
EXPERT REVIEW OPEN

The genetic landscape of substance use disorders
Zachary F. Gerring 1,3, Jackson G. Thorp 1,3, Jorien L. Treur2, Karin J. H. Verweij 2 and Eske M. Derks 1✉

© The Author(s) 2024

Substance use disorders represent a significant public health concern with considerable socioeconomic implications worldwide.
Twin and family-based studies have long established a heritable component underlying these disorders. In recent years, genome-
wide association studies of large, broadly phenotyped samples have identified regions of the genome that harbour genetic risk
variants associated with substance use disorders. These regions have enabled the discovery of putative causal genes and improved
our understanding of genetic relationships among substance use disorders and other traits. Furthermore, the integration of these
data with clinical information has yielded promising insights into how individuals respond to medications, allowing for the
development of personalized treatment approaches based on an individual’s genetic profile. This review article provides an
overview of recent advances in the genetics of substance use disorders and demonstrates how genetic data may be used to reduce
the burden of disease and improve public health outcomes.
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INTRODUCTION
Substance use disorders (SUDs) encompass a range of common
and heritable psychiatric disorders that result from a complex
interplay of genetic and environmental factors. Together,
SUDs affect millions of people and account for a significant
proportion of the global burden of disease. For example, alcohol
use disorder (AUD) affected over 100 million people in 2019 and
was responsible for around 160,000 deaths, while opioid use
disorder (OUD) affected around 21 million people and contributed
to more than 88,000 deaths [1]. Substance use disorders also
increase the risk of other leading contributors of morbidity and
mortality, such as poisoning, suicide and self-inflicted injuries
related to alcohol and opioid use, as well as chronic diseases like
chronic obstructive pulmonary disease related to tobacco use [2].
Understanding the genetic causes of SUDs will facilitate the
development of more effective treatments and prevention
strategies, helping to alleviate the global burden of SUDs.
Genome-wide association studies (GWAS) have emerged as a

powerful tool to identify genetic variants associated with SUDs.
This approach has provided valuable insights into the genetic
architecture of SUDs, revealing genomic regions and candidate
causal genes that contribute to susceptibility. This review will
discuss recent advancements in the genetics of SUDs, including
(i) the identification of robust (replicable) risk variants; (ii) how
these risk variants have been used to identify novel genes and
disease mechanisms; (iii) the use of GWAS for polygenic scores
(PGS); (iv) how risk variants have been used to establish causal
associations both within SUDs and between SUDs and other
disorders; and (v) and how these genetic factors influence an
individual’s response to drugs. We will conclude the review with
discussion on clinical and therapeutic implications of genetic
findings for SUDs.

Genetic variation underlying major substance use disorders
Genome-wide association studies have been central to the
identification of common (minor allele frequency [MAF] > 0.01)
SNPs associated with SUDs. In addition, it is recognized that rare
genetic variants, including rare SNPs (MAF < 0.01), copy number
variants (CNVs), and structural variants (SVs), may also play a
significant role in the susceptibility to SUDs. Because statistical
power increases with higher MAF, common SNPs underlying SUDs
are routinely identified through GWAS meta-analyses of increas-
ingly large, broadly phenotyped biobanks, such as the Million
Veteran Program (MVP) [3] and the UK Biobank (UKB) [4]. Rare
variants, defined by their low frequency in the population, are more
challenging to detect and analyze. However, they are known to
exert a larger effect compared to common variants and have the
potential to advance our understanding of risk genes and biological
pathways underlying SUDs [5]. This section summarizes known
genetic risk factors underlying SUDs, with particular emphasis on
recently published results. We provide a summary of recent genetic
findings for SUDs in Fig. 1, including the number of identified loci
(1a) and the amount of variation explained by common variants
(SNP-based heritability, or h2snp) and polygenic scores (1b).

Alcohol use disorder
The heritability of AUD from twin and family-based studies is
around 50% [6], and the estimated h2snp is between 5.6% to
10.0% [7]. Early GWAS of Alcohol Dependence and measures of
problematic drinking collectively identified more than 10 risk
variants that mapped to several risk genes, most notably the
alcohol dehydrogenase genes ADH1B (Alcohol Dehydrogenase 1B
[class I], Beta Polypeptide) and ADH1C (Alcohol Dehydrogenase
1 C [class I], Gamma Polypeptide) [8]. The largest available meta-
analysis of problematic alcohol use (PAU), which combined both
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AUD and problematic drinking data from the Million Veteran
Program (MVP), the UK Biobank, and the Psychiatric Genomics
Consortium (PGC), identified 29 independent risk variants, 19 of
which were novel [9]. These risk variants mapped to 66 genes,
including previously implicated DRD2 (Dopamine Receptor D2),
along with additional genes encoding alcohol dehydrogenase
enzymes ADH4, ADH5, and ADH7. Functional analyses of these
genes found significant enrichment of genetic signal for proble-
matic alcohol use in several brain tissues and neural cell types. A
recent multivariate GWAS jointly modelled the genetic effects of
four SUDs (AUD, CUD, OUD, and TUD) to identify both shared and
unique (i.e., substance-specific) genetic effects underlying each
disorder [10]. The study identified 9 independent SNPs specifically
associated with problematic drinking; as expected, the most
significant SNP effect mapped to the gene ADH1B, and biological
pathway enrichment analysis implicated alcohol metabolism
pathways.
There have been recent efforts to identify sources of structural

variants underlying alcohol use disorder, however statistical power
is limited with current sample sizes. A meta-analysis of five cohorts
investigating AUD identified nine regions of CNVs, including a
suggestive association on chromosome 5q21.3 [11]. Further
replication studies confirmed the presence of these CNV regions,
and additional analyses focusing on pathways and gene-drug
interactions revealed the involvement of the mitogen-activated
protein kinase signalling pathway and specific drugs related to AD
biology or treatment. In a separate study conducted on Mission
Indian families, a whole genome scan also uncovered genetic
linkage between chromosome 5q21.3 and “craving for alcohol.”
[12] These findings suggest genomic structural variation may play
a role in the risk for alcohol dependence, although larger studies
will be required to characterise the global CNV burden between
cases and controls.

Cannabis use disorder
Although cannabis use is prevalent, most users do not progress to
cannabis use disorders. Cannabis use disorder (CUD) has a
moderate heritability of ~0.5–0.6, which slightly exceeds the
estimates for cannabis use and initiation phenotypes (h2 =
~0.4–0.5) [13]. Early GWASs of cannabis use disorders identified
genome-wide significant variants, however there was poor
replication between studies due in part to small sample sizes
(the largest study included 51,372 individuals with 2387 cases)
and heterogeneity among samples [14–17]. Only one locus,
associated with a cis-eQTL for CHRNA2 (Cholinergic Receptor
Nicotinic Alpha 2 Subunit), was consistently identified as robustly
associated with CUD.

A GWAS meta-analysis of 20,916 CUD cases and 363,116
controls replicated the CHRNA2 locus and identified a novel
association in FOXP2 (Forkhead box protein P2) [18]. A cross-
ancestry multivariate GWAS of substance use disorders suggested
the signal for theCHRNA2 is CUD-specific (i.e., the locus is not
shared with other SUDs) [10]. On the other hand, the same
multivariate analysis found the FOXP2 locus was associated with
both CUD and problematic tobacco use (PTU) in Europeans and
CUD and OUD in African Americans, suggesting pleiotropic (i.e.,
not CUD-specific) SNP effects drive this association.
A recent study used whole genome sequencing (WGS) to

investigate the relationship between low-frequency (MAF < 0.02)
variants and DSM-IV defined CUD in a community-based sample of
Native Americans and a European ancestry family-based sample [19].
The analysis used a set-based approach, where separate analyses
were performed for low-frequency variants in coding regions
followed by regulatory elements. A single genome-wide significant
association was found in the coding region of C1orf110 and the
regulatory region in the MEF2B gene in a meta-analysis of both
samples. While these data point to the contribution of rare variants
to the heritability of CUD, further studies in large, population-based
cohorts with replication in independent samples is required.

Tobacco use disorder
Genetic factors play a significant role throughout the stages of
cigarette smoking and tobacco (nicotine) use disorder (TUD).
Studies suggest that there is a considerable range of heritability
estimates for nicotine dependence, typically falling between
approximately 0.30 and 0.70 [20, 21]. The wide range of heritability
estimates may be influenced by the choice of TUD assessment,
where the Fagerström Tolerance Questionnaire (FTQ) and the
Fagerström Test for Nicotine Dependence (FTND) may produce
different results to the gold standard DSM-IV and DSM-5
(Diagnostic and Statistical Manual of Mental Disorders) [22, 23].
A GWAS meta-analysis involving 38,602 smokers across

15 studies using the FTND and information on cigarettes
per day, identified 6 replicable associations, including previously
known associations with the CHRNA5-CHRNA3-CHRNB4 genes. A
novel intronic variant in DNMT3B (rs910083) was linked to an
increased risk of nicotine dependence, particularly severe
dependence, and was replicated in the UK Biobank using a
severe dependence phenotype. The integration of tissue-specific
methylation and expression data found rs910083/DNMT3B was
also a cis-methylation quantitative trait locus (QTL) and a cis-
expression QTL, suggesting its role in influencing DNMT3B
methylation levels in foetal brain and gene expression in adult
cerebellum [24].

Fig. 1 A summary of GWAS findings for major substance use disorders. a Number of genomic loci associated with substance use disorders
verse GWAS sample size (see Supplementary Table 1). b SNP-based heritability (h2snp) and variance explained by polygenic scores (R2 PGS) for
substance use disorders (extracted from refs. [9, 18, 26, 42, 43]). Notes: AUD alcohol use disorder, CUD cannabis use disorder, OUD opioid use
disorder, TUD tobacco use disorder, Effective N effective sample size.
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A follow-up study in 58,000 smokers of European and African
ancestry using the FTND questionnaire identified five genome-
wide significant loci, including previously undiscovered variants
near MAGI2/GNAI1 and TENM2 [25]. Both variants influence the
expression of nearby genes. The integration of tissue-specific gene
expression data found rs2714700/MAGI2-AS3 affects gene expres-
sion in the hippocampus, while rs1862416/TENM2 affects expres-
sion in the lung. Interestingly, the variant rs2714700 consistently
showed association with the heaviness of smoking index from the
UK Biobank, while rs1862416 did not. This suggests secondary
analyses based on the quantity of tobacco consumed may provide
additional insight into the genetic effects on tobacco use
dependence.
The availability of electronic health record (EHR) data with

linked SNP genotype data has the potential to greatly increase
samples sizes without the need to prospectively recruit individuals
with clinical diagnoses. A recent multi-ancestry GWAS meta-
analysis of TUD combined data from 898,680 individuals of
European, African American, and Latin American ancestry from 5
biobanks under the PsycheMerge partnership with a further
244,890 individuals from the UK Biobank [26]. The study identified
97 genome-wide significant lead SNPs located in 72 independent
loci, all of which were previously reported in much larger GWAS of
smoking-related phenotypes (e.g., GWAS and Sequencing Con-
sortium of Alcohol and Nicotine use [GSCAN] smoking initiation
and cessation) [27]. This supports the use of EHRs in identifying
replicable associations with smaller sample sizes. The analysis also
provided support for nicotinic acetylcholine receptor genes as risk
genes for smoking-related traits as well as being involved in
dopaminergic transmission, including DRD2, DBH, KDM4A, PDE4B,
and NCAM1.
Several studies have investigated low frequency and rare exonic

variants in tobacco use, but have largely failed to identify
replicable, exome-wide significant results outside of nicotinic
cholinergic receptor genes [28–31]. A recent exome-wide associa-
tion study of rare (MAF < 0.01) variants found a protective
association with CHRNB2 (Neuronal acetylcholine receptor subunit
beta-2), where carriers of rare predicted loss of function or
deleterious missense variants have a 35% lower odds of heavy
smoking [32] (defined as at least 10 cigarettes per day either
currently or formerly) and 18% lower odds of ever smoking. A
leave-one-variant-out analysis identified a deleterious missense
variant in CHRNB2, which was later validated in an independent
cohort. Importantly, the authors found nominally significant
enrichment of protective associations of the variant with other
phenotypes, including substance use disorders (excluding alco-
hol), suggesting a genetic effect on both tobacco consumption
and dependency phenotypes.

Opioid use disorder
Approximately 50% of the variability in opioid dependence is due
to additive genetic effects [33], with around 38% of the variability
accounted for by genetic risk factors unique to opioid use [34].
Several GWAS with modest sample sizes (the largest comprising
10,544 cases) have reported genome-wide significant loci [35–39],
however none were replicated using an independent sample. A
GWAS of 82,707 European American individuals identified a
coding variant in the OPRM1 (opioid receptor mu 1) gene, which
was later replicated in 2 independent cohorts [40] and further
strengthened in a larger multi-trait GWAS of opioid addiction [41].
A subsequent meta-analysis of seven cohorts identified three
genome-wide significant lead SNPs in a European ancestry meta-
analysis, including variants in the FURIN and OPRM1 genes [42].
Furthermore, a multi-trait analysis of GWAS (MTAG) combining
OUD with AUD and CUD revealed 18 independent genome-wide
significant loci, suggesting common (i.e., shared) genetic factors
contribute to the development of multiple substance use
disorders [42].

A recent cross-ancestry meta-analysis of 425,944 individuals in
the MVP cohort used both stringent definitions of OUD (described
by Zhou et al. [40]) and less stringent definitions which only
required a single diagnostic code from the International
Classification of Diseases (ICD-9 or ICD-10) for opioid abuse or
dependence and identified 14 genome-wide significant loci [43].
In this study, a cross-ancestry meta-analysis of the less stringent
OUD diagnosis in the MVP sample revealed 12 genome-wide
significant variants, 3 of which replicated in a cross-ancestry GWAS
meta-analysis of strictly defined OUD. These included variants in
OPRM1, replicating the original MVP GWAS [40], in addition to
variants in FURIN and near the gene TSNARE1. The authors found
significant heritability enrichment of gene expression for OUD in
multiple brain tissues previously associated with addiction. In
addition, a transcriptome-wide association study found genes
with differential gene expression underlying OUD in both brain
and multiple peripheral tissues, such as adipose, gastrointestinal,
and liver. This suggests OUD-related genetic variation may affect
biological processes in both the brain and periphery.
The definition of cases (e.g., the number and type of diagnostic

codes) and controls (e.g., the use of opioid-exposed, unexposed,
and/or population-based controls), varies across OUD GWAS,
which may decrease the generalizability of results. However, there
are high genetic correlations across cohorts with different
definitions of OUD cases and controls (rg > 0.9) [41], suggesting
shared genetic effects contribute to OUD across a range of case/
control definitions.
Little progress has been made on studies of rare variation

underlying OUD, primarily due to the large sample sizes typically
required to identify rare variants. The largest study to date used
genotyping and copy number variation (CNV) calling methods in a
sample of European–American and African American OUD cases
and controls. Genome-wide association analysis of CNVs with OUD
identified two deletions and one duplication that were signifi-
cantly associated with OUD, including a chromosome 18q12.3
deletion with a protective effect [44].

Genetic overlap between SUDs and with other complex traits
Consistent with high rates of comorbidity, there is substantial
overlap in genetic risk factors between different substance use
disorders. Recent studies have observed substantial pleiotropy at
genome-wide [45], regional [46], and transcriptomic [47] levels.
Genetic correlations range from ~0.45 (TUD and OUD) to ~0.70
(AUD and OUD) (see Fig. 2a) suggesting that while there is extensive
overlap, there are also substance-specific genetic effects.
A recent study leveraged these correlations in a multivariate

GWAS of four SUDs (AUD, TUD, CUD, and OUD), comprising over 1
million individuals. Using genomic structural equation modelling,
the authors identified a general addiction risk factor (see Fig. 2b).
A GWAS of the addiction factor identified 19 significant SNPs, the
most significant of which was near DRD2, and functional
enrichment analyses implicated pathways related to neural cells
and immune cell processes. A separate study attempted to
disentangle genetic effects underlying SUDs using exome-
focussed genotyping of four SUDs (AUD, n= 4487; TUD,
n= 4394; CUD, n= 954 and nonmedical prescription OUD,
n= 346) in a large population-based sample (n= 36,309) [48].
An exome-wide association of common (MAF > 0.01) SNPs
identified 53 experiment-wide significant SNPs associated with
at least one SUD or a combined analysis of all four SUDs. A gene-
based analysis of rare variants (MAF < 0.05) implicated 24 genes
(using a nominal threshold of P < 10-4), all of which were
previously implicated in large SUD GWAS with at least nominal
(P < 0.05) significance. Finally, a “shared inheritance” (i.e., pleio-
tropic) analysis of all SUDs by gene-based association of rare
alleles identified 9 genes associated with at least 2 SUDs.
Collectively, these data suggest presence of widespread pleio-
tropy across SUDs.
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There is also substantial pleiotropy between substance use
disorders and psychiatric disorders (see Fig. 2), with the strongest
overlap observed with ADHD, MDD, Anxiety, and schizophrenia. AUD
has the most overlap with psychiatric disorders (mean |rg|= 0.32)
while OUD has the least (mean |rg|= 0.18). While psychiatric disorders
are generally positively genetically correlated with SUDs, OCD is
noteworthy given its significant negative correlation with AUD
(rg=−0.35, se = 0.13) and TUD (rg=−0.24, se = 0.05).

Substance use phenotypes
As ascertaining large numbers of individuals with a diagnosed
SUD is challenging, many studies have focused on broader, use-
based phenotypes such as initiation, frequency, or quantity of use,
which are easily assessed in large-scale cohorts and biobanks.
These efforts are largely driven by consortia such as GSCAN
[27, 49] and the International Cannabis Consortium (ICC) [50–52].
A recent large-scale, multi-ancestry GWAS (up to ~3.3 million

individuals) by GSCAN included four tobacco use traits (smoking
initiation, age of smoking regularly, smoking cessation, and
cigarettes per day) and the alcohol use trait ‘drinks per week’
[27]. This study identified a remarkably large number of associated
risk loci, including 1346 loci for smoking initiation and 496 for
drinks per week. The largest cannabis-related genetic study to
date by the ICC is a GWAS of lifetime cannabis use [52]. This
identified 8 genome-wide significant SNPs and 35 genes, the
strongest association with CADM2. A GWAS of ‘age at first
cannabis use’ identified a single locus (ATP2C2) [50].
These substance use phenotypes overlap moderately with

dependence / disorder phenotypes (tobacco use and TUD rg= ~
0.4 − 0.8; alcohol quantity and AUD rg= ~ 0.75; cannabis use and
CUD rg= ~ 0.50; see Fig. 3). This suggests there is considerable
shared genetic etiology between use and dependence, and GWAS
of use phenotypes can provide important biological insights into
substance use disorders. But importantly, the imperfect overlap
reinforces that substance use and dependence are different and
GWAS of strictly defined SUDs are needed to dissect the distinct
aspects that leads to substance dependence.
Overall, substance use phenotypes (such as initiation, fre-

quency, and quantity) tend to have less genetic overlap with
psychiatric disorders and related traits than dependence pheno-
types. For example, analysis of different dimensions of alcohol use
(alcohol consumption versus problematic consequences of drink-
ing) in the Alcohol Use Disorders Identification Test (AUDIT)
revealed a divergent pattern of genetic correlations with other
psychiatric traits: problematic drinking was positively correlated
with ADHD and MDD, while alcohol consumption was negatively
correlated with these same disorders [53]. A similar pattern is also
observed with tobacco, where use-based phenotypes [49] have

significantly lower genetic correlations with psychiatric disorders
than TUD [26].
Interesting, divergent patterns of association are also observed

within different aspects of consumption (e.g., quantity vs.
frequency). The genetic correlation between alcohol quantity
and frequency in the UK Biobank was just 0.52 [54], and these
measures display opposite patterns of association with indices of
socioeconomic status, other substance use phenotypes, and
psychiatric disorders. For example, alcohol frequency is negatively
correlated with MDD, ADHD, and smoking initiation, while
quantity is positively correlated with these same disorders. Taken
together, these results suggest the presence of unique genetic
factors underlying different types of consumption within the same
disorder.

Polygenic prediction of substance use disorders
Genetic effect estimates from genome-wide association studies
can be used to calculate PGS that provide an indication of an
individual’s genetic liability to a certain trait or disease. PGS can be
calculated by multiplying the number of risk alleles a person
carries with the SNP effect sizes from a GWAS of that phenotype
and aggregating across all SNPs (taking LD into account). In
research, these scores can then be used to validate the predictive
power of the GWAS results, estimate associations with other traits,
or test gene-environment interplay. Moreover, PGSs also hold
potential for future clinical use.
In general, PGS only explain a small proportion of a trait’s

variance, but they are valuable as they provide a measure of
individual level genetic risk that can be used in analytical models.
The validity to predict complex behavioural and psychiatric
phenotypes has been well demonstrated for many traits [55].
For substance use disorders, current PGS explain approximately
2.1% for AUD [9], 3.8% for OUD [42], and 6.3% for TUD [26]
(Fig. 1B). These estimates are lower than for some other
psychiatric disorders, mostly due to the larger GWAS sample sizes
for these other disorders. The predictive value of polygenic scores
will grow when genome-wide effect estimates become more
accurate once larger, more powerful GWASs become available. An
important note is that PGS are most predictive in samples of
similar ancestry as the source GWAS effect estimates are based on,
due to differences in allele frequencies and LD between
populations. The large-scale GWASs of SUDs are predominantly
based on European ancestry participants, so PGS will be most
powerful in European ancestry target samples.
Since the publications of the large-scale GWASs on AUD, CUD,

and other substance use disorders, their summary statistics have
been used to create PGS in independent samples to predict
substance use, mental health, or other phenotypes. PGS for AUD

Fig. 2 Pleiotropy between substance use disorders. a Genetic correlations between substance use disorders (extracted from refs.
[25, 26, 138], which estimated correlations using linkage disequilibrium score regression). b Substance use disorders cluster to form a general
addiction factor (path coefficients extracted from model reported in Hatoum et al. [10]., estimated using genomic structural equation
modelling).
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were most often utilized in PGS analyses, while only very few
studies included CUD or other substance use disorder PGS.
For AUD, most studies have found that AUD PGS (or PGS based

on problematic alcohol use) significantly predict AUD and related
alcohol use phenotypes [56–62], while a few other PGS analyses
have not yielded significant results (e.g [63]. and [64] [in females
only]). AUD PGS predicts an earlier age of onset for first substance
use, regular use, the initiation of alcohol related problems, and
alcohol dependence diagnosis [65]. AUD PGS have also been found
to be positively associated with use of other substances [9, 60],
mental health problems, including depression, anxiety disorder,
bipolar disorder, ADHD, pathological gambling [9, 66, 67], myo-
cardial infarction type 2 [68], nutrition intake [62], and neural
connectivity in males [69] and negatively associated with cognition
[60, 69]. Other studies showed no significant associations of AUD
PGS with for instance epigenetic aging [70], timing of first marriage
or likelihood to divorce [71], impulsivity [72], resilience [73] or AUD
treatment outcome [74]. Some studies also investigated PGS
associations in non-European ancestry, associations separately by
sex, or tested for gene-environment interaction effects. For
example, an AUD PGS from African ancestry individuals predicts
age of regular use, alcohol dependence, and progression from
regular use to alcohol dependence diagnosis [65]. However, most of
these analyses yielded non-significant associations (e.g.
[63, 64, 67, 75, 76]), likely due to the lack of statistical power.

With respect to CUD, there have only been a few PGS studies.
Segura et al. [77] found that CUD PGS were significantly associated
with cannabis use and monthly cannabis use at baseline, but not
with age at initiation of cannabis use or with various measures
related to the clinical course after a first-episode psychosis. In
contrast, Cheng et al. [78] showed that PGS for CUD predicted
bipolar disorder with psychotic experience but not bipolar
disorder without psychotic experience.
Paul et al. [79] investigated the association between polygenic

risk for substance use and cognition, and found no significant
association between a CUD PGS with any of the measured
cognition variables, whereas the PGS for lifetime cannabis use was
positively associated with general ability, executive function, and
learning/memory.
PGS for other substance use disorders showed mixed results.

Two studies found that OUD PGS significantly predicted opioid
use phenotypes ([60, 67] [only in the European, not the African
ancestry, subsample]). Significant positive associations were also
found for OUD PGS with other substance use related traits,
negative associations with educational attainment and SES-related
traits, as well as positive associations with several mental health
traits (e.g. phenotypes related to conduct disorder and depression
[60]), whereas in another study no significant associations were
found between OUD PGS and a range of health-related
phenotypes [67].

Fig. 3 Genetic overlap between substance use disorders and other complex traits. Genetic correlations between alcohol use disorder
(AUD), cannabis use disorder (CUD), opioid use disorder (OUD), tobacco use disorder (TUD) and a range of complex traits. Genetic correlations
extracted from recent studies that applied linkage disequilibrium score regression (refs. [9, 18, 25, 26, 43, 138]). Error bars represent 95%
confidence intervals.
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Vilar-Ribó, et al. [66]. tested whether the genetic liability to five
SUD-related phenotypes was associated with ADHD and found
that PGS for cocaine dependence and ever addicted to illicit drug
did not yield significant associations with ADHD, while PGS for
lifetime cannabis use, alcohol dependence and smoking initiation
were significantly associated. Moreover, Hatoum et al. [10].
created a latent general addiction risk factor and found that the
PGS based on this factor were associated with substance use
disorders, psychopathologies, somatic conditions, and environ-
ments associated with the onset of addictions. In another study, a
PGS based on substance misuse was significantly predictive of
COVID-19 [80].

Causes and consequences of substance use disorders
Identifying modifiable risk factors for disease is of particular interest
in medicine and epidemiology, as it can inform preventive efforts
and improve treatment. For many important health questions, it is
not feasible to conduct a randomized controlled trial (RCT), due to
practical and/or ethical reasons, making causal inference challen-
ging. Rapid developments in the field of (substance use) genetics
have led to the emergence of a powerful causal method that may
solve these problems. Genetic variants robustly associated with a
potential risk factor of interest, identified through GWAS, can be
used as instrumental variables in an approach called ‘Mendelian
randomization’ (MR) [81]. Substance use is an obvious modifiable
risk factor that may be impacted by policy and preventive efforts,
making MR for substance use disorders a particularly fruitful avenue
to pursue [82].
MR relies on three core assumptions; the included genetic

variants, the ‘genetic instrument’, should (1) be robustly associated
with the exposure variable, (2) not be associated with confounders
of the relationship between exposure and outcome, and (3) not be
associated with the outcome through any other path than the
exposure [83]. Depending on the relation of interest, there are
additional assumptions [84]. To estimate the causal effect, Inverse-
variance weighted (IVW) regression is conducted, which assumes
no violation of the core assumptions. An important part of an MR
study is to conduct sensitivity approaches to assess the robustness
of a potential causal finding. For an extensive discussion about the
theory and practical application of MR, we refer to two excellent
reviews by Richmond and Davey Smith [84] and Davies et al. [83].
Examples of commonly applied sensitivity methods are: weighted
median regression [85], weighted mode regression [86], MR-Egger
[87], MR-PRESSO [88], and GSMR [89]. Apart from this selection of
methods a wide range of other approaches exists (such as
Bayesian MR [90] and an integration of MR and the direction of
causation twin model [91]). Finally, a particularly useful addition to
the MR ‘toolbox’ worth noting here is multivariable MR, where (an)
additional exposure variable(s) can be added [92]. An important
weakness of MR as it is often applied, is that it can be biased by
assortative mating, dynastic effects, and population structure [93].
These biases can be overcome by using family-based GWAS
estimates and conducting standard MR methods [93, 94] or by
specific within-family MR methods [95].
Mendelian randomization has been used to assess causal effects

between SUDs and mental health, behavioural, and physical
traits (Fig. 4). The most well-studied traits include cognitive
functioning and educational attainment, structural brain mea-
sures, and psychiatric disorders (predominantly MDD, PTSD,
ADHD). For alcohol use disorder, there is consistent evidence that
higher intelligence and educational attainment causally decrease
the risk of developing AUD [9, 96, 97]. One study indicated that
PAU liability, which combined AUD and problematic drinking, may
also causally decrease educational attainment [9], however other
studies have failed to replicate this finding [97]. There is no
evidence for causal effects in either direction between AUD and
executive functioning [98], nor is there evidence for causal effects
of alcohol dependence on late-onset Alzheimer’s disease risk [99].

While there was some evidence that AUD liability causes a later
age of onset of Alzheimer’s, this is likely due to survival bias [99].
When focusing on more proximal measures, brain structure and
other imaging phenotypes, there is evidence that a larger right
pallidum volume increases AUD risk and in the other direction,
that AUD liability decreases right putamen volume [100],
amygdala volume, and hippocampal volume [101]. There is also
some evidence that AUD increases markers of iron in the putamen
[102] and basal ganglia [103], but this evidence is weak. Finally,
with regards to psychiatric traits, there is no clear evidence of
causal effects between AUD and loneliness [104], self-harm [105],
or suicide [106]. While there is weak evidence of a causal effect of
ADHD on AUD, but not the reverse, from one study [82] this was
not replicated in another [66]. There is evidence for a causal effect
of PTSD [107], insomnia [108], and of MDD [109] on AUD, but not
the reverse.
For CUD there is evidence for bidirectional causal effects with

educational attainment [110] but no evidence for causal effects
with suicide [106]. In addition, a causal effect of CUD on
schizophrenia has been identified [111], although we cannot rule
out the presence of bidirectional effects [52, 112]. Finally, there is
evidence that smoking initiation causally increases the risk of CUD,
acting as a gateway [113].
Higher intelligence may decrease the odds of nicotine

dependence [96] and nicotine dependence increases the
risk of schizophrenia (even when corrected for CUD) [111]. There
is no clear evidence for causal effects between nicotine
dependence and ADHD [114], nor from nicotine dependence to
suicide [106].
Finally, for opioid dependence there is no clear evidence for

causality with suicide [106], weak evidence of an effect of opioid
dependence on increased alcohol drinking [113], and evidence
that smoking initiation, MDD, and neuroticism increase and higher
educational attainment decrease opioid dependence risk [40]. For
cocaine dependence there is no clear evidence for causal effects
with other substance use behaviours [113] or ADHD [66].
Overall, MR studies have led to the identification of important,

putative causal relations between substance use disorders and
(poor) mental health outcomes. This knowledge should be
considered in the development of preventive efforts and health
messages and followed up on with more extensive analyses to
pinpoint the exact causal pathways and mechanisms. An important
approach to further improve the reliability of causal findings is
‘triangulation’ [115], that is, explicitly combining MR with other
types of research method in a single study [116]. If the findings of
different research methods, with different biases, all point to a
causal effect, it is much less likely to be spurious. For instance, MR
can be combined with observational (cohort) analyses, other
genetically informative designs such as discordant twin or sibling
analyses, or even natural experiments such as policy changes. Given
its convenience and the ongoing expansion of even more
sophisticated sensitivity methods, it is expected that MR will remain
an important method in the field of causal inference.

Pharmacogenomics of substance use disorders
There are several approved and effective pharmacological
treatments of substance use disorders [117]. Incorporating genetic
information into the treatment decision-making process may
potentially improve patient management and outcomes [118].
Here, we will summarize the results of pharmacogenomics studies
investigating how genes affect a person’s responses to pharma-
cological treatment, with a specific focus on alcohol, tobacco and
opioid use disorders.
Several medications have demonstrated efficacy for the

treatment of AUD, but pharmacological agents remain under-
utilized [119] and are only moderately effective with large
variation in effects across patients. Pharmacotherapy for AUD
targets neurotransmitter systems that are impacted by the
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consumption of alcohol, including opioidergic, dopaminergic,
GABAergic, glutamatergic, and serotonergic neurotransmission
[119]. Three medications are approved by the U.S. Food and Drug
Administration (FDA) for the treatment of AUD: disulfiram,
acamprosate, and naltrexone. There are also several drugs that
are used off-label to treat AUD, including topiramate, gabapentin,
baclofen, ondansetron and varenicline, among others [120].
Two recent reviews have summarized findings from pharma-

cogenetic studies for approved and off-label medications
[119, 121]. The overall conclusion is that pharmacogenetic results
are insufficient to inform clinical practice, due to small sample
sizes and a lack of standardized trial designs and outcome
measures. The most widely studied genetic polymorphism is
rs1799971 as a potential mediator of naltrexone; this SNP encodes
a non-synonymous substitution (Asn40Asp) in the mu-opioid
receptor gene, OPRM1. A meta-analysis including seven RCTs
found that the Asn40Asp SNP has a nominally significant
moderating effect on drinks per day, while no significant
associations were found for four other outcomes [122]. Therefore,
the evidence for the utility of this SNP as a predictor of naltrexone
response remains inconclusive. A summary of pharmacogenetic
findings for the remaining medications is provided in Table 1.
While the majority of the pharmacogenetic studies have

focused on candidate genes, a genome-wide pharmacogenomics
study of acamprosate and naltrexone included 1083 European
ancestry participants [74]. This study identified genetic variants
near the PTPRD gene influencing time until drinking relapse in
naltrexone-treated patients [74].

A combination of behavioural support and pharmacotherapy
maximizes chances of successful long-term cessation of tobacco
use. The most common pharmacological treatments of Tobacco
Use Disorder are nicotine-replacement therapies, bupropion (a
non-tricyclic antidepressant), and varenicline (a selective nicotinic
receptor partial agonist). Meta-analyses have confirmed the
efficacy of these therapies on abstinence at 6-month or longer
follow-up, with varenicline being the superior treatment [123]. A
large proportion of the ability to quit smoking is heritable
(50–60%) [124]. Smokers with genetically slow nicotine metabo-
lism have higher cessation success on behavioural counselling and
nicotine patches compared with smokers with genetically fast
nicotine metabolism [125].
Nicotine is primarily metabolized by CYP2A6, and variability in

rate of metabolism contributes to vulnerability to tobacco
dependence, and response to smoking cessation treatment
[126]. El-Boraie and Tyndale have reviewed the results of
pharmacogenomics studies on various smoking phenotypes
[127]; here, we will focus primarily on summarizing data for
genetic variants associated with smoking cessation and a
genetically informed biomarker of nicotine clearance, the Nicotine
Metabolite ratio (NMR).

Nicotine-replacement therapy
A meta-analysis of 18 trials (N= 9017) was conducted in 2019,
including 40 active (bupropion, nicotine-replacement therapy
[NRT], varenicline, or combination therapies) versus placebo
comparisons and 16 active versus active comparisons [128]. Data

AUD

Causes Consequences

Intelligence (-)
Right putamen volume (-)

Amygdala volume (-)
Hippocampal volume (-)

Iron in putamen, serum iron
and transferrin saturation (+)

Intelligence (-)
Educational attainment (-)
Right pallidum volume (+)

ADHD (+)
PTSD (+)

Insomnia (+)
MDD (+)

CUD Educational attainment (-) 
Schizophrenia (+)

Educational attainment (-)
Smoking Initiation (+)

Schizophrenia (+)

OUD Alcohol Consumption (+)

Educational attainment (-)
Smoking initiation (+)

MDD (+)
Neuroticism (+)

TUD Schizophrenia (+)Intelligence (-)

Fig. 4 Putative causes and consequences of substance use disorders from Mendelian Randomization studies. This figure displays traits
that have been found to causally influence the risk of major substance use disorders (“Causes”) and traits that are influenced by these
disorders (“Consequences”). Negative directions of effect are displayed in green (−) while positive directions of effects are influenced in red
(+). Note that this figure includes traits with a reported causal association with substance use disorders but does not consider the strength of
evidence of causation or effect size of the association.
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were available for nine SNPs in five genes, two variable number of
tandem repeat polymorphisms, and the NMR biomarker. The
study revealed that non-Hispanic black smokers with rs16969968-
GG genotypes were 3.5-fold and 5.8-fold more likely to abstain at
6 months and at end of treatment, respectively. This nonsynon-
ymous variant is within the alpha-5 nicotinic acetylcholine
receptor (CHRNA5) gene, and is strongly associated with smoking
quantity and nicontine dependence in large-scale GWAS and
functional studies [27, 49]. No evidence of rs16969968 effect
modification was observed for non-Hispanic white smokers except
for short-term outcomes. There was no clear statistical evidence
for other genotype-by-treatment combinations nor for an
association between the NMR and treatment outcomes. Most
pharmacogenomics studies have focused on the role of one or
more candidate genes, while treatment response is likely under
polygenic influences of multiple variants with small and large
effects. An elegant way to estimate the combined effect of
multiple genetic variants is PGS analysis - Uhl et al. developed a
PGS based on 12,058 SNPs and showed that this score significantly
predicted ability to quit after nicotine patch treatment, with 43 vs
13% quit in the upper vs lower PGS terciles [129].

Bupropion
This dopamine and norepinephrine reuptake inhibitor and
nicotine antagonist is widely used to treat depression. It is also
one of the first-line pharmacotherapy options for smoking
cessation [130]. Bupropion is metabolized to its active metabolite,
hydroxybupropion (HB), by the genetically polymorphic cyto-
chrome P450 2B6 (CYP2B6) enzyme [130]. Eum et al. meta-
analyzed the results of ten studies (N= 413) evaluating the
influence of CYP2B6 polymorphisms on bupropion exposure and
on hydroxybupropion (HB), one of the three main active
metabolites of bupropion and an important component for
pharmacological activity and therapeutic effectiveness of the
compound. The authors showed that the CYP2B6*6 allele and

genotype-determined CYP2B6 poor and intermediate metabolizer
phenotypes are associated with significantly lower total active
moiety and reduced exposures to HB [130]. However, a meta-
analysis of trials of smoking cessation pharmacotherapies did not
reveal any differences between genotypes and efficacy of
bupropion treatment outcomes, including 6-month abstinence,
or end-of treatment abstinence [128]. However, the authors
argued that the lack of significant associations may have been due
to sample size limitations [128].

Varenicline
This partial agonist of nicotinic receptors in the central nervous
system acts to relieve cravings and withdrawal symptoms as well
as reducing the rewarding effect of smoking [123]. Varenicline
undergoes almost no metabolism, but variation in the transport of
varenicline throughout the body may alter treatment efficacy
[125]. Similar as for bupropion, a meta-analysis of clinical trials did
not reveal any differences between genotypes and efficacy of
varenicline treatment outcomes, including 6-month abstinence, or
end-of treatment abstinence [128]. There is some evidence that
varenicline is more effective in those with rs16969968 GA/AA
genotypes compared to GG genotypes in African American
smokers although this finding will need to be replicated [131].
Another study found an association between CYP2B6 rs8109525
and varenicline efficacy [132], but this association did not survive
correction for multiple testing and further replication is required.
Methadone maintenance therapy (MMT) is a substitute opioid

therapy used to treat opioid withdrawal symptoms and is
considered to be the most effective treatment for opioid addiction
[133]. Genetic variability contributes to the effectiveness of MMT.
Another commonly used pharmacotherapy for the treatment of
OUD is buprenorphine, a weak MOR agonist and a partial kappa-
opioid receptor antagonist, although buprenorphine seems
to be less effective than MMT due to reduced retention in
treatment [134]. A GWAS of buprenorphine treatment response

Table 1. Summary of clinical and pharmacogenetic studies of substance use disorders.

Disorder Drug Pharmacogenetics summary

Alcohol use
disordera

Disulfiram Results are limited by small sample sizes

Naltrexone rs1799971 has been suggested as a potential mediator of naltrexone; this SNP
encodes a non-synonymous substitution (Asn40Asp) in the mu-opioid receptor gene,
OPRM1. A meta-analysis including seven Randomized Controlled Trials (RCTs) showed
that the Asn40Asp SNP shows a nominally significant moderating effect on drinks per
day, while no significant associations were found for four other outcomes [122].

Injectable naltrexone None

Acamprosate Acamprosate treatment efficacy may be partially moderated by genetic variation of
genes regulating stress and reward pathways, including GATA4, DRD2, GABRA6,
GABRB2 and GRIN2B

Topiramate Results are limited by small sample sizes

Gabapentin None

Baclofen Pharmacogenetic data are limited to date and focused on GABA receptors

Tobacco use
disorder

Nicotine-replacement therapies A meta-analysis of 18 trials (N= 9017) showed that non-Hispanic black smokers with
rs16969968-GG genotypes were 3.5-fold and 5.8-fold more likely to abstain at 6
months and at end of treatment, respectively [128].

Bupropion The CYP2B6*6 allele and genotype-determined CYP2B6 poor and intermediate
metabolizer phenotypes were found to be associated with significantly lower total
active moiety and reduced exposures to HB [130]. A meta-analysis of trials of smoking
cessation pharmacotherapies did not reveal any significant associations [128].

Varenicline Results are limited by small sample sizes

Opioid use disorder Methadone maintenance
therapy (MMT)

The most reproducible result is an association between the CYP2B6*6 allele and (S)-
methadone plasma concentrations [134]. However, a meta-analysis of 7 articles did
not find a significant association between CYP2B6*6 and methadone response [133].

aResults are partly adapted from [121].
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revealed 6 nominally significant loci, four of which were located
near previously characterized genes: rs756770 (ADAMTSL2),
rs11782370 (SLC25A37), rs7205113 (CRISPLD2), and rs13169373
(LINC01947) [135]. Crist et al. reviewed pharmacogenetic findings
of OUD treatment [134]. We refer the reader to this review for a
full review of pharmacogenetic findings of OUD treatment dose
and treatment response. In summary, due to a lack of large data
sets with outcome and genotype data, there are no robust and
replicable associations between genetic variants and OUD
treatment outcomes. The most reproducible result is an associa-
tion between the CYP2B6*6 allele and (S)-methadone plasma
concentrations [134]. However, a meta-analysis of 7 articles did
not find a significant association between CYP2B6*6 and
methadone response [133].

Clinical implications and future work
Large-scale genetic studies have revolutionized the discovery of
genetic loci associated with substance use disorders, especially for
AUD, OUD, and TUD, while relatively few loci have been identified
for CUD due to smaller sample sizes. The early promises of GWAS
included the development of new and effective treatments and
improved patient stratification. The availability of well-powered
GWAS is a first step towards achieving these aims, although several
barriers need to be overcome [45]. PGS explain around 2–6% of the
phenotypic variation for AUD, OUD, and TUD and PGS can be used
for risk stratification, diagnosis and treatment of substance use
disorders, when used in combination with established risk measures
[136]. In addition, the integration of GWAS data with molecular
phenotypes may inform the identification of new and biologically
relevant drug targets for substance use disorders through
computational drug repurposing [45]. Future studies can be
strengthened by the development of drug–gene databases across
diverse cell types, including neuronal and other types of brain cells.
In addition, new approaches have been developed to model the
phenotypic complexity both within and across substance use
disorders and will need to be applied at the widest possible scale,
for example, by extending analyses to biobanks, such as the
impending Global Biobank Meta-analysis Initiative [137].
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