PC, Hodgkinson CA, Shen P-H, Freeman C, Miller G, et al. Association of genetic ancestry with striatal dopamine D2/D3 receptor availability. Mol Psychiatry. 2018;23:1711–6.

    Article  CAS  PubMed  Google Scholar 

  30. Yeh TL, Lee IH, Chen KC, Chen PS, Yao WJ, Yang YK, et al. The relationships between daily life events and the availabilities of serotonin transporters and dopamine transporters in healthy volunteers—a dual-isotope SPECT study. Neuroimage. 2009b;45:275–9.

    Article  PubMed  Google Scholar 

  31. Hsieh PC, Yeh TL, Lee IH, Huang HC, Chen PS, Yang YK, et al. Correlation between errors on the Wisconsin Card Sorting Test and the availability of striatal dopamine transporters in healthy volunteers. J Psychiatry Neurosci. 2010;35:90–4.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lee IH, Cheng CC, Yang YK, Yeh TL, Chen PS, Chiu NT. Correlation between striatal dopamine D2 receptor density and neuroticism in community volunteers. Psychiatry Res Neuroimaging. 2005;138:259–64.

    Article  CAS  Google Scholar 

  33. Yeh TL, Lee IH, Chen PS, Yu L, Cheng SH, Yao WJ, et al. Social support and striatal dopaminergic activities: is there a connection? Prog Neuropsychopharmacol Biol Psychiatry. 2009a;33:1141–6.

    Article  CAS  PubMed  Google Scholar 

  34. Booij J, Van Amelsvoort T Imaging as tool to investigate psychoses and antipsychotics. In: Gross G, Geyer MA (eds). Current Antipsychotics. Springer-Verlag: Heidelberg, 2012, pp 299-337.

  35. Meiser J, Weindl D, Hiller K. Complexity of dopamine metabolism. Cell Commun Signal. 2013;11:1–18.

    Article  Google Scholar 

  36. Egerton A, Valmaggia LR, Howes OD, Day F, Chaddock CA, Allen P, et al. Adversity in childhood linked to elevated striatal dopamine function in adulthood. Schizophr Res. 2016;176:171–6.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Schalbroeck R, van Velden FHP, de Geus-Oei L-F, Yaqub M, van Amelsvoort T, Booij J, et al. Striatal dopamine synthesis capacity in autism spectrum disorder and its relation with social defeat: an [18F]-FDOPA PET/CT study. Transl Psychiatry. 2021;11:1–10.

    Article  Google Scholar 

  38. Bloomfield MA, McCutcheon RA, Kempton M, Freeman TP, Howes O. The effects of psychosocial stress on dopaminergic function and the acute stress response. eLife. 2019;8:e46797.

    Article  PubMed  PubMed Central  Google Scholar 

  39. German CL, Baladi MG, McFadden LM, Hanson GR, Fleckenstein AE. Regulation of the dopamine and vesicular monoamine transporters: pharmacological targets and implications for disease. Pharmacol Rev. 2015;67:1005–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kotagal V, Bohnen NI, Müller ML, Koeppe RA, Frey KA, Langa KM, et al. Educational attainment and motor burden in Parkinson’s disease. Mov Disord. 2015;30:1143–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dedovic K, Renwick R, Mahani NK, Engert V, Lupien SJ, Pruessner JC. The Montreal Imaging Stress Task: using functional imaging to investigate the effects of perceiving and processing psychosocial stress in the human brain. J Psychiatry Neurosci. 2005;30:319–25.

    PubMed  PubMed Central  Google Scholar 

  42. Pruessner JC, Champagne F, Meaney MJ, Dagher A. Dopamine release in response to a psychological stress in humans and its relationship to early life maternal care: a positron emission tomography study using [11C]raclopride. J Neurosci. 2004;24:2825–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Parker G, Tupling H, Brown LB. A parental bonding instrument. Br J Med Psychol. 1979;52:1–10.

  44. Soliman A, O’Driscoll GA, Pruessner J, Holahan A-LV, Boileau I, Gagnon D, et al. Stress-induced dopamine release in humans at risk of psychosis: a [11C]raclopride PET study. Neuropsychopharmacology. 2008;33:2033–41.

    Article  CAS  PubMed  Google Scholar 

  45. Montgomery AJ, Mehta MA, Grasby PM. Is psychological stress in man associated with increased striatal dopamine levels?: A [11C]raclopride PET study. Synapse. 2006;60:124–31.

    Article  CAS  PubMed  Google Scholar 

  46. Oswald LM, Wand GS, Kuwabara H, Wong DF, Zhu S, Brasic JR. History of childhood adversity is positively associated with ventral striatal dopamine responses to amphetamine. Psychopharmacology. 2014;231:2417–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dahoun T, Nour MM, McCutcheon RA, Adams RA, Bloomfield MA, Howes OD. The relationship between childhood trauma, dopamine release and dexamphetamine-induced positive psychotic symptoms: a [11C]-(+)-PHNO PET study. Transl Psychiatry. 2019;9:1–12.

    Article  CAS  Google Scholar 

  48. Oswald LM, Wong DF, Zhou Y, Kumar A, Brasic J, Alexander M, et al. Impulsivity and chronic stress are associated with amphetamine-induced striatal dopamine release. Neuroimage. 2007;36:153–66.

    Article  PubMed  Google Scholar 

  49. Gevonden M, Booij J, van den Brink W, Heijtel D, van Os J, Selten J-P. Increased release of dopamine in the striata of young adults with hearing impairment and its relevance for the social defeat hypothesis of schizophrenia. JAMA Psychiatry. 2014;71:1364–72.

    Article  PubMed  Google Scholar 

  50. Schulz P, Schlotz W. Trierer Inventar zur Erfassung von chronischem Sre (TICS): Skalenkonstruktion, teststatistische Überprüfung und Validierung der Skala Arbeitsüberlastung. Diagnostica. 1999;45:8–19.

    Article  Google Scholar 

  51. Gurevich EV, Joyce JN. Distribution of dopamine D3 receptor expressing neurons in the human forebrain: comparison with D2 receptor expressing neurons. Neuropsychopharmacology. 1999;20:60–80.

    Article  CAS  PubMed  Google Scholar 

  52. Smigielski L, Wotruba D, Treyer V, Rössler J, Papiol S, Falkai P, et al. The interplay between postsynaptic striatal D2/3 receptor availability, adversity exposure and odd beliefs: a [11C]-raclopride PET study. Schizophr Bull. 2021;47:1495–508.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Martinez D, Orlowska D, Narendran R, Slifstein M, Liu F, Kumar D, et al. Dopamine type 2/3 receptor availability in the striatum and social status in human volunteers. Biol Psychiatry. 2010;67:275–8.

    Article  CAS  PubMed  Google Scholar 

  54. Barratt W. The Barratt simplified measure of social status (BSMSS). Terre Haute, IN: Indiana State University 2006.

  55. Hollingshead AB. Four-factor index of social status. New Haven, CT1975.

  56. Nevalainen N, Riklund K, Andersson M, Axelsson J, Ögren M, Lövdén M, et al. COBRA: A prospective multimodal imaging study of dopamine, brain structure and function, and cognition. Brain Res. 2015;1612:83–103.

    Article  CAS  PubMed  Google Scholar 

  57. Sebold M, Spitta G, Gleich T, Dembler-Stamm T, Butler O, Zacharias K, et al. Stressful life events are associated with striatal dopamine receptor availability in alcohol dependence. J Neural Transm. 2019;126:1127–34.

    Article  CAS  PubMed  Google Scholar 

  58. Bannon MJ. The dopamine transporter: role in neurotoxicity and human disease. Toxicol Appl Pharmacol. 2005;204:355–60.

    Article  CAS  PubMed  Google Scholar 

  59. Sunwoo MK, Hong JY, Lee JJ, Lee PH, Sohn YH. Does education modify motor compensation in Parkinson’s disease? J Neurol Sci. 2016;362:118–20.

    Article  PubMed  Google Scholar 

  60. Lamotte G, Morello R, Lebasnier A, Agostini D, Bouvard G, De La Sayette V, et al. Influence of education on cognitive performance and dopamine transporter binding in dementia with Lewy bodies. Clin Neurol Neurosurg. 2016;146:138–43.

    Article  PubMed  Google Scholar 

  61. Miller MA, Rahe RH. Life changes scaling for the 1990s. J Psychosom Res. 1997;43:279–92.

    Article  CAS  PubMed  Google Scholar 

  62. Pizzagalli DA, Berretta S, Wooten D, Goer F, Pilobello KT, Kumar P, et al. Assessment of striatal dopamine transporter binding in individuals with major depressive disorder: in vivo positron emission tomography and postmortem evidence. JAMA Psychiatry. 2019;76:854–61.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Gilbert P, Allan S. The role of defeat and entrapment (arrested flight) in depression: an exploration of an evolutionary view. Psychol Med. 1998;28:585–98.

    Article  CAS  PubMed  Google Scholar 

  64. Selten JP, van der Ven E, Rutten BP, Cantor-Graae E. The social defeat hypothesis of schizophrenia: an update. Schizophr Bull. 2013;39:1180–6.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Tidey JW, Miczek KA. Acquisition of cocaine self-administration after social stress: role of accumbens dopamine. Psychopharmacol. 1997;130:203–12.

    Article  CAS  Google Scholar 

  66. Tidey JW, Miczek KA. Social defeat stress selectively alters mesocorticolimbic dopamine release: an in vivo microdialysis study. Brain Res. 1996;721:140–9.

    Article  CAS  PubMed  Google Scholar 

  67. Lucas L, Celen Z, Tamashiro K, Blanchard R, Blanchard D, Markham C, et al. Repeated exposure to social stress has long-term effects on indirect markers of dopaminergic activity in brain regions associated with motivated behavior. Neuroscience. 2004;124:449–57.

    Article  CAS  PubMed  Google Scholar 

  68. Grant KA, Shively CA, Nader MA, Ehrenkaufer RL, Line SW, Morton TE, et al. Effect of social status on striatal dopamine D2 receptor binding characteristics in cynomolgus monkeys assessed with positron emission tomography. Synapse. 1998;29:80–3.

    Article  CAS  PubMed  Google Scholar 

  69. Sapolsky RM. Social status and health in humans and other animals. Annu Rev Anthropol. 2004;33:393–418.

    Article  Google Scholar 

  70. Oswald LM, Wand GS, Zhu S, Selby V. Volunteerism and self-selection bias in human positron emission tomography neuroimaging research. Brain Imaging Behav. 2013;7:163–76.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Norbury A, Husain M. Sensation-seeking: Dopaminergic modulation and risk for psychopathology. Behav Brain Res. 2015;288:79–93.

    Article  CAS  PubMed  Google Scholar 

  72. Gomes FV, Zhu X, Grace AA. Stress during critical periods of development and risk for schizophrenia. Schizophr Res. 2019;213:107–13.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Gluskin B, Mickey B. Genetic variation and dopamine D2 receptor availability: a systematic review and meta-analysis of human in vivo molecular imaging studies. Transl Psychiatry. 2016;6:e747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Luykx JJ, Broersen JL, de Leeuw M. The DRD2 rs1076560 polymorphism and schizophrenia-related intermediate phenotypes: A systematic review and meta-analysis. Neurosci Biobehav Rev. 2017;74:214–24.

    Article  CAS  PubMed  Google Scholar 

  75. Davis J, Eyre H, Jacka FN, Dodd S, Dean O, McEwen S, et al. A review of vulnerability and risks for schizophrenia: Beyond the two hit hypothesis. Neurosci Biobehav Rev. 2016;65:185–94.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Garety PA, Bebbington P, Fowler D, Freeman D, Kuipers E. Implications for neurobiological research of cognitive models of psychosis: a theoretical paper. Psychol Med. 2007;37:1377–91.

    Article  PubMed  Google Scholar 

  77. Kapur S, Mizrahi R, Li M. From dopamine to salience to psychosis—linking biology, pharmacology and phenomenology of psychosis. Schizophr Res. 2005;79:59–68.

    Article  PubMed  Google Scholar 

  78. LeMoult J, Humphreys KL, Tracy A, Hoffmeister J-A, Ip E, Gotlib IH. Meta-analysis: exposure to early life stress and risk for depression in childhood and adolescence. J Am Acad Child Adolesc Psychiatry. 2020;59:842–55.

    Article  PubMed  Google Scholar 

  79. Dunlop BW, Nemeroff CB. The role of dopamine in the pathophysiology of depression. Arch Gen Psychiatry. 2007;64:327–37.

    Article  CAS  PubMed  Google Scholar 

  80. Laruelle M, D’Souza CD, Baldwin RM, Abi-Dargham A, Kanes SJ, Fingado CL, et al. Imaging D2 receptor occupancy by endogenous dopamine in humans. Neuropsychopharmacology. 1997;17:162–74.

    Article  CAS  PubMed  Google Scholar 

  81. Royse SK, Lopresti BJ, Mathis CA, Tollefson S, Narendran R. Beyond monoamines: II. Novel applications for PET imaging in psychiatric disorders. J Neurochem. 2023;164:401–43.

    Article  CAS  PubMed  Google Scholar 

  82. Shalgunov V, van Waarde A, Booij J, Michel MC, Dierckx RA, Elsinga PH. Hunting for the high‐affinity state of G‐protein‐coupled receptors with agonist tracers: Theoretical and practical considerations for positron emission tomography imaging. Med Res Rev. 2019;39:1014–52.

    Article  CAS  PubMed  Google Scholar 

  83. Bifulco A, Bernazzani O, Moran P, Jacobs C. The childhood experience of care and abuse questionnaire (CECA. Q): validation in a community series. Br J Clin Psychol. 2005;44:563–81.

    Article  CAS  PubMed  Google Scholar 

  84. Russell DW. UCLA Loneliness Scale (Version 3): Reliability, validity, and factor structure. J Pers Assess. 1996;66:20–40.

    Article  CAS  PubMed  Google Scholar 

  85. Gilman R, Carter-Sowell A, DeWall CN, Adams RE, Carboni I. Validation of the ostracism experience scale for adolescents. Psychol Assess. 2013;25:319.

    Article  PubMed  Google Scholar 

  86. Olweus D. Revised Olweus Bully/Victim Questionnaire. Br J Educ Psychol. 1996.

  87. Lubben J, Blozik E, Gillmann G, Iliffe S, von Renteln Kruse W, Beck JC, et al. Performance of an abbreviated version of the Lubben Social Network Scale among three European community-dwelling older adult populations. Gerontologist. 2006;46:503–13.

    Article  PubMed  Google Scholar 

  88. Bernstein DP, Stein JA, Newcomb MD, Walker E, Pogge D, Ahluvalia T, et al. Development and validation of a brief screening version of the Childhood Trauma Questionnaire. Child Abuse Negl. 2003;27:169–90.

    Article  PubMed  Google Scholar 

  89. Leary MR, Kelly KM, Cottrell CA, Schreindorfer LS. Construct validity of the need to belong scale: Mapping the nomological network. J Pers Assess. 2013;95:610–24.

    Article  PubMed  Google Scholar 

  90. Cohen S, Mermelstein R, Kamarck T, Hoberman HM. Measuring the functional components of social support. In: Sarason IG, Sarason BR (eds). Social support: Theory, research, and applications. Springer: Dordrecht, 1985, pp 73–94.

  91. Bremner JD, Bolus R, Mayer EA. Psychometric properties of the early trauma inventory–self-report. J Nerv Ment Dis. 2007;195:211–8.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Sarason IG, Johnson JH, Siegel JM. Assessing the impact of life changes: Development of the life experiences survey. J Consult Clin Psychol. 1978;46:932.

    Article  CAS  PubMed  Google Scholar 

  93. Allan S, Gilbert P. A social comparison scale: Psychometric properties and relationship to psychopathology. Pers Individ Dif. 1995;19:293–9.

    Article  Google Scholar 

  94. Zimet GD, Dahlem NW, Zimet SG, Farley GK. The multidimensional scale of perceived social support. J Pers Assess. 1988;52:30–41.

    Article  Google Scholar 

  95. Holmes TH, Rahe RH. The social readjustment rating scale. J Psychosom Res. 1967;11:213–8.

  96. Lin N, Ye X, Ensel WM. Social support and depressed mood: A structural analysis. J Health Soc Behav. 1999;40:344–59.

  97. Sturm ET, Thomas ML, Sares AG, Dave S, Baron D, Compton MT, et al. Review of major social determinants of health in schizophrenia-spectrum disorders: II. Assessments. Schizophr Bull. 2023;49:851–66.

  98. Schalbroeck R. The social defeat hypothesis of schizophrenia: a parsimonious explanation for multiple psychosis risk factors? Psychol Med. 2023;53:286–7.

  99. Selten JP. The social defeat hypothesis of schizophrenia is more topical than ever. Reply to Schalbroeck. Psychol Med. 2023;53:290–1.

  100. Gülöksüz S, van Os J, Rutten BP. The exposome paradigm and the complexities of environmental research in psychiatry. JAMA Psychiatry. 2018;75:985–6.

    Article  PubMed  Google Scholar 

  101. van Hooijdonk CF, Drukker M, van de Giessen E, Booij J, Selten J-P, van Amelsvoort TA. Dopaminergic alterations in populations at increased risk for psychosis: A systematic review of imaging findings. Prog Neurobiol. 2022;213:102265.

  102. Howes OD, Shatalina E. Integrating the neurodevelopmental and dopamine hypotheses of schizophrenia and the role of cortical excitation-inhibition balance. Biol Psychiatry. 2022;92:501–13.

    Article  PubMed  Google Scholar 

  103. Kumakura Y, Cumming P, Vernaleken I, Buchholz H-G, Siessmeier T, Heinz A, et al. Elevated [18F]fluorodopamine turnover in brain of patients with schizophrenia: an [18F]fluorodopa/positron emission tomography study. J Neurosci. 2007;27:8080–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Cassidy CM, Zucca FA, Girgis RR, Baker SC, Weinstein JJ, Sharp ME, et al. Neuromelanin-sensitive MRI as a noninvasive proxy measure of dopamine function in the human brain. Proc Natl Acad Sci. 2019;116:5108–517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. van den Bosch R, Hezemans FH, Määttä JI, Hofmans L, Papadopetraki D, Verkes R-J, et al. Evidence for absence of links between striatal dopamine synthesis capacity and working memory capacity, spontaneous eye-blink rate, and trait impulsivity. eLife. 2023;12:e83161.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Nordio G, Easmin R, Giacomel A, Dipasquale O, Martins D, Williams S, et al. An automatic analysis framework for FDOPA PET neuroimaging. J Cereb Blood Flow Metab. 2023;43:1285–1300.

Download references

Author information

Authors and Affiliations

Authors

Contributions

RS: Conceptualization; Methodology; Validation; Formal Analysis; Investigation; Data curation; Writing - Original Draft; Writing - Review & Editing; Visualization; Supervision; Project administration. CvH: Methodology; Formal Analysis; Investigation; Writing - Review & Editing. DB: Validation; Formal Analysis; Investigation; Writing - Review & Editing. JB: Conceptualization; Methodology; Formal Analysis; Writing - Original Draft; Writing - Review & Editing; Funding acquisition. JPS: Conceptualization; Methodology; Formal Analysis; Investigation; Writing - Original Draft; Writing - Review & Editing; Supervision; Project administration; Funding acquisition.

Corresponding author

Correspondence to Rik Schalbroeck.

Ethics declarations

Competing interests

Jan Booij is a consultant at GE Healthcare and received research grants from GE Healthcare (all payments to the institution). The other authors report no potential conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schalbroeck, R., van Hooijdonk, C.F.M., Bos, D.P.A. et al. Chronic social stressors and striatal dopamine functioning in humans: A systematic review of SPECT and PET studies. Mol Psychiatry (2024). https://doi.org/10.1038/s41380-024-02581-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41380-024-02581-x

Search

Quick links