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Prenatal exposure to maternal psychological stress is associated with increased risk for adverse birth and child health outcomes.
Accumulating evidence suggests that preconceptional maternal stress may also be transmitted intergenerationally to negatively
impact offspring. However, understanding of mechanisms linking these exposures to offspring outcomes, particularly those related
to placenta, is limited. Using RNA sequencing, we identified placental transcriptomic signatures associated with maternal prenatal
stressful life events (SLEs) and childhood traumatic events (CTEs) in 1 029 mother-child pairs in two birth cohorts from Washington
state and Memphis, Tennessee. We evaluated individual gene-SLE/CTE associations and performed an ensemble of gene set
enrichment analyses combing across 11 popular enrichment methods. Higher number of prenatal SLEs was significantly
(FDR < 0.05) associated with increased expression of ADGRG6, a placental tissue-specific gene critical in placental remodeling, and
decreased expression of RAB11FIP3, an endocytosis and endocytic recycling gene, and SMYD5, a histone methyltransferase. Prenatal
SLEs and maternal CTEs were associated with gene sets related to several biological pathways, including upregulation of protein
processing in the endoplasmic reticulum, protein secretion, and ubiquitin mediated proteolysis, and down regulation of ribosome,
epithelial mesenchymal transition, DNA repair, MYC targets, and amino acid-related pathways. The directional associations in these
pathways corroborate prior non-transcriptomic mechanistic studies of psychological stress and mental health disorders, and have
previously been implicated in pregnancy complications and adverse birth outcomes. Accordingly, our findings suggest that
maternal exposure to psychosocial stressors during pregnancy as well as the mother’s childhood may disrupt placental function,
which may ultimately contribute to adverse pregnancy, birth, and child health outcomes.
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INTRODUCTION
Maternal stress before and during pregnancy has emerged as a
major contributor to long term offspring health based on the
Developmental Origins of Health and Disease (DOHaD) premise [1,
2]. Recent meta-analyses suggest the importance of maternal
prenatal stress for offspring health across a range of outcomes
including birth weight [3, 4], obesity [5–7], asthma [8, 9], mental
health [10, 11], and neurodevelopmental disorders such as autism
spectrum disorder and attention-deficit hyperactivity disorder [12].
However, the mechanisms linking prenatal stress to child
development are not fully understood. Evidence suggests
mediating roles of the neuroendocrine stress system, immune
system, gut microbiome, and telomere biology [13, 14], although
more mechanistic research is critically needed in tissues that play
functional roles in the maternal-fetal interface. Improved mechan-
istic insight may support the development of interventions and
open up new avenues in precision medicine aimed at reducing
the burden of maternal stress-associated disease.
As the regulator of nutrient, waste, and gas exchange between

the mother and fetus, the placenta is recognized as an essential

functional link between the maternal environment and fetal
programming [15, 16]. For instance, phenotypes related to the
efficiency of placental transfer, including weight, thickness,
surface area, and the ratio of placental to fetal weight have
been linked to both maternal nutrition [17, 18] and offspring
coronary heart disease [19, 20]. In addition to structural
adjustments in response to the maternal environment, the
placenta may also go through changes at the molecular level by
altering gene expression. Because gene expression is cell type
and tissue specific, it is essential to quantify the transcriptome in
the most relevant, functional tissues in relation to a study
question. Given its unique role in the maternal-fetal interface, the
placenta is the ideal target tissue for the study of prenatal
exposures. Moreover, studies show that the placental transcrip-
tome and epigenome may respond to maternal exposures
including particulate matter [21, 22], phthalates [23, 24], and
stress [25, 26]. Investigating placental gene expression and
epigenetic changes associated with maternal stress during
pregnancy may help uncover mechanisms linking prenatal stress
with child development [23].
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Although DNA methylation differences associated with mater-
nal stress have been examined [26, 27], the literature investigating
transcriptomic alterations remains limited. Epigenomic and
transcriptomic analyses generate distinct, complementary infor-
mation, but the transcriptome may provide better functional
insights by capturing all RNA molecules transcribed from genes
that are actively expressed. The majority of studies investigating
differential gene expression associated with maternal stress have
utilized targeted approaches, which limit examination to just a
handful of candidate genes [28–30]. One study profiled the
placental transcriptomic signatures in 131 mother-child dyads
associated with pregnancy during the environmental stressor of
living through Hurricane Sandy [25]. In addition to identifying 221
differentially expressed genes associated with pregnancy during
that natural disaster, Nomura et al. uncovered genes that
mediated associations between this maternal stress exposure
with child aggression and anxiety [25]. To more comprehensively
explore gene expression differences associated with prenatal
stress, larger, better powered transcriptomic studies, and studies
of more commonly experienced stressors not restricted to natural
disaster-associated stress, are needed.
DOHaD approaches have expanded to encompass a wider

window during which exposures may affect development. In
addition to maternal stress during pregnancy, emerging evi-
dence suggests that stressful experiences during the mother’s
earlier developmental periods may confer changes to her
biology that later affect the development of her child [10, 31].
Compared with prenatal stress, the mechanisms of intergenera-
tional transmission of the effects of preconceptional stress are
less understood. Very few studies have investigated whether the
effects of preconceptional traumatic experiences may be
transmitted to later generations via changes in gene expression
or DNA methylation [32, 33]. One of the first studies examining
the transmission of preconceptional trauma found lower blood
FKBP prolyl isomerase 5 (FKBP5) methylation in the children of
Holocaust survivors compared to demographically comparable
controls [34]. Placental DNA methylation in key regulatory
regions of this gene is associated with both placental FKBP5
gene expression and infant neurodevelopmental outcomes [35].
Taken together, this work illustrates how placental molecular
biology may serve as an intermediate between preconceptional
stress and child development. Another targeted approach found
sex-specific associations of maternal childhood trauma with gene
expression and methylation of BDNF in cord blood [36]. Genome-

wide approaches are even rarer. One study examined child
genome-wide DNA methylation patterns in saliva associated with
a maternal trauma measure designed to screen for potentially
traumatic events over the respondent’s lifetime (Life Events
Checklist) [33]. Another study examined placental genome-wide
DNA methylation differences associated with socioeconomic
adversity, framed as a chronic source of stress throughout the
mother’s life [26]. However, to the best of our knowledge, there
are no transcriptome-wide association studies simultaneously
examining and distinguishing between prenatal and preconcep-
tional maternal stress and the transcriptome of any tissue,
including the placenta.
The primary objectives of this study were to examine

associations of maternal exposure to stressors during pregnancy
and her own childhood with the transcriptome of her infant’s
placenta. Accumulating evidence indicates fetal sex differences in
developmental vulnerability to prenatal stress [37]. We have also
observed that fetal sex is a modifier of the relationship between
other prenatal exposures and the placental transcriptome [23, 38].
Thus, we further hypothesized that associations of intergenera-
tional stress with placental gene expression may be sex-specific.
This study addresses several limitations of prior transcriptomic
studies of prenatal stress, namely, small sample sizes, targeted
gene approaches, lack of transcriptome-wide analyses of pre-
conceptional maternal stress, and focus on natural disaster-related
stress, which may not be generalizable to other sources of stress
such as socioeconomic risk and family violence.

METHODS
Study population
The ECHO prenatal and early childhood pathways to health (ECHO-
PATHWAYS) consortium, described previously [39], is a study that
harmonizes extant data and develops new data collection protocols for
three pregnancy cohorts from diverse populations across the country. The
consortium’s core aim is to explore the impact of chemical exposures and
psychosocial stressors experienced by the mother during pregnancy on
offspring growth and child development, and to assess potential under-
lying placental mechanisms. This analysis includes data from two of the
consortium’s cohort studies in which placental transcriptomics data are
available: the Conditions Affecting Neurocognitive Development and
Learning in Early Childhood (CANDLE) study [40], and a subset of the
Global Alliance to Prevent Prematurity and Stillbirth (GAPPS) study sample
that has been enrolled in ECHO-PATHWAYS (GAPPS-PW) after their
children were born.

Fig. 1 Inclusion criteria flowchart. Study flowchart for inclusion of participants shows analytic sample sizes remaining from the
implementation of each exclusion criterion. Participants come from two US pregnancy cohorts in the ECHO-PATHWAYS Consortium: CANDLE
(Conditions Affecting Neurocognitive Development and Learning in Early Childhood) and GAPPS (Global Alliance to Prevent Prematurity and
Stillbirth).
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CANDLE enrolled 1 503 women from Shelby County/Memphis,
Tennessee, from 2006 to 2011 during the second trimester of pregnancy.
Briefly, women were considered eligible if they were Shelby County, TN
residents, between 16 and 40 years of age, had singleton pregnancies
without complications at enrollment, and planned to deliver at a
participating study hospital. Participants aged 18 years or older provided
informed consent, while assent and consent from legally authorized
representatives were obtained for those under 18 years prior to
enrollment.
GAPPS was launched by the Seattle Children’s Hospital in 2007 to study

the impact of adverse birth outcomes. In 2017, eligible participants were
re-contacted to participate in the ECHO-PATHWAYS study. More than 600
mothers and children have been re-enrolled, and recruitment is still
ongoing. Eligibility criteria included delivery in Seattle, WA (Swedish
Medical Center) or Yakima, WA (Yakima Valley Memorial Hospital),
availability of at least one pregnancy urine sample, initial GAPPS
enrollment and completion of questionnaire, and GAPPS child currently
4–7 years of age. Study protocols were approved by the Institutional
Review Boards of the University of Tennessee Health Science Center for
CANDLE, the Seattle Children’s Research Institute for GAPPS, and the
University of Washington for ECHO-PATHWAYS.
An inclusion criteria flowchart is presented in Fig. 1. Briefly, from the

CANDLE (n= 1 503) and GAPPS (n= 657) cohorts, the ECHO-PATHWAYS
consortium collected and conducted RNA-sequencing on a subset of
placentas (n= 794 from CANDLE and n= 289 from GAPPS). After removing
participants with missing placental transcriptomics data and placental
abruption (n= 18), our study included 1 065 participants, among whom 1
029 had complete CTE data and 874 had complete SLE data (Fig. 1).

Exposures
Objective maternal stress exposures were retrospectively evaluated during
postnatal follow up assessments (age 4–6 for GAPPS, age 8 for CANDLE).
Exposures to prenatal Stressful Life Events (SLEs) were assessed using a
survey adapted from the Centers for Disease Control and Prevention
Pregnancy Risk Assessment Monitoring System (PRAMS) [41]. Women were
asked to respond yes or no to 14 statements covering multiple types of
stressful life events they experienced during pregnancy, such as those
relating to relationship problems, housing or financial issues, legal
problems, and illness or death of a loved one (Supplementary Table 1).
Maternal childhood trauma exposures (CTEs) were assessed via responses
to three questions from the Traumatic Life Events Questionnaire [42]. In
this questionnaire, women reported whether they were physically abused
before age 18 years, witnessed family violence before age 18 years, or
experienced sexual abuse before age 13 years. Affirmative responses were
summed to produce scores for both prenatal SLEs (range = 0-14) and
maternal CTEs (range = 0-3), where higher scores indicate more SLEs
experienced during pregnancy and more traumatic exposures experienced
during childhood, respectively. Prior studies have shown consistency in the
retrospective report of exposure to traumatic events during childhood [43]
and stressful life experiences during pregnancy [44].

Placental transcriptomics
The ECHO PATHWAYS consortium sequenced a subset of placentas from
each cohort (n= 289 from GAPPS and n= 794 from CANDLE). Placental
tissue sampling, RNA isolation, and RNA sequencing have previously been
described for CANDLE and GAPPS participants [21, 23]. In the CANDLE
study, within 15min of delivery, a piece of placental villous tissue in the
shape of a rectangular prism with approximate dimensions of
2×0.5×0.5 cm was dissected from the placental parenchyma and cut into
four ∼0.5-cm cubes. The tissue cubes were placed in a 50-mL tube with
20mL of RNAlater and refrigerated at 4°C overnight ( ≥ 8 h but≤24 h). Each
tissue cube was transferred to an individual 1.8-mL cryovial containing
fresh RNAlater. The cryovials were stored at −80°C, and the fetal villous
tissue was manually dissected and cleared of maternal decidua. Following
dissection, the fetal samples were placed into RNAlater and stored
at −80°C.
In the GAPPS study, within 30min of delivery, 8 mm full-thickness

vertical tissue punches from the placental disc were taken and put into
5ml tubes containing approximately 3 ml of RNAlater and stored at −20 °C
before specimens were shipped to the GAPPS facility. Samples were then
stored at −20 °C. Punches were thawed and maternal decidua was
removed, and the fetal-side of the placental punch was cut-off from the
rest of the punch, and divided into 1–3 pieces with mass ranging from

10mg to 30mg. Each sample was placed in 1ml RNAlater and stored at
−20 °C until shipment for further processing.
For both cohorts, approximately 30mg of fetal villous placental tissue

was used for RNA isolation. The tissue was homogenized in tubes
containing 600 μL of Buffer RLT Plus with β-mercaptoethanol using a
TissueLyser LT instrument (Qiagen, Germantown, MD). RNA was isolated
using the AllPrep DNA/RNA/miRNA Universal Kit (Qiagen) according to the
manufacturer’s recommended protocol. RNA purity was assessed by
measuring optical density ratios (OD260/230 and OD280/260) with a
NanoDrop 8000 spectrophotometer (Thermo Fischer Scientific, Waltham
MA). RNA integrity was determined with a Bioanalyzer 2100 using RNA
6000 Nanochips (Agilent, Santa Clara, CA). Only RNA samples with an RNA
integrity number (RIN) of >7 were sequenced.
All RNA sequencing was performed at the University of Washington

Northwest Genomics Center. Total RNA was poly-A enriched to remove
ribosomal RNA, and cDNA libraries were prepared from 1 μg of total RNA
using the TruSeq Stranded mRNA kit (Illumina, San Diego, CA) and the
Sciclone NGSx Workstation (Perkin Elmer, Waltham, MA). Each library was
uniquely barcoded and subsequently amplified using a total of 13 cycles of
PCR. Library concentrations were quantified using Qubit Quant-it dsDNA
High Sensitivity assay fluorometric quantitation (Life Technologies,
Carlsbad, CA). Average fragment size and overall quality were evaluated
with the DNA1000 assay on an Agilent 2100 Bioanalyzer. Each library was
sequenced to an approximate depth of 30 million reads on an Illumina
HiSeq sequencer. RNA sequencing quality control was performed using
both the FASTX-toolkit (v0.0.13) and FastQC (v0.11.2) [45]. Transcript
abundances were estimated by aligning to the GRCh38 transcriptome
(Gencode v33) using Kallisto [46], then collapsed to the gene level using
the Bioconductor tximport package, scaling to the average transcript
length [47].

Other covariates
Covariate data on maternal and child characteristics were collected in the
CANDLE and GAPPS studies via questionnaires and medical record
abstraction and harmonized by the ECHO-PATHWAYS consortium.
Supplementary Fig. 1 depicts a Directed Acyclic Graph (DAG) for our
conceptual model of associations between maternal stress exposures and
the placental transcriptome. Confounders were defined as factors that may
influence both the exposure and the placental transcriptome, including
self-reported race (White vs. Black vs. Multiple race vs. Asian vs. Other vs.
American Indian/Alaska Native), self-reported ethnicity (Hispanic/Latino vs.
Not Hispanic/Latino), and socioeconomic position. We did not consider
race/ethnicity as proxies for genetic ancestry labels. Race is a political and
social construct that often serves as a proxy for the impact of racist
practices and structural inequality; it is not a biological construct [48] and
thus is examined in the current paper with this premise in mind. Models
adjusted for multiple covariates that capture different aspects of
socioeconomic position, including household income adjusted for region
and inflation (continuous), household size (2–3 vs. 4 vs. 5 vs. ≥6), maternal
education ( < High School vs. High School completion/Graduate Equiv-
alency Diploma vs. Graduated college or technical school vs. Some
graduate work or graduate/professional degree), and geospatially-linked
indicators of neighborhood deprivation (continuous standardized score)
[49].
We also included precision variables, defined as variables that could

affect the placental transcriptome but have no clear casual effect on the
exposure. Precision variables included fetal sex (Male vs. Female), maternal
gravidity (continuous number of pregnancies), delivery mode (Vaginal vs.
C-section), labor type (Spontaneous vs. Spontaneous, augmented vs.
Induced vs. No labor), study site, maternal age (continuous years), and
sequencing batch. While socioeconomic position variables were concep-
tualized as confounders in prenatal SLE models, they were measured
temporally after maternal childhood, and thus cannot be upstream causes
of maternal CTEs. However, socioeconomic position variables may still
influence the placental transcriptome and serve as precision variables in
maternal CTE exposure models. Alternatively, these variables may still be
conceptualized as confounders of the association between maternal CTEs
and the placental transcriptome if they serve as proxies for maternal
socioeconomic position during childhood.
Finally, we also considered variables that could be potential confounders

but may also serve as mediators (i.e., variables on the causal pathway
between maternal stress and placental gene expression). These factors
included gestational age at birth (continuous weeks), maternal pre-
pregnancy BMI (continuous kg/m2), and maternal tobacco (Yes vs. No) and
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alcohol (Yes vs. No) use during pregnancy. Given that BMI, tobacco use,
and alcohol use may reflect mechanisms of coping with stress, we
considered the models adjusting for these potential mediators as our
primary analysis, with the objective of isolating placental transcriptomic
responses to maternal stress that are independent of mechanisms of
coping with stress. Gestational age at birth was not included as a covariate
in the main models because: 1) as opposed to stress-coping pathways,
gestational age at birth may reflect potential biological pathways through
which maternal stress impacts the placental transcriptome, and 2) it is
plausible that placental gene expression is an upstream cause of
gestational age at birth, making gestational age a collider rather than a
mediator. Thus, gestational age was included as an additional covariate in
sensitivity analyses but not the main models. Since including potential
mediators is a conservative approach – adjusting for effects that are likely
on the causal path between the exposure and placental transcriptome is
expected to attenuate results toward the null – we also report sensitivity
models that do not adjust for any of these potential mediators. Maternal
alcohol use was based on self-report. The positive tobacco exposure group
included individuals with maternal urine cotinine above 200 ng/mL [50], as
well as individuals who were below this cut-off but self-reported tobacco
use during pregnancy. Covariates were determined a priori.

Statistical analysis
Descriptive statistics were calculated to understand characteristics of the
study sample, and to compare our study sample with the entire CANDLE
and GAPPS cohort populations. Because prior work in this sample indicates
that prenatal SLEs and maternal CTEs may interact in their effects on child
health [10], we initially tested associations of SLEs, CTEs, and SLE by CTE
interactions with gene expression controlling for all covariates discussed
above. There were no significant SLE by CTE interaction product terms for
any genes (not shown). Therefore, we constructed separate models to
evaluate associations of prenatal SLEs and maternal CTEs with placental
gene expression. For all models, independent variables included one of the
stress-related exposures along with all covariates discussed above, with
gene expression of individual genes acting as the dependent variable. We
retained only protein-coding genes, processed pseudogenes, and lncRNAs,
and removed genes with average log counts per million (CPM) < 0.
Transcript filtering was applied separately to the analytic samples with SLE
(n= 874) and CTE (n= 1 029) data available, resulting in a final sample of
14 047 and 14 030 transcripts for prenatal SLEs and maternal CTEs,
respectively. Log-cpm values were normalized to library size using the
weighted trimmed mean of M-values [51].
In our primary analysis, missing covariate data were imputed using a

multiple imputation method designed specifically for RNA-seq studies,
implemented within the RNAseqCovarImpute package [52]. Exposure
(stress) and outcome (gene expression) data were not imputed. Unlike
single imputation, multiple imputation accounts for uncertainty in the
prediction of missing data points. However, because multiple imputation
methods must include the outcome as a predictor of missing data to avoid
bias [53], they are difficult to apply given the high dimensionality of the
outcome data in RNA-sequencing studies (e.g., 14 047 outcome genes).
RNAseqCovarImpute accommodates high dimensional expression data by
binning genes into smaller groups, creating separate multiply imputed
datasets and differential expression models within each bin, and pooling
results with Rubin’s rules. This method integrates with the limma-voom
differential expression pipeline to fit weighted linear models for each gene
that take into account individual-level precision weights based on the
mean-variance trend [54]. Results are further moderated using the limma
empirical Bayes procedure in which gene-wise variances are squeezed
towards a global gene variance prior [55]. We report log2-adjusted fold-
changes (Log2FCs) for each one number increase in SLEs or CTEs. Log2FCs
were transformed into percent gene expression changes using the formula
(2Log2FC-1)*100%.
For sensitivity analyses, we constructed 1) complete-case analyses, and

2) random forest single imputation models using the missForest package
[56]. As in the primary analysis, both sensitivity analyses were fit using the
limma-voom pipeline. The voomLmFit function from the edgeR package
was used to fit weighted linear models for each gene, and the eBayes
function from the limma package was used to apply the empirical Bayes
procedure. In all differential expression analyses, genes were considered
statistically significant at false discovery rate (FDR) < 0.05 using the
Benjamini-Hochberg method [57], and we additionally report the number
of genes with FDR < 0.10. We evaluated differences between these two
sensitivity analyses and the multiple imputation models by assigning

P-value rankings to each gene and comparing these ranks across the three
methods.
To identify gene sets and pathways associated with prenatal SLEs and

maternal CTEs, we performed Ensemble of Gene Set Enrichment Analyses
(EGSEA), an approach that integrates the results of several separate gene
set enrichment methods to produce combined P-values and gene set
rankings [58]. Specifically, we examined MSigDB hallmark gene sets [59, 60]
and KEGG pathways (excluding KEGG human diseases) [61] with the over-
representation analysis (ora) [62], globaltest [63], plage [64], safe [65],
zscore [66], ssgsea [67], roast [68], fry [68], padog [69], camera [70], and
gsva [70] methods. Of note, the compatibility of pathway and gene set
enrichment methods with multiple imputation depends on their inputs.
The RNAseqCovarImpute multiple imputation method produces one final
list of genes with their associated t-statistics, log fold changes, and P-values
for differential expression. Thus, the method is compatible with gene set
enrichment analyses that utilize gene rankings such as ora, or gene level
statistics such as camera and gage [71]. However, RNAseqCovarImpute is
not compatible with gene set enrichment analyses that require as input a
gene expression matrix or data at the individual sample level, as the nature
of multiple imputation requires the creation of multiple gene expression
matrices across each imputed dataset.
Owing to the limited compatibility of multiple imputation with existing

gene set enrichment methods, we utilized EGSEA by passing the “voom”
object from the single imputation analysis, which includes the design
matrix, precision weights, and normalized log-CPM values, into the egsea
function from the EGSEA package. EGSEA was run using all gene set
enrichment methods listed above. The single imputation results were
considered as a reasonable alternative to the multiple imputation results
because, as shown in the results section, the gene P-value rank orders
produced by each method were very similar. In an additional sensitivity
analysis, we performed gene set enrichment analysis using the gene
t-statistics from the multiple imputation differential expression analysis
with three compatible methods, namely, ora, gage, and camera, using the
EGSEA, gage, and limma packages, respectively.
To explore sex-specific effects, we performed EGSEA separately on male

and female strata with the single imputation data as described above.

RESULTS
Covariate and stress data are described in Table 1. Women reported
an average of 1.6 stressful life events (SLEs) during pregnancy
(range = 0-14), and 0.5 childhood traumatic events (CTEs) in their
own childhood (range = 0-3). Among the participants, 26.1% of
women reported exposure to both prenatal SLEs andmaternal CTEs,
36.0% prenatal SLEs only, 27.7% neither prenatal SLEs or maternal
CTEs, and 10.2% maternal CTEs only. Rates of individual maternal
CTEs were as follows: 26.3% witnessed family violence, 8%
experienced physical abuse, and 19% experienced sexual abuse.
Prenatal SLEs and maternal CTEs were weakly, positively correlated
(Spearman’s rho= 0.226). On average, women were 27.9 years of
age at delivery (range = 16-43), and most individuals self-identified
as White (48.2%) or Black (42.1%). The majority of participants
reported no tobacco (92.3%) or alcohol (90.6%) use during
pregnancy, underwent labor (83.4%), and delivered vaginally
(61.7%). Compared with the entire CANDLE and GAPPS cohorts,
our sample with placental transcriptomics data and no placental
abruption had higher mean maternal age (27.9 vs. 26.3), lower
frequency of prenatal tobacco exposure (7.7% vs. 10.4%), and
higher frequency of induced labor (32.5% vs. 27.2%). Socio-
economic status differences were mixed, with our sample having
lower mean household income ($56 300 vs. $64 000), but higher
maternal educational attainment and lower neighborhood depriva-
tion index (Supplementary Table 2).
In placental transcriptome-wide analysis with FDR < 0.05,

controlling for potential confounders, mediators, and precision
variables, prenatal SLEs were associated with three differentially
expressed genes (DEGs) in the multiple imputation models
(n= 874, Fig. 2A, Supplementary Table 3). Each one number
higher prenatal SLE was associated with 5.0% higher expression of
adhesion G protein-coupled receptor G6 (ADGRG6) (Log2FC=
0.07, Fig. 2B), 2.7% lower expression of RAB11 family interacting
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protein 3 (RAB11FIP3) (Log2FC= -0.04, Fig. 2C), and 2.1% lower
expression of SMYD family member 5 (SMYD5) (Log2FC= -0.03,
Fig. 2D). Results were the same in a sensitivity analysis that
additionally adjusted for gestational age at birth (Supplementary
Table 3). Results were similar in a sensitivity analysis that did not
include potential mediators as covariates, except the association
with decreased SMYD5 expression was no longer significant (FDR
P-value= 0.074, Supplementary Table 3). At the FDR < 0.10
threshold, prenatal SLEs were additionally associated with
upregulation of 89 genes and downregulation of 91 genes (Fig. 2A,
Supplementary Table 3).
Controlling for potential confounders, mediators, and precision

variables, maternal CTEs were not associated with any DEGs
(Supplementary Table 4). Similarly, there were no significant
associations of maternal CTEs with gene expression in a sensitivity
analysis that additionally adjusted for gestational age at birth and
a sensitivity analysis that did not include potential mediators as
covariates (Supplementary Table 4). Differential expression analy-
sis results for SLEs and CTEs were similar when using two
alternative methods for handling missing data: single imputation
and complete case analysis (Supplementary Results, Supplemen-
tary Fig. 2, Supplementary Tables 3–6).
In addition to evaluating individual gene associations with

maternal stress, we performed gene set enrichment analysis using
EGSEA on the single imputation results to combine across 11
popular gene set testing methods. All MsigDB hallmark and KEGG
pathway terms that were significantly associated (FDR < 0.05) with
either prenatal SLEs or maternal CTEs in EGSEA analyses are
presented in Fig. 3. Prenatal SLEs were associated with altered
regulation of 13 MsigDB hallmark gene sets and 7 KEGG pathways.
Although maternal CTEs were not associated with differential
expression of any single gene (Supplementary Table 4), they were
associated with 8 MsigDB hallmark gene sets (Fig. 3). Among these
8 CTE-associated gene sets, 6 were also significantly associated
with prenatal SLEs and in the same direction as their association
with maternal CTEs. No KEGG pathways were significantly

Table 1. Characteristics of the study sample (n= 1 065).

Prenatal SLEs (sum)

Mean (SD) 1.576 (1.861)

Range 0 - 14

Missing 191 (17.9%)

Maternal CTEs (sum)

Mean (SD) 0.533 (0.799)

Range 0 - 3

Missing 36 (3.4%)

Fetal biological sex (n (%))

Male 531 (49.9%)

Female 534 (50.1%)

Maternal age (years)

Mean (SD) 27.884 (5.677)

Range 16 - 43

Missing 20 (1.9%)

Maternal race (n (%))

White 513 (48.2%)

Black 448 (42.1%)

Multiple Race 61 (5.7%)

Asian 17 (1.6%)

Other 11 (1.0%)

American Indian/Alaska Native <5 ( < 0.5%)

Missing 13 (1.2%)

Maternal ethnicity (n (%))

Not Hispanic/Latino 1000 (94.1%)

Hispanic/Latino 63 (5.9%)

Missing 2 (0.2%)

Maternal education (n (%))

<High School 76 (7.1%)

High School completion 421 (39.6%)

Graduated college or technical school 383 (36.0%)

Some graduate work or graduate/professional
degree

183 (17.2%)

Missing 2 (0.2%)

Family income (USD adjusted for region and inflation)

Mean (SD) 56277 (43074)

Range 2493 - 214975

Missing 56 (5.3%)

Neighborhood deprivation index (standardized score)a

Mean (SD) 0.171 (0.802)

Range -1.482 - 2.804

Missing 49 (4.6%)

Pre-pregnancy BMI (kg/m2)

Mean (SD) 27.7 (7.5)

Range 14.0 - 62.0

Missing 22 (2.1%)

Household size (n (%))

2-3 208 (20.5%)

4 399 (39.2%)

5 240 (23.6%)

≥ 6 170 (16.7%)

Missing 48 (4.5%)

Table 1. continued

Maternal tobacco (n (%))

No 982 (92.3%)

Yes 82 (7.7%)

Missing 1 (0.1%)

Maternal alcohol (n (%))

No 958 (90.6%)

Yes 99 (9.4%)

Missing 8 (0.8%)

Gravidity (number of pregnancies)

Mean (SD) 2.6 (1.6)

Range 0.0 - 12.0

Missing 8 (0.8%)

Labor type (n (%))

Spontaneous 241 (23.0%)

Spontaneous, augmented 293 (27.9%)

Induced 341 (32.5%)

No Labor 174 (16.6%)

Missing 16 (1.5%)

Delivery method (n (%))

Vaginal 657 (61.7%)

C-section 408 (38.3%)
aHigher value indicates higher deprivation.
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associated with maternal CTEs (Fig. 3). The EGSEA results on the
single imputation models were similar to our sensitivity analyses
applying the camera, gage, and ora methods to the multiple
imputation differential expression models. As in EGSEA, prenatal
SLEs were associated with genes involved in upregulation of the
protein secretion and protein processing in the endoplasmic
reticulum pathways, and downregulation of the epithelial
mesenchymal transition, MYC targets v2, and ribosome pathways
(cf. Figure 3, Supplementary Table 7). As in EGSEA, maternal CTEs
were associated with downregulation of genes that were

members of the MYC targets v1 and v2 pathways (cf. Fig. 3,
Supplementary Table 7).
We also performed sex-stratified EGSEA analyses to explore sex-

specific effects of maternal stress. All MsigDB hallmarks and KEGG
pathways that were significantly associated with prenatal SLEs in
either male or female strata are presented in Fig. 4. The majority of
gene sets associated with prenatal SLEs were altered in the same
direction in both males and females. Among 9 gene sets with
significant associations in both strata, 8 were directionally
concordant. However, genes related to the adipogenesis pathway

Fig. 2 Associations of prenatal SLEs with placental gene expression. Volcano plot depicts log2-adjusted fold-changes in 14 047 genes for
each one number increase in prenatal stressful life events (SLEs), from multiple imputation analyses adjusting for maternal age, race, ethnicity,
pre-pregnancy BMI, gravidity, tobacco and alcohol use during pregnancy, household income adjusted for region and inflation, household size,
maternal education, neighborhood deprivation index, fetal sex, labor type, delivery method, study site, and sequencing batch (A). Horizontal
line at P= 0.05. Limma-voom linear model trends (lines) for ADGRG6 (B), RAB11FIP3 (C), and SMYD5 (D). For each gene, one point per participant
(gray points) and means (red diamonds) summarize the distributions of log2-counts per million (CPM) normalized to library size at each level
of prenatal SLEs.
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were upregulated by prenatal SLEs in females but downregulated
in males (Fig. 4).
All MsigDB hallmarks and KEGG pathways that were signifi-

cantly associated with maternal CTEs in either male or female
strata are presented in Fig. 5. Unlike the similarities across strata
for prenatal SLEs, 4 of the 10 gene sets with significant
associations in both strata were regulated in opposite directions
by maternal CTEs in males and females. Moreover, maternal CTEs
were not associated with any KEGG pathways in the main analysis
(Fig. 3), but were associated with several KEGG pathways in the
sex-stratified analyses, and the directions of association were
generally opposite in males versus females (Fig. 5).

DISCUSSION
In this study of over 1 000 mother-child dyads, maternal stressful
life events (SLEs) during pregnancy and childhood traumatic
events (CTEs) were associated with gene expression patterns in
the placenta. Prenatal SLEs were associated with differences in
placental expression of three genes. Both prenatal SLEs and
maternal CTEs were associated with transcriptomic differences in
pathways from the molecular signatures database (MsigDB) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) gene sets,
suggesting alterations to placental function, with implications for
the etiology of pregnancy complications and adverse birth
outcomes.
In our transcriptome-wide analysis, prenatal SLEs were posi-

tively associated with ADGRG6 expression and negatively asso-
ciated with expression of RAB11FIP3 and SMYD5. ADGRG6 (also
known as GPR126) encodes a G protein-coupled receptor and is

involved in cellular adhesion. It is expressed specifically within the
liver and placenta based on definitions provided by the human
protein atlas [72]. In humans, genetic mutations in ADGRG6 are
associated with the most common pediatric skeletal disease,
adolescent idiopathic scoliosis [73], and with lethal arthrogryposis
multiplex congenita [74]. Recent work using mouse and zebrafish
models show that ADGRG6 inactivation is embryonically lethal
owing to defective placental remodeling, which may precede the
adverse human health conditions above [75]. RAB11FIP3 encodes a
protein that interacts with the RAB11 family of proteins, which
play roles in secretory pathways and protein transport. RAB11FIP3
is specifically involved in endocytosis and endocytic recycling [76],
processes that mediate placental transfer [77]. SMYD5 is a histone
methyltransferase, and has been shown to be involved in
epigenetic transcriptional repression of inflammatory response
genes [78]. These genes are involved in cellular adhesion,
secretion, and inflammation, which are central pathways to core
placental functions including maternal-fetal communication and
immune protection.
In addition to being the largest analysis of the relationship

between prenatal stress and the placental transcriptome to date,
this study is also the first to examine the association of maternal
preconceptional stress with the human transcriptome. Preconcep-
tional stress, operationalized as maternal CTEs, was not associated
with differential expression of any single genes. Compared with
prenatal stress, there is a longer latency between maternal
childhood trauma and the measurement of the placental
transcriptome, which may explain the lack of any CTE-gene
expression associations. Additionally, the 3-item CTE measure,
which evaluates exposure to violence, physical abuse, and sexual

Fig. 3 Ensemble of Gene Set Enrichment Analyses for Prenatal SLEs and Maternal CTEs. Associations of mutation signatures database
(MSigDB) hallmarks and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways with prenatal SLEs and maternal CTEs. Log2 adjusted
fold-changes (LogFC) and P-values come from ensemble of gene set enrichment analyses combining across 11 popular gene set testing
methods. All terms with false discovery rate (FDR) adjusted P-value < 0.05 in association with prenatal SLEs and/or maternal CTEs shown.
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abuse, may capture a different and smaller range of stressful
exposures compared with the 14-item prenatal SLE measure,
which evaluates a broad range of economic and interpersonal
adversities. Similar results were found in a prior ECHO-PATHWAYS
study, where higher prenatal SLEs predicted higher levels of child
anxiety and depression at age 8-9, while no significant associa-
tions were observed for maternal CTEs [11]. Despite the lack of
single gene associations, functional enrichment analyses con-
sidering the placental transcriptome holistically, rather than as
isolated genes detached from biological context, uncovered
associations of maternal CTEs with gene sets related to several
biological pathways (discussed below).
To the best of our knowledge, this is the first large-scale analysis

of prenatal stress and the placental transcriptome that is not
linked to natural disasters. Although a prior placental transcrip-
tomic study in 131 individuals documented many differentially
expressed genes related to being pregnant during Hurricane
Sandy [25], those alterations could be specific to that natural
disaster or population, and may not be generalizable to all forms
of stress exposure. Moreover, certain differentially expressed
genes could be attributable to month/season/year of birth [79,
80], as the control group consisted of children whose mothers
were pregnant within a three-year window surrounding the storm.
One strength of our study was the adjustment for numerous
potential confounders, and socioeconomic confounding either by
family income or neighborhood deprivation could explain some of
the differences between our results and the differentially
expressed genes associated with pregnancy during Hurricane
Sandy. Strikingly, however, our results corroborate some of the
transcriptomic differences uncovered in that study: ADGRG6 was

upregulated (P-adj = 0.006), and there was evidence that
RAB11FIP3 was downregulated (P-adj = 0.062) in the placentas
of participants who were pregnant during Hurricane Sandy versus
pregnancies that occurred before Hurricane Sandy [25].
Consistent with prior work implicating perceived stress during

pregnancy as a risk factor for preeclampsia [81–83] and reduced
birth weight [3, 4], we found that prenatal SLEs were associated
with gene expression differences that may increase risk for
pregnancy complications and adverse birth outcomes. For
instance, prenatal SLEs were associated with several pathways
related to protein homeostasis, and the directional changes of
these associations were consistent with endoplasmic reticulum
(ER) stress. ER stress, which occurs following an imbalance in redox
homeostasis between the ER and cytosol, triggers the unfolded
protein response and activates signaling events consistent with
the suppression of mRNA translational initiation, the upregulation
of protein processing in the ER, and the degradation of misfolded
proteins [84–86]. In agreement with the suppression of mRNA
translational initiation associated with ER stress, increased prenatal
SLEs were associated with downregulation of the KEGG ribosome
pathway and downregulation of several amino acid metabolism
pathways. In agreement with upregulation of protein processing
and recycling associated with ER stress, prenatal SLEs were
associated with upregulation of pathways related to protein
processing in the ER and protein secretion, and, in the multiple
imputation analysis, upregulation of ubiquitin mediated proteo-
lysis. The ER is essential for protein processing and secretion, and
through this role coordinates signaling pathways regulating
metabolism, cell proliferation, and cell death by modifying
proteins involved in these biological pathways. These ER functions

Fig. 4 Ensemble of Gene Set Enrichment Analyses for Prenatal SLEs Stratified by Sex. Associations of mutation signatures database
(MSigDB) hallmarks and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways with prenatal SLEs stratified by sex. Log2 adjusted fold-
changes (LogFC) and P-values come from ensemble of gene set enrichment analyses combining across 11 popular gene set testing methods.
All terms with false discovery rate (FDR) adjusted P-value < 0.05 in either stratum shown.
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are critical to the placenta’s role in maternal-fetal signaling, as the
peptide hormones involved in this signaling are processed by the
placental ER. Thus, perturbation of ER function can interfere with
placental endocrine regulation of maternal metabolism, which
may ultimately restrict nutrient transport to the fetus [87].
Consistent with the core role of the ER in placental biology, prior
work implicates ER stress in the etiology of pregnancy complica-
tions including intrauterine growth restriction and preeclampsia
[87–90]. Thus, findings from our study support ER stress as a
candidate mechanism underlying prenatal psychological stress-
associated pregnancy complications.
In addition to ER stress, prenatal SLEs and maternal CTEs were

associated with placental gene expression within other pathways
that have previously been linked with pregnancy complications.
For instance, one study has shown that the down regulation of
amino acid transport may precede intrauterine growth restriction
[91], and we observed associations of maternal stress with down
regulation of several amino acid related pathways (cysteine and
methionine metabolism, and valine, leucine, and isoleucine
degradation). We also observed negative associations between
prenatal stress and expression of genes within the epithelial
mesenchymal transition pathway. Invasive extravillous tropho-
blasts, originating from trophoblast cells through epithelial-
mesenchymal transition, are critical for normal placental function.
Dysregulated epithelial-mesenchymal transition of extravillous
trophoblasts may induce defective migration and invasion and
disrupt the process of spiral artery remodeling during the first
trimester of pregnancy [92]. The importance of the epithelial
mesenchymal transition pathway in normal placental develop-
ment is underscored by prior work showing that it may be

downregulated in preeclampsia [93–96]. Prenatal SLEs and
maternal CTEs were also associated with repression of the DNA
repair pathway. Down regulation of DNA repair pathways in
trophoblasts owing to abnormal RNA degradation and miRNA
expression may contribute to recurrent pregnancy loss [97]. Both
prenatal SLEs and maternal CTEs were associated with down-
regulation of MYC signaling, which is involved in multiple growth
promoting and signal transduction pathways, most frequently
studied in the context of cancer [98]. However, there is evidence
that aberrant MYC signaling is related to placental pathology as
decreased MYC expression has been observed in preeclamptic
versus normal human placentas [99].
Prenatal SLEs were associated with several pathways relating to

energy metabolism, including oxidative phosphorylation, the
citrate cycle (TCA cycle), carbon metabolism, and nitrogen
metabolism. The citric acid cycle produces the precursor
metabolites that are utilized via oxidative phosphorylation to
produce adenosine triphosphate (ATP), the primary cellular energy
source. The placenta has substantial energy requirements
compared to other tissues, and it may regulate its energy
metabolism in response to environmental conditions [15] or
stress [100]. It has been recently hypothesized that, in some cases,
the inability of the placenta to modulate its metabolism under
such circumstances may underlie adverse outcomes such as
preeclampsia [101]. However, whether these associations of stress
with energy metabolism pathways represent a negative effect of
the exposure or an adaptive response remains unknown.
Many of the pathway signatures detected here corroborate

prior mechanistic studies of psychological stress and mental
health disorders. Consistent with our findings, prior work shows

Fig. 5 Ensemble of Gene Set Enrichment Analyses for Maternal CTEs Stratified by Sex. Associations of mutation signatures database
(MSigDB) hallmarks and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways with prenatal SLEs stratified by sex. Log2 adjusted fold-
changes (LogFC) and P-values come from ensemble of gene set enrichment analyses combining across 11 popular gene set testing methods.
All terms with false discovery rate (FDR) adjusted P-value < 0.05 in either stratum shown.
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positive associations of the unfolded protein response and ER
stress with depression and emotional stressors [102–104]. For
instance, elevated expression of ER-related genes has been seen
among individuals with major depressive and post-traumatic
stress disorders [105, 106], and both ER stress and the unfolded
protein response are enhanced in animal models of depression
[107, 108]. We also uncovered associations of prenatal SLEs and
maternal CTEs with down regulated DNA repair pathways. These
results are consistent with prior studies that have linked
psychological stress with increased levels of DNA damage owing,
in part, to impaired DNA checkpoint and repair mechanisms
[109, 110].
Gene set enrichment analyses stratified by sex revealed which

pathways were either consistently or differentially expressed
depending on fetal sex. For instance, prenatal SLEs and maternal
CTEs were associated with upregulation of mTORC1 signaling in
females. In males, however, prenatal SLEs had no association with
mTORC1 signaling, and maternal CTEs were associated with
downregulation of this pathway. Mammalian target of rapamycin
(MTOR) is a central regulator of protein translation, cell growth,
and proliferation [111, 112]. MTOR regulates amino acid transport
in the placenta [113], and studies show associations of MTOR
inhibition with IUGR, reduced birth weight, and preeclampsia
[114–118]. Prior studies have also shown sex-specific changes in
MTOR, for instance in association with aging in mice [119] and
maternal diet quality in humans [120]. Associations of fetal sex
with differential pregnancy outcomes [121] and differential
survival in preeclampsia [122] have been reported. It is possible
that the sex-specific placental gene expression responses to
environmental stress observed here may play a role in differential
pregnancy and birth outcomes by sex. However, fetal sex did not
modify the relationship between placental gene expression and
spontaneous preterm birth in a prior analysis [123].
Our results should be considered in the context of several

limitations. First, prenatal SLEs and maternal CTEs were assessed
retrospectively. However, prior studies have shown substantial
consistency in the retrospective report of exposure to traumatic
events during childhood [43] and life experiences during
pregnancy [44]. Second, gene expression was measured via bulk
placental tissue RNA sequencing, which does not capture the
differential transcriptomic contributions of the many different cell
types found in placental villous tissue. Confounding by cell type
heterogeneity is implausible, however, as placental cell type
proportions are not an upstream cause of maternal stress.
Nevertheless, changes in cell type proportions within the placenta
could mediate the associations of maternal stress with gene
expression, and mediation analyses to explore this possibility
could be the subject of future studies. Third, generalizability of
observational study results should always be considered, as
exposure-outcome associations may vary between populations
with different characteristics. Improving confidence in general-
izability of the results, our study included socioeconomically and
racially/ethnically diverse participants from two regionally distinct
cohorts, and maternal stress exposure rates were comparable with
rates in other populations: the mean of 1.58 SLEs during
pregnancy reported here was similar to national rates (mean of
1.78 SLEs in one study of >100 000 participants from 31 states
[124]), and rates of individual maternal CTEs in the domains of
physical abuse, sexual abuse, and witnessing violence were within
the range of rates from other studies [125–127]. Fourth, our
prenatal SLE and maternal CTE stress exposures capture different
multi-domain stressors, but our modeling approach assumes that
each type of stress reflected in the questionnaires has the same
effect on placental gene expression. Future research utilizing a
larger sample size is needed to adequately assess independent
associations of different domains of stress with placental gene
expression. Finally, although we addressed potential confounding
by including a wide range of maternal and socioeconomic factors

in our models, residual confounding is always a possibility in
observational studies.
In summary, this study stands apart as the largest investigation of

the relationship between maternal stressful experiences during
pregnancy and the placental transcriptome, and the first placental
transcriptomic study of maternal childhood trauma. Prenatal and
preconceptional maternal stress were associated with altered
expression of single genes and gene expression pathways that are
critical to normal placental functioning. Moreover, our results
corroborate prior studies that have implicated many of the specific,
directional gene and pathway changes detected here in association
with psychological stress, mental health, pregnancy complications
and adverse birth outcomes. Accordingly, our findings suggest that
maternal prenatal and preconceptional stress may alter placental
function, illuminating a potential key mechanism for intergenerational
effects of stress on pregnancy, birth, and child health outcomes.
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