Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Neuroactive steroid hormone trajectories across the menstrual cycle in premenstrual dysphoric disorder (PMDD): the PHASE study

Abstract

It is presently not known whether endogenous neuroactive steroid hormone trajectories across the menstrual cycle are distinguishable in women with premenstrual dysphoric disorder (PMDD). To improve the rigor in this area of research, we implemented a validated study methodology, involving blood sample collection at 8 key menstrual cycle timepoints, following which the study data is realigned so that all women are compared at the same biological window (i.e., menstrual cycle subphase). Using liquid chromatography-mass spectrometry (LC-MS), we analyzed serum levels of nine steroid hormones previously implicated in the etiology of PMDD, including allopregnanolone. Other than progesterone (p ≤ 0.001), none of the steroid hormones displayed significant changes across menstrual cycle subphases when comparing participants with PMDD to the healthy controls. A thorough investigation of the progesterone trajectory showed that its left shift in the luteal phase (e.g., earlier rise in progesterone) exposes women with PMDD to a higher periovulatory progesterone and a more acute withdrawal in the late luteal subphase. Results of the present study indicate that the largely overlooked brief periovulatory subphase should be thoroughly examined in PMDD and agree with prior conclusions that rapid progesterone withdrawal associates with the development of negative affect.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Premenstrual increases in affective symptomatology and functional impairment according to study group.
Fig. 2: Progesterone trajectory according to group across the menstrual cycle on days 2 (early follicular), 7 (mid-follicular), 12 (periovulatory 1), 13 (periovulatory 2), 14 (periovulatory 3), 18 (early luteal), 22 (mid-luteal), and 27 (late luteal).
Fig. 3: Trajectories of study neuroactive steroid hormones (ng/mL) according to group across menstrual cycle days.

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Balzer BWR, Duke SA, Hawke CI, Steinbeck KS. The effects of estradiol on mood and behavior in human female adolescents: a systematic review. Eur J Pediatr. 2015;174:289–98.

    Article  CAS  PubMed  Google Scholar 

  2. Klipker K, Wrzus C, Rauers A, Boker SM, Riediger M. Within-person changes in salivary testosterone and physical characteristics of puberty predict boys’ daily affect. Horm Behav. 2017;95:22–32.

    Article  CAS  PubMed  Google Scholar 

  3. Gordon JL, Sander B. The role of estradiol fluctuation in the pathophysiology of perimenopausal depression: a hypothesis paper. Psychoneuroendocrinology. 2021;133:105418.

    Article  CAS  PubMed  Google Scholar 

  4. Hantsoo L, Payne JL. Towards understanding the biology of premenstrual dysphoric disorder: from genes to GABA. Neurosci Biobehav Rev. 2023;149:105168.

    Article  CAS  PubMed  Google Scholar 

  5. Martinez PE, Rubinow DR, Nieman LK, Koziol DE, Morrow AL, Schiller CE, et al. 5α-reductase inhibition prevents the luteal phase increase in plasma allopregnanolone levels and mitigates symptoms in women with premenstrual dysphoric disorder. Neuropsychopharmacology. 2016;41:1093–102.

    Article  CAS  PubMed  Google Scholar 

  6. Epperson CN, Steiner M, Hartlage SA, Eriksson E, Schmidt PJ, Jones I, et al. Premenstrual dysphoric disorder: evidence for a new category for DSM-5. Am J Psychiatry. 2012;169:465–75.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Harlow SD, Ephross SA. Epidemiology of menstruation and its relevance to women’s health. Epidemiol Rev. 1995;17:265–86.

    Article  CAS  PubMed  Google Scholar 

  8. Howards PP, Schisterman EF, Wactawski-Wende J, Reschke JE, Frazer AA, Hovey KM. Timing clinic visits to phases of the menstrual cycle by using a fertility monitor: the BioCycle study. Am J Epidemiol. 2009;169:105–12.

    Article  PubMed  Google Scholar 

  9. Mumford SL, Schisterman EF, Gaskins AJ, Pollack AZ, Perkins NJ, Whitcomb BW, et al. Realignment and multiple imputation of longitudinal data: an application to menstrual cycle data. Paediatr Perinat Epidemiol. 2011;25:448–59.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Taylor AE, Keevil B, Huhtaniemi IT. Mass spectrometry and immunoassay: how to measure steroid hormones today and tomorrow. Eur J Endocrinol. 2015;173:D1–12.

    Article  CAS  PubMed  Google Scholar 

  11. Endicott J, Nee J, Harrison W. Daily record of severity of problems (DRSP): reliability and validity. Arch Womens Ment Health. 2006;9:41–9.

    Article  CAS  PubMed  Google Scholar 

  12. Hamidovic A, Soumare F, Naveed A, Davis J, Sun J, Dang N. Reduced dehydroepiandrosterone-sulfate levels in the mid-luteal subphase of the menstrual cycle: implications to women’s health research. Metabolites. 2022;12:941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders [Internet]. Fifth Edition. American Psychiatric Association; [cited 2024 Mar 14]. Available from: https://psychiatryonline.org/doi/book/10.1176/appi.books.9780890425596. 2013.

  14. Dubey N, Hoffman JF, Schuebel K, Yuan Q, Martinez PE, Nieman LK, et al. The ESC/E(Z) complex, an effector of response to ovarian steroids, manifests an intrinsic difference in cells from women with premenstrual dysphoric disorder. Mol Psychiatry. 2017;22:1172–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Marrocco J, Einhorn NR, Petty GH, Li H, Dubey N, Hoffman J, et al. Epigenetic intersection of BDNF Val66Met genotype with premenstrual dysphoric disorder transcriptome in a cross-species model of estradiol add-back. Mol Psychiatry. 2020;25:572–83.

    Article  CAS  PubMed  Google Scholar 

  16. Li HJ, Goff A, Rudzinskas SA, Jung Y, Dubey N, Hoffman J, et al. Altered estradiol-dependent cellular Ca2+ homeostasis and endoplasmic reticulum stress response in Premenstrual Dysphoric Disorder. Mol Psychiatry. 2021;26:6963–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hamidovic A, Davis J, Soumare F, Naveed A, Ghani Y, Semiz S, et al. Allopregnanolone is associated with a stress-induced reduction of heart rate variability in premenstrual dysphoric disorder. J Clin Med. 2023;12:1553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Park-Chung M, Malayev A, Purdy RH, Gibbs TT, Farb DH. Sulfated and unsulfated steroids modulate gamma-aminobutyric acidA receptor function through distinct sites. Brain Res. 1999;830:72–87.

    Article  CAS  PubMed  Google Scholar 

  19. Carver CM, Reddy DS. Neurosteroid interactions with synaptic and extrasynaptic GABA(A) receptors: regulation of subunit plasticity, phasic and tonic inhibition, and neuronal network excitability. Psychopharmacology. 2013;230:151–88.

    Article  CAS  PubMed  Google Scholar 

  20. Nguyen TV, Reuter JM, Gaikwad NW, Rotroff DM, Kucera HR, Motsinger-Reif A, et al. The steroid metabolome in women with premenstrual dysphoric disorder during GnRH agonist-induced ovarian suppression: effects of estradiol and progesterone addback. Transl Psychiatry. 2017;7:e1193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kiesner J, Granger DA. A lack of consistent evidence for cortisol dysregulation in premenstrual syndrome/premenstrual dysphoric disorder. Psychoneuroendocrinology. 2016;65:149–64.

    Article  PubMed  Google Scholar 

  22. Schmidt PJ, Martinez PE, Nieman LK, Koziol DE, Thompson KD, Schenkel L, et al. Premenstrual dysphoric disorder symptoms following ovarian suppression: triggered by change in ovarian steroid levels but not continuous stable levels. Am J Psychiatry. 2017;174:980–9.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Segebladh B, Borgström A, Nyberg S, Bixo M, Sundström-Poromaa I. Evaluation of different add-back estradiol and progesterone treatments to gonadotropin-releasing hormone agonist treatment in patients with premenstrual dysphoric disorder. Am J Obstet Gynecol. 2009;201:139.e1–8.

    Article  PubMed  Google Scholar 

  24. Sun BZ, Kangarloo T, Adams JM, Sluss P, Chandler DW, Zava DT, et al. The relationship between progesterone, sleep, and LH and FSH secretory dynamics in early postmenarchal girls. J Clin Endocrinol Metab. 2019;104:2184–94.

    Article  PubMed  PubMed Central  Google Scholar 

  25. McCartney CR, Gingrich MB, Hu Y, Evans WS, Marshall JC. Hypothalamic regulation of cyclic ovulation: evidence that the increase in gonadotropin-releasing hormone pulse frequency during the follicular phase reflects the gradual loss of the restraining effects of progesterone. J Clin Endocrinol Metab. 2002;87:2194–200.

    Article  CAS  PubMed  Google Scholar 

  26. Reid RL. Premenstrual Dysphoric Disorder (Formerly Premenstrual Syndrome). In: Feingold KR, Anawalt B, Blackman MR, Boyce A, Chrousos G, Corpas E, et al. editors. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000. Available from: http://www.ncbi.nlm.nih.gov/books/NBK279045/ 2024.

  27. Gallo MA, Smith SS. Progesterone withdrawal decreases latency to and increases duration of electrified prod burial: a possible rat model of PMS anxiety. Pharmacol Biochem Behav. 1993;46:897–904.

    Article  CAS  PubMed  Google Scholar 

  28. Saavedra M, Contreras CM, Azamar-Arizmendi G, Hernández-Lozano M. Differential progesterone effects on defensive burying and forced swimming tests depending upon a gradual decrease or an abrupt suppression schedules. Pharmacol Biochem Behav. 2006;83:130–5.

    Article  CAS  PubMed  Google Scholar 

  29. Contreras CM, Azamar-Arizmendi G, Saavedra M, Hernández-Lozano M. A five-day gradual reduction regimen of chlormadinone reduces premenstrual anxiety and depression: a pilot study. Arch Med Res. 2006;37:907–13.

    Article  CAS  PubMed  Google Scholar 

  30. Lovick TA, Guapo VG, Anselmo-Franci JA, Loureiro CM, Faleiros MCM, Del Ben CM, et al. A specific profile of luteal phase progesterone is associated with the development of premenstrual symptoms. Psychoneuroendocrinology. 2017;75:83–90.

    Article  CAS  PubMed  Google Scholar 

  31. Ney LJ, Felmingham KL, Nichols D. Reproducibility of saliva progesterone measured by immunoassay compared to liquid chromatography mass spectrometry. Anal Biochem. 2020;610:113984.

    Article  CAS  PubMed  Google Scholar 

  32. Sundström-Poromaa I, Comasco E, Sumner R, Luders E. Progesterone - friend or foe? Front Neuroendocrinol. 2020;59:100856.

    Article  PubMed  Google Scholar 

  33. Mesen TB, Young SL. Progesterone and the luteal phase: a requisite to reproduction. Obstet Gynecol Clin North Am. 2015;42:135–51.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bixo M, Andersson A, Winblad B, Purdy RH, Bäckström T. Progesterone, 5alpha-pregnane-3,20-dione and 3alpha-hydroxy-5alpha-pregnane-20-one in specific regions of the human female brain in different endocrine states. Brain Res. 1997;764:173–8.

    Article  CAS  PubMed  Google Scholar 

  35. Bethea CL, Reddy AP, Tokuyama Y, Henderson JA, Lima FB. Protective actions of ovarian hormones in the serotonin system of macaques. Front Neuroendocrinol. 2009;30:212–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sundström I, Bäckström T. Patients with premenstrual syndrome have decreased saccadic eye velocity compared to control subjects. Biol Psychiatry. 1998;44:755–64.

    Article  PubMed  Google Scholar 

  37. Sundström I, Ashbrook D, Bäckström T. Reduced benzodiazepine sensitivity in patients with premenstrual syndrome: a pilot study. Psychoneuroendocrinology. 1997;22:25–38.

    Article  PubMed  Google Scholar 

  38. Sundström I, Nyberg S, Bäckström T. Patients with premenstrual syndrome have reduced sensitivity to midazolam compared to control subjects. Neuropsychopharmacology. 1997;17:370–81.

    Article  PubMed  Google Scholar 

  39. Bäckström T, Bixo M, Strömberg J. GABAA receptor-modulating steroids in relation to women’s behavioral health. Curr Psychiatry Rep. 2015;17:92.

    Article  PubMed  Google Scholar 

  40. Bäckström T, Bixo M, Johansson M, Nyberg S, Ossewaarde L, Ragagnin G, et al. Allopregnanolone and mood disorders. Prog Neurobiol. 2014;113:88–94.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the subjects who provided the data for this research study and Mass Spectrometry Core at the University of Illinois at Chicago.

Author information

Authors and Affiliations

Authors

Contributions

AH conceptualized and designed the study. AH acquired the funding. FS acquired the data. FS performed data cleaning. AH and SM conducted the statistical analyses. AH, SM, and ES contributed to data interpretation. AH drafted the manuscript. AH, SM and JD edited and manuscript. AH finalized the manuscript.

Corresponding author

Correspondence to Ajna Hamidovic.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamidovic, A., Mumford, S., Schisterman, E. et al. Neuroactive steroid hormone trajectories across the menstrual cycle in premenstrual dysphoric disorder (PMDD): the PHASE study. Mol Psychiatry (2024). https://doi.org/10.1038/s41380-024-02566-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41380-024-02566-w

Search

Quick links