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Association of neurotransmitter pathway polygenic risk with
specific symptom profiles in psychosis
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A primary goal of psychiatry is to better understand the pathways that link genetic risk to psychiatric symptoms. Here, we tested
association of diagnosis and endophenotypes with overall and neurotransmitter pathway-specific polygenic risk in patients with
early-stage psychosis. Subjects included 205 demographically diverse cases with a psychotic disorder who underwent
comprehensive psychiatric and neurological phenotyping and 115 matched controls. Following genotyping, we calculated
polygenic scores (PGSs) for schizophrenia (SZ) and bipolar disorder (BP) using Psychiatric Genomics Consortium GWAS summary
statistics. To test if overall genetic risk can be partitioned into affected neurotransmitter pathways, we calculated pathway PGSs
(pPGSs) for SZ risk affecting each of four major neurotransmitter systems: glutamate, GABA, dopamine, and serotonin. Psychosis
subjects had elevated SZ PGS versus controls; cases with SZ or BP diagnoses had stronger SZ or BP risk, respectively. There was no
significant association within psychosis cases between individual symptom measures and overall PGS. However, neurotransmitter-
specific pPGSs were moderately associated with specific endophenotypes; notably, glutamate was associated with SZ diagnosis and
with deficits in cognitive control during task-based fMRI, while dopamine was associated with global functioning. Finally, unbiased
endophenotype-driven clustering identified three diagnostically mixed case groups that separated on primary deficits of positive
symptoms, negative symptoms, global functioning, and cognitive control. All clusters showed strong genome-wide risk. Cluster 2,
characterized by deficits in cognitive control and negative symptoms, additionally showed specific risk concentrated in
glutamatergic and GABAergic pathways. Due to the intensive characterization of our subjects, the present study was limited to a
relatively small cohort. As such, results should be followed up with additional research at the population and mechanism level. Our
study suggests pathway-based PGS analysis may be a powerful path forward to study genetic mechanisms driving psychiatric
endophenotypes.
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INTRODUCTION
Psychosis-spectrum disorders, including schizophrenia (SZ), schi-
zoaffective disorder (SA), and bipolar disorder (BP), affect 0.5–2.3% of
people worldwide [1–5]. Evidence suggests shared etiology for these
disorders, supported by family studies and genome-wide association
studies (GWASs) showing high interheritability and shared genomic
risk [6–8]. Given symptom heterogeneity across the psychosis
spectrum, a deeper understanding of the biology underlying specific
symptoms may drive psychiatry towards improved patient out-
comes using stratified medicine.
One approach toward revealing shared neurobiology is

identifying transdiagnostic endophenotypes. Recently, the Bipolar
& Schizophrenia Network for Intermediate Phenotypes (B-SNIP)
Consortium identified three biotypes of psychotic disorders using

neuropsychiatric markers, agnostic to diagnoses [9], that were
primarily characterized by differences in cognitive control and
sensorimotor reactivity. As knowledge of biology underlying
symptom heterogeneity expands, reclassifying psychosis patients
using biologically grounded phenotypes may allow for more
effective, targeted interventions.
Identification of causal and clinically informative genetic

components of psychotic disorders has been aided by large-
scale GWASs and estimation of overall genetic risk using polygenic
scores (PGSs). While large cohorts were initially required to
develop PGSs, once defined, research leveraging PGSs in cohorts
with phenotyping that extends beyond diagnosis is revealing how
genetic burden is associated with specific symptomatology. For
example, recent efforts have found associations between SZ PGS
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and treatment response [10] as well as neurological and cognitive
measures [11, 12]. Such uses of PGS enable study of genetic
burden in small cohorts that have been characterized at a level
not feasible at the scale required for GWASs focused on the
discovery of new risk loci.
While PGS is a useful metric of genetic risk, it fails to assign

burden into relevant biological pathways and elucidate mechan-
isms underlying symptoms. A novel approach to overcome this is
pathway-specific PGS (pPGS), which partitions variants into those
contained only in genes of a given function or pathway [13].
By assigning burden into pathways, it is possible to test how
specific processes contribute to phenotype. This has been used
to associate miR-137 pPGS with SZ risk [14] and neurological
markers [15, 16]. Another recent implementation identified SZ
and BP subjects with risk in pathways targetable by available
pharmaceuticals, showing the utility of pPGS in targeted
medicine [17]. Among pathways relevant to psychosis, glutamate
[18–23], GABA [19–24], dopamine [23, 25–28], and serotonin
[23, 28, 29] systems have been strongly associated with psychotic
disorders and therapeutics.
There is a major opportunity to use pPGS to identify pathway

contributions to psychosis symptoms. Here, we investigated the
relationship of overall and neurotransmitter-associated PGS to
psychotic disorder presentation at the diagnostic and endophe-
notypic level. We estimated overall and pathway-level PGS for a
diverse cohort recruited from California following a first psychotic
episode, and tested association between genetic burden, diag-
nosis, and clinical and neuroimaging endophenotypes. In a cohort
of 205 subjects with psychotic disorders versus 115 controls, we
found that overall and pathway PGSs were elevated in cases, pPGS
was moderately associated with specific endophenotypes, and
unbiased clustering on phenotypes showed associations with
pPGS and treatment response. Our results demonstrate the power
of pPGS to test the relationships between affected biological
pathways and transdiagnostic phenotypes.

METHODS
Study participants
Psychosis subjects were all outpatients within two years of their first
psychotic episode. Subjects were selected from an ongoing psychosis
research cohort, which includes 196 first-episode SZ-spectrum patients, 53
patients with first-episode BP with psychotic features, and 135 controls
aged 12–38. After all quality control (QC), 118 SZ, 39 SA, 48 BP, and 115
controls were included for this study from an ongoing early psychosis
research cohort. The study was approved by the University of California,
Davis, Institutional Review Board and all subjects gave written consent and
were paid for their participation.

Psychiatric and neuroimaging phenotyping
All participants were assessed using the Structured Clinical Interview for
the DSM-IV-TR (SCID I/P) [30]. Clinical interviews were conducted by
clinicians with masters or doctoral degrees trained to high reliability
(kappa > 0.70; range = 0.70–1.0). All patients were followed longitudinally
and diagnoses were confirmed 6 months after ascertainment. Exclusion
criteria for all groups included: Wechsler Abbreviated Scale of Intelligence
(WASI) IQ score below 70, alcohol or drug dependence or abuse within
3 months before testing, positive urine toxicology screen for illicit drugs,
prior head trauma worse than a Grade I concussion, or contraindication to
MRI scanning. Control subjects were excluded for the following additional
criteria: any lifetime diagnosis of an Axis I or Axis II disorder or any first-
degree relatives with a psychotic disorder. Before testing, a detailed
description of the study was provided and written informed consent
obtained.
Subjects were evaluated on the Global Assessment of Functioning (GAF)

[31], Global Social Functioning scale (GSF) [32], Global Role Functioning
scale (GRF) [33], Young Mania Rating Scale (YMRS) [34], Scale for the
Assessment of Positive Symptoms (SAPS) [35], Scale for the Assessment of
Negative Symptoms (SANS) [35], and Brief Psychiatric Rating Scale (BPRS)
[36]. Reality distortion, poverty symptoms, and disorganization scores were

defined from the BPRS, SAPS, and SANS [37]. Treatment response was
defined as >20% decrease in BPRS from baseline [38].
The GSF and GRF were measured at multiple time points; for each scale,

we computed an average of the highest and lowest values measured for
each subject during the past year and proceeded with these values for
subsequent analyses. Finally, we removed item #8 (“Content”) from scores
for the YMRS, as this question asks specifically about positive psychotic
symptoms and can skew YMRS scores for subjects with schizophrenia. As
such, scores on the YMRS used in these analyses more directly represent
mania-specific symptoms. At baseline, all patients had BPRS scores ≥5 to
offer sufficient resolution to detect a 20% improvement in score at follow-
up. For treatment response calculation, BPRS was rescaled to a lowest
score of zero (i.e. score of 24 = score of 0) [39].
Behavioral and neuroimaging methods are described previously [40].

Consequently, we present these methods in a condensed form. The AX-
Continuous Performance Task (AX-CPT) [41] was performed during fMRI. In
short, the task requires participants to respond to a series of cue and probe
letters and correctly identify the target pair (“AX” trials) while correctly
rejecting other pairs. The frequency manipulation of trial types creates a
prepotent tendency to make a target response when the “X” probe letter is
presented. Consequently when a non-A cue is presented and followed by
an X (i.e. “BX” trials) the participant must engage proactive control to retain
the goal, keep the incorrect cue in mind, and correctly reject the trial at the
probe phase. Participants were excluded if performance did not meet a
minimal threshold [42]. The primary behavioral measure used for this study
is d’-context, which represents a contrast of AX hits versus BX false alarms.
Functional Blood Oxygenation Level Dependent (BOLD) data were

acquired using a 1.5 T GE Signa and 3.0 T Siemens TimTrio. Two regions of
interest were defined a priori and comprised CueB versus CueA contrast,
reflecting high versus low cognitive control-related activity. Specifically,
bilateral dorsolateral prefrontal cortex (DLPFC) and bilateral superior parietal
cortex (SPC) were defined as 5mm radius spheres based on coordinates
from two independent datasets [43, 44]. All fMRI data were preprocessed
using SPM8 (Wellcome Dept. of Imaging Neuroscience, London) and
included slice timing correction, realignment, normalization to the Montreal
Neurological Institute (MNI) template, and smoothing with an 8mm FWHM
Gaussian kernel. Individual runs were excluded when framewise displace-
ment measures of movement exceeded 0.45mm (calculated with https://
fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLMotionOutliers) and whole subjects were
excluded if more than half of their data exceeded this threshold. All trial
types were modeled (CueA, CueB, AX, AY, BX, BY) and correct responses were
used to create first-level images.
Based on the exclusion criteria mentioned above, five controls, nine SZ

subjects, and two BP subjects were excluded due to excess motion. Two
controls, five SZ subjects, and two BP subjects were excluded for poor
behavioral performance. Finally, three controls and six SZ subjects were
excluded for other reasons, including scanning artifacts, scanner failure, or
button pad failure.

Genotyping, quality control, and imputation
Subjects underwent blood draws using PAXgene blood DNA tubes, which
were subsequently stored at −80 °C until DNA extraction. Tubes were
thawed at 37 °C for 15min before extracting DNA using the Qiagen
QIAamp DNA Blood Mini Kit. The protocol was followed with minor
modifications: volumes of blood, protease, lysis buffer, and ethanol were
tripled prior to binding DNA to the spin column; the final elution
incubation was carried out at 50 °C for 5 min; and DNA was eluted in 100 µl
of nuclease-free water. DNA was cleaned on the Zymo Research Genomic
DNA Clean & Concentrator-10 kit with minor modifications: an extra 2-min
spin in a clean collection tube was added after completing wash steps;
samples were incubated at 50 °C for 5 min during elution; and DNA was
eluted in 100 µl of nuclease-free water. After cleaning, samples were
analyzed on a spectrophotometer and verified to have concentrations
≥50 ng/µl and 260/280 and 260/230 ratios ≥1.70.
DNA was genotyped using the Illumina (San Diego, California) Infinium

PsychArray-24 Kit at the UC Davis DNA Technologies Core. Initial QC was
performed using Illumina GenomeStudio following published guidance
[45, 46]. Additional QC was applied using PLINK. First, variants with greater
than 5% missingness were removed. We confirmed that no individuals had
more than 1% of SNPs missing, nor did we observe any mismatch between
genetic sex inferred by PLINK and subjects’ self-reported sex. We removed
variants with significantly different missingness rates between cases and
controls (p < 0.001) or variants with significant deviation from Hardy-
Weinberg equilibrium (p < 1e-6). No severe heterozygosity outliers were
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observed. A small number of pairs of individuals appeared to be related; in
these cases one subject from each pair was randomly excluded from
subsequent analyses. Following imputation, the QC filters outlined above
were performed again. Additionally, variants with imputation quality INFO
scores <0.7 or empirical INFO scores <0.8 were removed.
PLINK (v1.9) was used to calculate genetic principal components (PCs) in

the 1000 Genomes [47] Phase 3 dataset, which were projected onto our
sample. Samples were submitted to the Michigan Imputation Server for
genotype imputation, using the full 1000 Genomes [47] Version 3 dataset
as the reference panel. Following all QC, 7,608,150 SNPs were available
across 338 unrelated subjects. Following additional review, 14 subjects
with schizophreniform disorder and 2 subjects with schizotypal disorder
that had initially been included were excluded from subsequent analyses
due to insufficient numbers, such that the final number of subjects was
320 as described in “Study Participants.”
We additionally checked for presence of known copy number variants

(CNVs) of high penetrance for schizophrenia risk in our samples using
iPsychCNV5 and PennCNV [48–50], using default parameters. CNVs called
by both software were retained as consensus calls for further analysis. This
resulted in a total of 333 CNVs across all subjects. We cross-referenced
these results with genome-wide significant CNV loci associated with SZ
[51] and filtered for CNVs in our sample that overlapped with at least 50%
of one of these previously identified SZ risk CNV loci. One subject with SZ
appeared to have a previously described SZ risk CNV: 15q11.2 deletion. As
the role of deletion at 15q11.2 is currently of uncertain significance in
schizophrenia risk [52, 53], we retained this individual for all analyses.

Polygenic score calculation
Using Psychiatric Genomics Consortium GWAS summary statistics for SZ
(2021) [22] and BP (2022) [54], we employed PRS-CS [55] to calculate SZ
and BP PGS, with the phi parameter set to 0.01 as recommended without
a validation sample. PRS-CS applies shrinkage to optimize PGS prediction
and may not be applicable when restricting PGS to genes from specific
pathways. Therefore, we used the PRSet function from PRSice [56] to
calculate pPGS for the four neurotransmitter pathways using SZ GWAS
summary statistics [22], as our subjects were weighted toward SZ
diagnosis and case-control status was best described by SZ PGS. As
recommended by the authors of PRSet, in order to avoid eliminating
SNPs in certain genes, no p-value filter was applied when calculating
pPGS. In order to select the R2 cutoff used for clumping, we tested five
potential values (0.1, 0.3, 0.5, 0.7, 0.9) in the subset of European ancestry
samples. All values returned a significant relationship with case-control
status. For results reported here, we used a clumping R2 of 0.7 as it
showed the strongest association with case status. We report results
using alternative clumping values in Fig. S2, which demonstrate stability
of our findings across clumping R2 values. Otherwise, default parameters
of PRSet were retained, with the 1000 Genomes [47] European subset
used as the LD reference panel.
To reduce bias from population stratification, we regressed calculated

PGSs on the first 10 principal components of genetic variation in our
subjects. We then assessed performance of regressed PGSs across different
ancestries present in our study sample. Subject ancestries were estimated
by assigning each subject to their nearest 1000 Genomes [47] population
by minimizing Euclidean distance to population centroid in 20-dimensional
PC space, as recommended by Privé et al. [57]. Regressed PGSs (hereafter
called PGSs) showed substantial reduction in ancestry-specific stratification
and appeared to replicate top-level associations when subsetted to just
European/white subjects (Fig. S3).

pPGS pathways
Pathways include genes relevant in glutamate, GABA, dopamine, and
serotonin. Genes were sourced from KEGG [58], REACTOME [59], and
AmiGO [60] by searching for pathways and ontologies that include these
neurotransmitters or variations on them (e.g. “glutamatergic”). The
complete gene list is in Table S1.

Unbiased clustering
Endophenotypes were z-score normalized within cases. For cognitive
control phenotypes, subjects were z-score normalized within cases with
the same protocol/scanner type. Subjects were clustered on all endophe-
notypes. We used all subjects with complete endophenotype data (n= 91)
to calculate the optimal number of clusters using the NbClust R package
[61]. Estimates converged on three clusters. Subsequently, we used all

subjects with greater than 50% of endophenotype variables available
(n= 167) for k-means clustering using the flipCluster R package [62].

Statistical analysis
All analyses were completed in R [63]. Code used to generate results are
available upon reasonable request to the authors. One BP subject was
excluded as an outlier from analyses based on Cook’s distance near 1 in
regression models. Correlation analyses and plots were produced using the
psych [64] and corrplot [65] packages. Violin plots were produced using
the vioplot package [66]. Effect sizes for associations are presented as
standardized β coefficients and odds ratios, calculated using the lm.beta
[67] R package. The center marks represent median values in the violin
plots and boxplots.
Nagelkerke’s R2 was calculated for variance explained in logistic regression

models of disease status by PGS using the RMS R package [68]. All
endophenotypes were tested against PGS and the following covariates in
regression models: chromosomal sex, age, self-reported race, self-reported
ethnicity, and diagnosis. Protocol/scanner type was controlled for in
cognitive control analyses. Overall SZ PGS was included as a covariate for
endophenotype analyses by pPGS. Models of continuous variable pheno-
types against PGS are represented with partial regression plots.
For cluster versus diagnosis model comparison, we regressed PGSs

separately against clusters, plus standard covariates, and against diag-
noses, plus covariates. In separate analyses, we regressed PGS against both
cluster and diagnosis in the same model, as well as covariates. BP and
Cluster 3 were the reference levels for, respectively, diagnosis and cluster.

Multiple testing corrections
Multiple testing corrections were applied for analyses of phenotype,
including diagnosis and case status, by pathway PGS. Given the correlated
structure of phenotypes and of pPGS in our subjects, we used the poolr R
package [69] to calculate the effective number of statistical tests following
Galwey (2009) [70]. This methodology identified effectively five (of initially
six) independent PGS variables and 12 (of initially 17) independent
phenotype variables. Total tested dependent variables were multiplied by
total tested independent variables such that findings were corrected for 61
tests (five PGS by 12 endophenotypes plus one test for differential
treatment response across k-means clusters) using a Benjamini-Hochberg
[71] false discovery rate (FDR) of 0.10.

Permuted null pathway calculation
For each of the pathways in our main analyses, we constructed 10,000
matched null gene sets with an equivalent number of genes, chosen such
that the probability of a gene’s inclusion is proportional to its length. We
then calculated pPGS for these 40,000 permuted null gene sets in the same
way as described above, i.e. using PRSet to calculate pPGS for our target
sample and regressing out the first 10 genetic PCs.

RESULTS
Demographics
Subjects were demographically heterogenous and relatively well
matched across psychosis cases (n= 205) and controls (n= 115).
Cases were composed of subjects with SZ, SA, and BP diagnoses
(Table 1).

Overall and pathway PGSs predict diagnostic status
We first tested whether overall PGS was associated with psychosis
status, correcting for latent ancestry differences via inclusion of
the top 10 PCs, as well as sex, age, and self-reported race and
ethnicity. SZ PGS was associated with case status (OR= 2.69 [CI:
2.06, 3.51]; p= 1.1 × 10−4) (Fig. 1A) and explained 6.3% of variance
in status (p= 1.1 × 10−4), similar to previous reports [72–76]
(Fig. S1). This association was stronger in SZ (OR= 3.06 [CI: 2.26,
4.14]; p= 2.1 × 10−4) and SA (OR= 3.67 [CI: 2.32, 5.81];
p= 4.7 × 10−3) (Fig. 1B). While BP PGS was not significant in cases
overall, it was elevated in BP subjects (OR= 3.55 [CI: 2.34, 5.37];
p= 2.3 × 10−3) (Fig.1A, B). These findings passed multiple testing
corrections at FDR < 0.10. SZ and BP PGS were moderately
correlated in SZ and SA subjects, but not BP subjects (Fig. 1C).
These results were generally consistent across PGS clumping
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parameters (see “Methods”, Fig. S2) and when subsetting our
cohort to only white European subjects (Fig. S3). Thus, overall PGS
captured both transdiagnostic and diagnosis-specific genetic risk
for psychotic disorders, consistent with a strong literature on
partial genetic overlap between SZ, SA, and BP [6, 7, 77–79].

Association of pPGS with phenotypes
As SZ PGS had stronger overall and transdiagnostic association to
psychosis in this cohort, we next tested if this risk could be further
subset via pPGS associated with major neurotransmitter pathways.
To dissect genetic contributions of biological pathways to clinical
and neurobiological phenotypes, we calculated pPGS for loci
associated with four neurotransmitter systems relevant to
psychosis: glutamate [18–22], GABA [19–24], dopamine [25–28],
and serotonin [28, 29], allowing overlap in genes annotated to
each pathway (Fig. 2A, Table S1). These pPGS showed moderate
intercorrelations and correlations with overall PGS (Fig. 2B).

We first tested association with overall disease status. Gluta-
mate and GABA pPGS showed weak trends toward explaining
variance in case status (OR= 1.57 [CI: 1.22, 2.04] to 1.58 [CI: 1.22,
2.05]; both p= 0.08; Fig. 2C). Glutamate and GABA pPGS showed
improved explanation of SZ status over a null background
distribution of size-matched gene sets (Fig. S4) and were modestly
elevated in SZ subjects relative to controls (OR= 1.90 [CI: 1.42,
2.56] to 1.92 [CI: 1.43, 2.57]; both p= 0.03; Fig. 2D), though case-
control separation did not pass multiple testing corrections. This
suggests disease status in our cohort is partially explained by
glutamatergic and GABAergic genetic risk.

pPGSs are associated with endophenotypes in cases
We next tested if PGS was associated with symptom variation
across 11 phenotypes within subjects with a psychotic disorder
(Fig. 3A). For these analyses, we tested for associations only within
psychosis cases, as data on psychosis endophenotypes were only
collected for subjects with psychosis. Overall PGSs were not
significantly associated with measured phenotypes (Fig. S5).
However, we found evidence for associations of pathway-
specific risk to six phenotypes in global functioning, role
functioning, cognitive control, and treatment response, though
only DLPFC β-values by glutamate and GAF by dopamine passed
multiple testing corrections at FDR < 0.10. Full data on non-
significant relationships is available in Fig. S5.
Dopamine pPGS was associated with poorer global (β=−0.17

[CI: −0.25, −0.10]; p= 0.02) and role (β=−0.19 [CI: −0.28, −0.10];
p= 0.03) functioning, though role functioning did not pass multiple
testing corrections (Fig. 3B). Perhaps the strongest finding was an
association between glutamate pPGS and cognitive control in cases,
though only the association to DLPFC β-values passed multiple
testing corrections (DLPFC β-values: β=−0.22 [CI: −0.31, −0.13];
p= 0.01) (SPC β-values: β=−0.19 [CI: −0.29, −0.09]; p= 0.05)
(d’-Context: β=−0.18 [CI: −0.26, −0.09]; p= 0.04) (Fig. 3C). This

Table 1. Demographics of study subjects.

Cases (N) (%) Controls (N) (%)

Total 205 64% 115 36%

Diagnosis

Schizophrenia 118 58% – –

Bipolar Disorder 48 23% – –

Schizoaffective
Disorder

39 19% – –

Race

African
American/Black

28 14% 7 6%

American
Indian/Alaskan
Native

2 1% 0 0%

Asian 15 7% 27 23%

Caucasian/
White

131 64% 61 53%

Native
Hawaiian/Pacific
Islander

3 1% 1 1%

Multiple or
unknown

26 13% 19 17%

Ethnicity

Hispanic/Latino 50 24% 17 15%

Non-Hispanic/
Latino

151 74% 97 84%

Unknown 4 2% 1 1%

Inferred 1000 Genomes superpopulation

African (AFR) 58 28% 19 17%

American (AMR) 20 10% 8 7%

East Asian (EAS) 14 7% 26 23%

European (EUR) 110 54% 53 46%

South Asian
(SAS)

3 1% 9 8%

Sex

Male 158 77% 67 58%

Female 47 23% 48 42%

Mean age (s.d.) 19.7 (4.1) 19.7 (4.2)

Study subjects were racially and ethnically diverse across both cases and
controls. Potential differences in demographics were considered when
controlling for covariates in subsequent analyses.
s.d. standard deviation.

Fig. 1 SZ and BP PGS are associated with psychotic disorder
diagnoses. A SZ PGS (top) is significantly associated with psychosis
case status, while BP PGS (bottom) is not. B SZ PGS (top) is
associated with SZ and SA status versus controls, but not BP status.
Conversely, BP PGS (bottom) is associated with BP status versus
controls, but not SZ or SA status. For each (A) and (B), the top row
represents a comparison of SZ PGS across diagnostic groups, while
the bottom row represents a comparison of BP PGS across
diagnostic groups. C Spearman’s correlations of SZ and BP PGS in
psychosis cases show moderate correlations between PGS for SZ
and SA subjects, but not for BP subjects.
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finding is consistent with a prominent hypothesis in schizophrenia
literature that perturbations to glutamatergic signaling may be
associated with deficits in cognitive control [80–83]. Notably, our
findings represent results from a relatively small cohort and should
be followed up in larger cohorts and with more detailed
mechanistic studies, and only one endophenotype association to
glutamate passed multiple testing corrections. However, these
results show the promise of using pPGS to partition genome-wide
risk into hypothesized mechanistic pathways toward symptoms of
psychiatric disease.
Of 63 subjects with available treatment response data, 35

were responders, consistent with reported efficacy rates [84].
Though underpowered, treatment response showed a weak
association with higher dopamine pPGS which did not pass
multiple testing corrections (OR= 3.40 [CI: 1.83, 6.34]; p= 0.05)
(Fig. 3D). While this finding should be considered preliminary,
this is consistent with literature associating dopamine with
antipsychotic efficacy.

Unbiased phenotype clustering of psychosis cases and
genetic burden
Biotype-level grouping of psychosis cases, such as by B-SNIP [9],
may advance the use of biological data to better model
psychopathology. We hypothesized a biotype-style approach
might unmask explanations of psychosis symptom heterogeneity
by overall and pathway-level PGS. Toward this goal, we used
k-means clustering to group endophenotype presentation among
cases. We clustered subjects on z-score normalized phenotype
data into three groups following cluster optimization using the
NbClust R package [61].
Clusters showed distinct symptom profiles (Fig. 4A, Table S2).

Cluster 1 was distinguished by high mania, disorganization, and
reality distortion, and moderate impairments in cognitive control.
Cluster 2 had deficits in negative symptoms, showed poor
outcomes in role and social functioning, and had the poorest
measures of cognitive control. Cluster 3 had low pathology. Cluster
1 showed evidence of enrichment for treatment responders relative

Fig. 2 Pathway polygenic scores (pPGS) based on four main neurotransmitter systems. A KEGG [58], AmiGO [60], and REACTOME [59] were
searched for genes associated with glutamatergic, GABAergic, dopaminergic, and serotonergic neurotransmission. B pPGS developed from
these gene sets showed substantial correlation in psychosis subjects when regressing against the first ten genetic principal components.
Statistically significant correlations (p < 0.05) are denoted with an asterisk. C While no pPGS significantly separated overall psychosis cases
from controls, D glutamate and GABA pPGS separated SZ cases specifically from controls, though these findings do not pass FDR < 0.10.
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to Clusters 2 and 3, though this did not reach significance
(p= 0.057) (Fig. 4B). In contrast, treatment response showed no
separation by diagnosis (p= 0.845). Clusters were demographically
and diagnostically heterogenous (Fig. 4C, Table S2), though Cluster
3 captured most BP subjects. By contrast, SZ and SA subjects were
relatively evenly distributed across Clusters 1 and 2. This suggests
that, among endophenotypes available in our subjects, Clusters 1
and 2 captured relatively strong endophenotype differences that
are transdiagnostic across SZ and SA subjects.
We next tested associations between cluster and PGS (Fig. 4D,

Table S2). SZ PGS was associated with all clusters, though this did
not pass multiple testing corrections for Cluster 3 (Clust. 1:
OR= 4.90 [CI: 3.01, 7.96]; p= 1.1 × 10−3) (Clust. 2: OR= 2.59 [CI:
1.83, 3.66]; p= 6.1 × 10−3) (Clust. 3: OR= 2.21 [CI: 1.53, 3.19];
p= 0.03). BP PGS was strongly associated with Cluster 3
(OR= 2.51 [CI: 1.74, 3.60]; p= 0.01), consistent with its preponder-
ance of BP subjects. Cluster 3 was not associated with any pPGS,
suggesting genetic risk may lie outside of SZ variants in
neurotransmitter-linked loci. In contrast, GABA (OR= 2.51 [CI:
1.78, 3.53]; p= 0.01) and glutamate (OR= 3.21 [CI: 2.24, 4.59];
p= 1.15 × 10−3) pPGS were elevated in Cluster 2, both of which
passed multiple testing corrections. This may have implications for
the symptom profiles of this cluster. Cluster 2 showed strong
negative symptoms, which are thought to largely arise from
glutamatergic dysfunction [85, 86]. Cluster 2 also showed deficits
in social and role functioning, which are predicted by negative
symptoms [87], and strong cognitive control deficits. pPGS
findings suggest Cluster 2’s symptoms in our cohort may be
more specific to GABAergic and glutamatergic risk, consistent with
the hypothesis of an imbalance between these neurotransmitters
in psychosis [20]. Following up on these findings in larger cohorts

may eventually prove useful in identifying pathways underlying
transdiagnostic psychiatric symptoms.
We next compared explanatory power of our clusters versus

diagnoses to model genetic risk in our cohort. For this, we defined
models regressing PGSs against either cluster or diagnosis. Per
Bayesian information criteria and R2 (Fig. 4E), models using
clusters performed better than models using diagnosis to predict,
in particular, glutamatergic and GABAergic pPGS. We next
regressed PGS against both cluster and diagnosis as covariates
to test independence between diagnosis and cluster (Fig. 4F).
Again, glutamate (β= 0.23 [CI: 0.14, 0.33]; p= 0.02) and GABA
(β= 0.20 [CI: 0.10, 0.29]; p= 0.04) pPGS were associated with
Cluster 2 when including diagnosis in the model. These results
demonstrate that, within subjects of the same diagnosis,
endophenotypes captured here showed specific associations to
glutamatergic and GABAergic pPGS. These results provide
evidence for the biological validity of these clusters overall within
our cohort and within the context of molecular pathways.

DISCUSSION
We tested how overall and pathway-specific PGS are related to
diagnosis and variation in psychosis symptoms in a diverse patient
sample. We calculated overall SZ and BP PGS, and further curated
gene sets representing four major neurotransmitter systems
[58–60], comparing pPGS for SZ variants in these pathways.
Overall genome-wide PGS, and to a weaker degree glutamate and
GABA pPGS, were associated with case status, though glutamate
and GABA did not pass multiple testing corrections. pPGSs
outperformed overall PGS in explaining endophenotypes. Dopa-
mine was significantly associated with poorer overall functioning

Fig. 3 pPGSs identify mechanisms for endophenotypes of psychotic disorders. A Subjects were phenotyped on a range of psychological,
clinical, and neurological measures. B Dopamine pPGS was associated with poorer global functioning and role functioning in psychosis
subjects when controlling for diagnosis and overall SZ PGS. Only the association with global functioning passed FDR < 0.10. C Glutamate pPGS
showed associations with poorer performance and reduced cortical activation in psychosis subjects during the AX-CPT cognitive control task
when controlling for diagnosis and overall SZ PGS. Only the association with DLPFC β-values passed FDR < 0.10. D Treatment response
showed a slight association with increased dopamine pPGS, though this did not pass FDR < 0.10. (Resp. = responder to treatment, non-resp. =
non-responder to treatment).
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and marginally associated with treatment response, though the
association to treatment response did not pass multiple testing
corrections. This is a preliminary but intriguing result, suggesting
the hypothesis for future research that patients with increased
dopaminergic risk may be better candidates for antipsychotic
medications. Our results also showed associations between

glutamate pPGS and cognitive control. Unsupervised clustering
identified three phenotypically distinct groups of psychosis
subjects that differed predominantly on positive symptoms,
negative symptoms, cognitive control, and global functioning.
Though our data largely represent different phenotypic measure-
ments than those used by B-SNIP, we reproduced those findings
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which our measures can capture and generated preliminary
hypotheses on the relationship between biotypes and genetic
burden. Like B-SNIP, we identified three diagnostically mixed
endophenotypes in our subjects that separate on general
impairment and cognitive control. Notably, Cluster 2, which
showed primary deficits in cognitive control, negative symptoms,
and social functioning, had elevated glutamatergic and GABAergic
risk. Treatment efficacy showed some evidence for separation by
cluster. Within diagnoses, clustering on available endophenotypes
unmasked different symptom presentations that showed specific
profiles of genetic risk. Our results require replication before
generalization outside of our small cohort, but may serve as proof-
of-principle for the use of biologically partitioned polygenic risk to
study shared mechanisms behind psychiatric symptoms.
Our study features limitations. Notably, our cohort is smaller

than many genomics studies, though our deep level of
phenotyping is a strength and generally not possible for the
larger or combined cohorts needed for GWAS. As a result of our
small sample, our results should be considered preliminary data
and are best understood as a model for the use of pPGS to study
hypothesized mechanisms of disease. Additional cohorts featuring
endophenotypes not captured in our study, such as mood
symptoms or potential biomarkers of disease, may help draw a
more complete picture of how genetic burden drives psychiatric
symptomatology. Focusing on PGS rather than SNP discovery
mitigates the limitations of our sample size, though limits our
study to integration of previously defined associations. We tested
a priori-defined and hypothesis-driven pathways in the present
study, however, there are certain to be other contributing
pathways not investigated here. While diverse cohorts are needed
to capture generalized genetic risk across populations, there is
currently no standard for transposing PGS across ancestries. Here,
we regressed PGS on the first 10 genetic PCs and additionally
controlled for race and ancestry in association analyses and show
that our methods generally address ancestry differences in PGS in
our cohort. However, future studies on larger diverse replication
cohorts will be needed. Finally, k-means clustering will identify
clusters even when the true nature of the data is continuous or
cluster differences are not biologically relevant. The identification
of unique PGS profiles for our clusters, as well as evidence for by-
cluster differences in treatment response, provide auxiliary
evidence supporting separate mechanisms driving distinct clus-
ters of primary symptoms within our subjects. PGSs showed
associations to specific clusters even within subjects of the same
diagnosis. Additionally, we replicate key findings from previous
clustering attempts on psychosis subjects [9].
Our results show the utility of overall and pathway-specific PGS

to understand genetic burden and interrogate convergent
neurobiological mechanisms underlying disease phenotypes. The
neurotransmitter systems tested here have been robustly
associated with psychotic disorders [18–29]. However, their
relationships to specific symptoms have not been elucidated.
Mechanisms underlying cognitive and negative symptoms in
psychosis are particularly poorly understood, despite being some
of the strongest predictors of poor outcomes in psychotic
disorders [88–91]. Our results support a role for glutamate

dysfunction in cognitive, as well as negative and social, symptoms
in psychosis. This adds to a wide literature hypothesizing that the
biological basis of these symptoms may be partly explained by
genetic risk driving glutamatergic abnormalities. Our study and
findings represent a model for going beyond overall genetic
burden in investigation of the genetic components of psychosis,
and, in particular, of maximizing power in smaller but deeply
characterized cohorts. While our findings will need to be
replicated, they offer a promising look into how genetic burden
can be partitioned and can explain specific psychosis diagnoses
and endophenotypes. Our work is a step towards a more precise
understanding of convergent molecular mechanisms underlying
psychotic symptoms, which is critical for realizing the promise of
stratified medicine and targeted treatments for those suffering
from psychotic disorders.
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