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Bipolar patients display stoichiometric imbalance of gene
expression in post-mortem brain samples
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Bipolar disorder is a severe neuro-psychiatric condition where genome-wide association and sequencing studies have pointed to
dysregulated gene expression as likely to be causal. We observed strong correlation in expression between GWAS-associated genes
and hypothesised that healthy function depends on balance in the relative expression levels of the associated genes and that
patients display stoichiometric imbalance. We developed a method for quantifying stoichiometric imbalance and used this to
predict each sample’s diagnosis probability in four cortical brain RNAseq datasets. The percentage of phenotypic variance on the
liability-scale explained by these probabilities ranged from 10.0 to 17.4% (AUC: 69.4–76.4%) which is a multiple of the classification
performance achieved using absolute expression levels or GWAS-based polygenic risk scores. Most patients display stoichiometric
imbalance in three to ten genes, suggesting that dysregulation of only a small fraction of associated genes can trigger the disorder,
with the identity of these genes varying between individuals.
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INTRODUCTION
Bipolar disorder (BD) is a severe psychiatric illness characterised by
episodes of depression and mood elevation with a prevalence of
1–2% and first onset typically in late adolescence to early
adulthood [1]. This early onset causes detrimental effects for
personal well-being over the lifespan and a considerable disease
burden worldwide [2]. Twin studies have estimated the broad-
sense heritability of BD to be over 60%, indicating that genetic
factors play a dominant role in the aetiology of the disorder [3].
The latest genome-wide association study (GWAS) analysis

encompassing 41,917 cases and 371,549 controls, found 64
genome-wide significant loci with the SNPs of each locus having
a relatively small effect (odds ratio <1.15 for the risk allele) [4]. One
way of summarising GWAS results is the computation of a
polygenic risk score (PRS) for BD from an individual’s genotype
data [5]. Using the latest published GWAS (PGC3), the percentage
of phenotypic variance on the liability-scale explained by PRS is
4.57% and the weighted mean area under the ROC curve (AUC) is
65% [4]. Although this is an improvement from earlier GWAS [6],
this predictive accuracy of BD is still modest and far from the 80%
considered necessary for clinical utility [7, 8].
Most of the GWAS variants are located in non-coding intergenic

regions, suggesting that they act through their effect on gene
transcription, either directly (promoters and transcription factor
binding sites) or indirectly (epigenetic marks and chromosome
conformation). Further, a recent whole-exome sequencing study
of coding variants in 13,933 cases and 14,422 controls, found that
risk genes implicated through GWAS are not enriched for rare
coding variants [9], thus lending further support to the hypothesis

that dysregulation of transcription is the main cause of the
disorder. On the other hand, other studies suggest that
dysregulation of transcription plays only a minor role in disease
aetiology [10]. Substantial effort has been invested in directly
testing for case-control gene expression differences in human
brain samples, and there are promising results at the gene-group
level, with enrichment of certain biological functions. For instance,
groups of genes with spatial and functional ties to the
postsynaptic density have been reported as jointly differentially
expressed in BD in several brain regions [11–13] and a co-
expressed gene-module enriched for microglial-associated genes
was shown to be significantly down-regulated in BD [13].
Attempts to combine genotypes with effects on gene expression
have shown some interesting findings. For instance, expression
quantitative trait loci (eQTL) evidence from sub-genual anterior
cingulate cortex (sACC) have pointed to genes coding for ion
channel subunits SCN2A and GRIN2A [13]. However, these studies
which have primarily taken a transcriptome-wide approach and
focused on absolute expression levels, have detected very little
statistically significant case-control differential expression (DE) of
genes identified by GWAS [11, 13, 14].
In this study, we first analysed four case-control cortical brain

RNAseq datasets [11, 13, 15], focusing only on the GWAS-
associated genes to determine whether there are any patterns
in absolute DE that are consistent across datasets. Second, the
previous observation of gene co-expression modules [11, 13]
suggested that many genes may be under evolutionary pressure
to maintain relative rather than absolute expression levels. We
therefore hypothesised that such a stoichiometric constraint
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applies to many of the GWAS-associated genes i.e. that the ratios
in expression between subsets of genes need to be kept within a
certain range to ensure healthy brain function and that BD may be
caused by stoichiometric imbalance (SI) rather than abnormal
absolute expression levels. We developed two methods for
quantifying the level of stoichiometric imbalance in an RNA
sample and evaluated their diagnostic classification performance
compared to the PRS. Finally, we dissected the architecture of the
stoichiometric imbalance at the gene and individual levels to gain
detailed insight into its role in BD aetiology.

METHODS
Human brain expression data
RNA sequencing data of post-mortem brain dorsolateral prefrontal cortex
were obtained from the collections CommonMind [15] and BrainGVEX [11].
In addition, data from subgenual anterior cingulate cortex (sACC) were
obtained from BipSeq [13]. Samples from subjects below 18 years of age
were excluded, as the case group did not include children and this case-
control imbalance could potentially lead to a confounding of BD etiology
with age-related brain development. [16]. Details on sample sizes, age, sex,
post mortem interval (PMI), RNA integrity number (RIN), sequencing
methods and mapped reads are given in Table 1.
Read counts mapped to genes for each dataset were between-sample

normalised using the weighted trimmed mean of M-values (TMM) with
edgeR [17]. Expression values were then within-sample normalised to
transcript lengths and library size (RPKM). Gene-level transcript lengths were
obtained from Ensembl version GRCh38.99 (Homo_sapiens.GRCh38.99.gtf),
using the canonical transcript or the median length of transcripts where no
canonical transcript was defined. Genes with low expression (<10 counts in
>30% of the samples, converted to CPM for the median library size) were
filtered out with the “filterByExpr” function in the edgeR package.
From the CommonMind, the cohorts NIMH Human Brain Collection Core

(CMC-HBCC) (BD= 71, HC= 165) and CMC-Pitt (BD= 35, HC= 93) were
included. From BipSeq, the sACC samples were included (BD= 125,
HC= 142), but the amygdala samples were not as they are not cortical.
These three sample sets have a similar age profile (Table 1). In BrainGVEX,
the SMRI cohort was included (mean age = 47, BD= 73, HC= 75), but the
BSHRI cohort was not because it consists exclusively of controls with a
significantly older age profile (mean age= 75). We performed principal
component analysis (PCA) in all datasets and visually inspected the first
and second principal components. We detected two outlier samples in the
CMC-HBCC which were removed from the subsequent analysis (Fig. S1).

Gene set
The BD Working Group of the Psychiatric Genomics Consortium (PGC3)
identified 64 genome-wide significant loci. We used the OpenTargets’
locus-to-gene measure (L2G) [18] to prioritise one gene from each locus.
The L2G measure combines genetic distance, eQTL results, chromatin
interaction and variant pathogenicity into a prediction score (0-1) [19]. For
each of the 39 loci with at least one gene with L2G > 0.5, we used the
protein-coding gene with highest L2G (Tables S1, 2). Two loci each had two
genes with very similar L2G, and both of these genes were used. For the 21

loci with no gene achieving L2G > 0.5, we used the protein-coding gene
closest to the GWAS index SNP (Table S3). There are four loci without any
protein-coding genes, and there are two loci with overlapping gene sets.
This results in 61 unique genes, of which 54–55 (depending on dataset)
have sufficient expression data to be analysed in our datasets. We define
this set of genes as the PGC3 GWAS genes.

Residualised expression levels (absolute and relative)
For absolute expression levels, we regressed the normalised expression levels
of each gene (log2 RPKM) against the five covariates (age, sex, ethnicity, RIN
and PMI) and computed the residualised absolute expression levels.
For relative expression levels, the procedure was more complex. We

modelled each gene’s expression (log2 RPKM) as a linear function of the
other genes in the set as well as the known covariates age, sex, ethnicity, PMI,
and RIN. Since there is a high degree of correlation in expression between
many of the genes and because these models have a high number of
variables relative to the number of samples, we fitted themby Least Absolute
Shrinkage and Selection Operator (LASSO) penalised regression with the R
package glmnet [20]. We used 10-fold cross-validation to find the optimal
value of regularisation parameter λ that gives the most regularised model
such that the cross-validated error is within one standard error of the
minimum. We set the glmnet function’s ‘penalty.factor’ parameter for the
sex, age, ethnicity, RIN and PMI variables to 0 to ensure these variables are
always included unpenalised in the model.
Since we detected case-control differences in absolute expression levels of

several genes, we cannot fit the models to samples irrespective of diagnosis.
Instead, we limit the modelling to control samples. To not introduce a bias
that systematically produced lower residuals in controls than in cases, these
models were fitted using a control sample set that did not overlap with the
test sample sets. For example, in the CMC-HBCC data set, we split the control
set into 94 modelling samples and 71 test samples, then we fitted the gene
models using the modelling samples, and finally we computed the residuals
in the non-overlapping 71 control and 71 case test samples (Fig. 1c). If we
had done the random sub-setting of controls into model and test samples
only once, our results would have been dependent on that one random sub-
setting. To avoid this, we resampled randomly 100 times, each time
changing the random set of 94 control samples used to build the models,
and keeping the rest of the controls (n= 71) as well as the cases (n= 71) to
calculate the residuals. There were never any overlapping samples between
the modelling and the test set, thus limiting the possibility of any bias that
would give controls a better fit to the model than BD cases.
Datasets differ in total size and case-control composition which created the

need for different resampling strategies to ensure sufficient data for modelling
and sufficient testing of all controls. Model/test split of control samples and
number of iterations in parenthesis were: CMC-HBCC 94/71 (100), CMC-Pitt 69/
23 (100), BrainGVEX-SMRI 67/8 (1000), BipSeq-sACC 93/47 (100).
We defined the scaled residuals as the difference between each observed

and predicted gene expression value divided by the mean observed value
for this gene across all samples. The fits of the expression models differed
somewhat between iterations for the same gene and differed highly
between genes (Fig. S2), we therefore also weighted the scaled residuals
(WSR) by the R2 of the gene model from each iteration (wsrki;j , Eq. (1)). The
gene model is not based on any of the case samples or any of the control
samples that were chosen to be in the test set in that iteration.

Table 1. Case-control brain RNAseq datasets in BD.

Dataset Region Samples Mean age Cauc. Male PMI RIN Mapped reads

BD HC BD HC

CMC-HBCC DLPFC 71 165 42.6 43.1 50.0% 72.0% 28.0 7.7 103

CMC-Pitt DLPFC 35 93 45.5 47.8 89.8% 66.1% 20.7 8.4 75.6

BrainGVEX SMRI DLPFC 73 75 44.0 47.0 95.9% 66.2% 28.0 7.9 45.7

BipSeq sACC sACC 125 142 42.5 50.5 100.0% 72.1% 27.0 7.7 110

BipSeq Amygdala Amygdala 120 122 42.9 52.3 100.0% 70.8% 27.0 7.3 106

BrainGVEX BSHRI DLPFC 0 184 NA 74.6 99.5% 58.7% 2.7 6.9 50.5

DLPFC dorsolateral prefrontal cortex, sACC subgenual anterior cingulate cortex, PMI Post mortem interval in median number of hours, RIN RNA integrity
number, median across cohort samples.
All samples were prepared using rRNA depletion with stranded prep, with the exception of CMC-Pitt which was prepared unstranded. All samples were
sequenced 100 bp paired-end.
BipSeq-Amygdala and BrainGVEX-BSHRI in italics as they were not used in this study (see methods).
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We averaged the wsrki;j across iterations (in which individual i was not used
in modelling) to obtain one value for each gene for each sample
(WSRi;j , Eq. (2)).

i ¼ 1; ¼ ;m individuals in the full dataset

j ¼ 1; ¼ ; n genes

For k ¼ 1; ¼ ; p iterations, choose a subset of controls Mk as the
modelling set.

Fit n gene models yj ¼ f y1; ¼ ; yj�1; yjþ1; ¼ ; yn; covariates
� �

using
individuals in Mk .

R2
k
j ¼ R2 of modelling gene j in iteration k

ŷki;j ¼ predicted expression log2RPKMð Þ of gene j for individual i in iteration k

wsrki;j ¼ R2
k
j

yi;j � ŷki;j
1
m

Pm
l¼1 yl;j

(1)

WSRi;j ¼ 1

number of iterations where i=2Mk

X
k:i=2Mk

wsrki;j (2)

To make the residualised absolute and relative expression values
comparable across genes and across datasets, we standardised all samples
(cases and controls) by subtracting the HC mean and dividing by the HC
standard deviation (within each dataset). For the relative expression levels,
we denote these standardised WSRi;j as sWSRi;j .

Tests of differential gene expression (absolute and relative)
At the gene level within datasets, we tested for differences in residualised
absolute expression and residualised relative expression (WSRi;j) between
cases and controls using regular Wilcoxon test, adjusting for multiple
testing across all genes and datasets using the Benjamini-Hochberg
method with FDR of 0.05 [21]. Tests could also have been performed on
the sWSRs and would have yielded the same results as the standardisation
is a linear transformation.
For the absolute expression levels, we also performed a second, more

powerful test that took the unresidualised expression levels as input. The
TMM-normalised counts from edgeR’s DGEList object were analysed for
differentially expressed genes using the limma (3.46.0) package in R with
voom transformation (https://doi.org/10.1186/gb-2014-15-2-r29), including
the known covariates age, sex, PMI, and RIN. Linear models were fitted with
the lmFit function and empirical Bayes were used to obtain more precise
estimates of gene-wise variability [22]. The PGC3 genes were extracted
from the result, and nominal p-values of the DE test were adjusted with the
Benjamini-Hochberg method with FDR of 0.05.

The SI score
For the relative expression levels, we define the individual stoichiometric
imbalance (SIi Eq. (3)) as the mean absolute value of sWSRi;j across all
genes for that individual.

SIi ¼ 1
n

Xn
j¼1

sWSRi;j
�� �� (3)

Predicting diagnosis with cross-validated logistic regression
For both the relative and the absolute expression, we estimated diagnosis
probability using the standardised-residualised expression levels. For each
cortical dataset, we fitted a logistic regression of diagnosis against the
standardised-residualised expression of every gene (relative or absolute), using

Fig. 1 SI concept and SI metric calculation in CMC-HBCC. a Illustration of the SI concept in the simplified scenario of only two genes. Gene X
and Y have correlated expression and the solid line depicts the linear regression fit to the HC samples. “res” = residuals from the regression line.
Here, the residual is a measure of the extent to which a gene Y’s expression is in stoichiometric imbalance with gene X (with a residual of 0
indicating perfect stoichiometric balance). b HC and BD samples have a similar range of absolute expression levels for gene X. For gene Y, BD
levels are higher than HC, but perhaps not significantly so. However, the residuals (of gene Y modelled as a function of X) are clearly higher in BD
samples with no overlap in the boxes. c Illustration of the resampling strategy, exemplified with the CMC-HBCC dataset. The gene expression
model cannot be fitted and tested on the same HC samples, as this would introduce a bias for lower residuals in the HC samples relative to BD.
Instead, the HC samples are split into a set used for fitting the models and a test set for which residuals will be calculated. This ensures that when
applying a gene model to compute a sample’s residual, the sample was not used in fitting the model. In order to avoid the final result being
determined by one random sampling and in order to obtain residuals for all HC samples, we iteratively perform random sampling, fitting, and
residual calculation. Residuals are then averaged across iterations and standardised, before being aggregated in the SI score.
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the samples of the three other cortical datasets. We used the fitted model
(Table S4) and the standardised-residualised expression (relative or absolute) of
the dataset of interest to obtain the predicted probabilities of diagnosis.

Diagnostic performance tests
We evaluated the SI score’s and predicted probability’s ability to
discriminate between cases and controls in three different ways: 1. we
tested for statistically significant differences in the metric between cases
and controls using Wilcoxon tests, 2. we computed the area under the
receiver operator characteristic curve (AUC), and 3. we performed a
logistic regression of diagnosis as a function of the metric and
computed the Nagelkerke pseudo R2 which we adjusted to the liability
scale to account for the higher proportion of cases in the sample set
compared to the general population (using a BD population prevalence
of 2% [4]).

Control analyses
We performed two control experiments to empirically verify that our
procedure for modelling relative expression levels in controls does not
produce a bias that may inflate residuals in cases relative to controls. In the
first, we switched to using a subset of the cases in each modelling iteration
and then proceeded in the same way, using the mean and sd of the cases
for scaling (Table S7).
In the second, using the two datasets with sufficiently many control

samples (CMC-HBCC and BipSeq-sACC), we split the controls into two
groups, and used a subset of the first group for modelling (with random
resampling) and used the second group for testing (Table S6).

Polygenic risk scores
The PRS scores for the PGC3 GWAS cohorts were obtained from the
PGC3 study [4]. For the samples in the expression datasets, the PGC3 GWAS

summary statistics were pruned for LD using the p-value-informed
clumping method in PLINK v1.90 (R2 0.1 within a 500-kb window) based
on the LD structure of the HRC reference panel. Subsets of SNPs were
selected from the results below nine increasingly liberal p value
thresholds (GWAS PT; 5 × 10−8, 1 × 10−4, 1 × 10−3, 0.01, 0.05, 0.1, 0.2,
0.5, 1). Sets of alleles, weighted by their log odds ratios from the GWAS,
were summed into PRSs for each individual in the target datasets, using
PLINK v1.90. Genotype information was available for CMC-HBCC, CMC-
Pitt, and BrainGVEX-SMRI. For the 290 individuals with expression data in
BipSeq, we were only able to obtain genotypes for 172, so this cohort
was excluded from this analysis. The cohorts used for PRS calculations in
the PGC3 BD GWAS are a mix of European ancestry from multiple
European countries and the US. We therefore also included an analysis
where only samples with Caucasian ethnicity were kept.

RESULTS
Absolute levels—differential gene expression and correlation
analysis
For each of the 64 genome-wide significant loci [4], we identified
the protein-coding gene that is most likely to be the source of
the association (‘PGC3 GWAS gene’). We identified 61 unique
protein-coding genes, of which 54–55 (depending on dataset)
had sufficient expression data to be analysed (see methods). In
all four case-control cortical datasets (Table 1), feature counts
were normalised, converted to log2RPKM values, and residua-
lised for age, sex, ethnicity, RNA integrity number (RIN), and
post-mortem interval (PMI) (see methods). In a PCA of the gene
expression values we observe that the DLPFC datasets group
together and the sACC is separate on the first principal
component (PC1) (Fig. S3a). A PCA of the residualised

Fig. 2 Patterns of case-control differences in absolute gene expression across datasets. a HC (green) and BD (yellow) gene expression, log2
RPKM residualised for covariates, for three example genes in all four data sets (nine outlier points are not shown in the plot). For SHANK2 (top)
cases have higher observed expression than controls. For SP4 (middle), there is no pattern of difference between controls and cases, and for
RASGRP1 (bottom) cases have lower observed expression than controls. b P values from the comparison between HC and BD mean residualised
expression for all PGC3 associated genes for all four datasets (gene ordering identical to Fig. 3). Colours indicate direction of difference; red higher
in BD and blue lower in BD (p value < 0.15). Small dots indicate nominal significance (p < 0.05) and large dots indicate significant p value
(FDR < 0.05 across all genes and datasets). c same as (b)., but for the LIMMA-voom differential gene expression statistics.
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expression measures (Fig. S3b) shows that there is no clustering
of datasets.
We tested each gene for DE with a simple Wilcoxon test (Fig. 2a, b)

and with the more powerful limma-voom package which takes the
unresidualised expression as input and controls for covariates
internally (Fig. 2c) (see methods). In the BipSeq-sACC dataset, we
found 24 genes that were nominally differentially expressed, with 15
of these surviving correction for multiple testing. Several of these
differentially expressed genes in BipSeq-sACC also showed nomin-
ally significant DE in the same direction in at least one of the other
three datasets (Fig. 2c).
For each of the 54 GWAS genes, we computed the Pearson

correlation of that gene’s normalised expression with that of the
gene from each of the other loci. We performed the analysis in the
four case-control datasets (Table 1) and observed strong patterns
of co-expression between several subgroups of genes which
replicated in all datasets (Fig. 3). In particular, we observed a large
module of 24 genes with strong positive co-expression, as well as
several smaller such modules which were often negatively
correlated with each other.

Relative levels—modelling and case-control differences
The clusters of co-expressed genes suggest that relative levels of
expression are under tight regulatory control. We hypothesised
that the normal function of a significant fraction of these genes
may be dependent on the balance of their relative expression
levels and that BD is the result of imbalance. When this
imbalance of relative gene expression is characterised in a
sufficiently large cohort, it is detectable as differential expression
of absolute expression levels, as observed in BipSeq-sACC. If our
hypothesis is correct, it should be possible to accurately predict
the expression level of a gene in a healthy control (HC)
individual from that individual’s expression levels of the other
PGC3 genes (Fig. 1a) and BD patients will display a weaker fit to
the model than controls (larger residuals), indicating stoichio-
metric imbalance (Fig. 1b).
To predict the expected expression level of each gene, we used

the LASSO method to fit a model of that gene’s expression as a
function of the expression of the other genes and known
covariates. Since we detected case-control differences in absolute
expression levels of several genes, we cannot fit the models to

Fig. 3 Expression correlation in four brain datasets for GWAS-associated genes. Left column: Four examples of gene-gene absolute
expression correlation (Pearson) with the correlation level indicated with colour scale. Centre: The correlation between all pairs of PGC3-
associated genes for the CMC-HBCC set, with genes ordered according to the hierarchal clustering displayed above the figure. Dotted line
delineates genes in large module of co-expression. Right: Equivalent gene-gene expression correlations in the three other datasets, with the
genes in the same order as for CMC-HBCC.
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samples irrespective of diagnosis. Instead, we limit the modelling
to control samples which are randomly resampled (Fig. 1c, see
methods). We found that many genes have well-fitting models
with R2 above 0.75 and that there is strong consistency in the best
fitting models across datasets (Fig. S2). Unsurprisingly, many of the
best models are for genes in the highly co-expressed module
(Fig. 3), but many genes outside the module also have good fit.
For each individual, we computed the predicted expression level
for each gene (given the model and the observed explanatory
variables) and the residual (difference between observed and
predicted level). The size of residuals varied greatly between
genes, increasing with the gene’s normalised expression level and
decreasing with gene model fit. We defined the weighted scaled
residual for individual i and gene j in resampling iteration k (wsrki;j)
as the residual from iteration k multiplied by the R2 of gene j’s
model in iteration k and divided by the observed expression of
gene j (averaged across all individuals), and WSRi;j as the mean of
wsrki;j across iterations (see methods, Eqs. (1) and (2)).
Many genes did not display WSRi;j case-control differences

(Fig. 4a) in any datasets (e.g. FADS2), but many others displayed
either a relative over-expression in cases (e.g. CACNA1C) or relative
under-expression (e.g. RASGRP1). We performed Wilcoxon statis-
tical tests of case-control mean differences inWSRi;j for all genes in
all datasets (Fig. 4b). We found that there was generally good
consistency in this direction of effect across datasets and that
many differences were statistically significant even after correction
for multiple testing across all genes and datasets, with CMC-HBCC
(10 genes) and BipSeq-sACC (13 genes) standing out in this

respect. Further, there was a matching direction of effect between
the absolute (Fig. 2b, c) and relative DE analyses (Fig. 4b). For the
23 genes with FDR-corrected significance in at least one dataset
(Fig. 4b), there was only one gene (C16orf72) with inconsistent
direction of effect across datasets that was FDR-corrected
significant, and one further example (SCN2A) of inconsistency in
direction of effect when the criterium is loosened to nominally
significant differences. Additionally, there was a roughly equal
number of genes affected by over-expression and by under-
expression (Figs. 2c and 4b) and no obvious correlation between
genes with better models (Fig. S2) and significant case-control
differences in WSRi;j .

Relative levels—stoichiometric imbalance score
We aimed to aggregate the WSRs across genes to obtain an SI
score for each individual that can be used to classify samples.
The weighting and scaling of residuals had resulted in values
(WSRi;j) broadly in the same range (Fig. 4a), but there were still
differences in the variance of HC values both between genes
and between datasets. To further harmonise these values, we
standardised case and control values by subtracting the HC
mean residual and dividing by the HC standard deviation (s
WSRi;j). A PCA analysis of the sWSR is plotted in Fig. S3c and
shows that there is no clustering of datasets. We then
aggregated the residuals across all 54 PGC3 genes by computing
the mean absolute value of sWSRi;j to obtain the individual’s SI
score (Eq. (3), Fig. 5a, b) and plotted their distribution (Fig. 6a).
We computed three tests of diagnostic performance: a Wilcoxon

Fig. 4 Patterns of case-control differences in relative gene expression across datasets. a HC (green) and BD (yellow) residuals (WSRi;j
weighted scaled residuals averaged across iterations) for three example genes in all four datasets (5 outlier points are not shown in the plot).
For CACNA1C (top) cases have higher observed expression than predicted. For FADS2 (middle), there is no pattern of difference between
controls and cases, and for RASGRP1 (bottom) cases have lower observed expression than predicted. b P values from the comparison between
HC and BD mean residuals for all PGC3 associated genes for all four datasets (gene ordering identical to Fig. 3, dotted line delineates
boundary of large module of co-expression). Colours indicate direction of difference; red higher in BD and blue lower in BD (p-value < 0.15).
Small dots indicate nominal significance (p < 0.05) and large dots indicate significant p-value (FDR < 0.05 across all genes and datasets).
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test for mean difference between cases and controls, the AUC
(Fig. 6b), and we fitted the logistic regression of BD diagnosis
against the SI score to obtain the Nagelkerke pseudo-R2 which
was adjusted to the liability scale (assuming BD population
prevalence of 2% [23]). For the three largest datasets (CMC-
HBCC, BrainGVEX-SMRI, and BipSeq-sACC), this resulted in case-
control differences significant at p= 7.8E-04 or better, AUC
values greater than 66% and a liability-adjusted R2 of 4.8% or
better (Table 2).

Logistic regression with cross-validation
Although the SI score displays highly significant case-control
differences, it has a number of shortcomings. First, it includes all
genes irrespective of whether they are informative in classifying
samples, thus potentially adding noise. Second, it does not allow
for effect sizes to differ between genes. We overcame these
limitations by fitting a logistic regression of diagnosis against the

standardised weighted scaled residuals (sWSR) of all 54 genes and
perform cross-validation across cortical datasets (see methods and
Table S4): we iteratively pick one dataset to be tested, fit the
logistic regression model using the sWSR values of samples from
the other three datasets, and then compute the predicted
probabilities in the test dataset using the fitted model and the
sWSR values of that dataset. The distribution of the predicted
probabilities displays clear case-control differences (Fig. 6c) with a
defined peak in the HC distribution close to zero and a bimodal
distribution for BD cases in three of the datasets. This raised
classification performance in all datasets with all AUC values in
excess of 69% (Fig. 6d) and all liability-adjusted R2 above 10%
(Table 2). The best performance was achieved in CMC-HBCC
(AUC= 76.4%, R2= 17.4%).
To compare the performance of the relative expression levels to

what can be achieved with absolute expression levels, we
performed the logistic regression of diagnosis as a function of

Fig. 5 Stoichiometric imbalance across genes and individuals. a and b: SI score computation in CMC-HBCC. a Standardised, weighted scaled
residuals averaged across iterations (sWSRi;j). Rows are genes sorted according to mean residuals in the BD set (with most deviant genes on
top). Only the top 32 deviant genes are shown. Columns are samples sorted with increasing SI score. b Aggregation of each individual’s
residuals across genes according to the SI score definition (Eq. (3)). c and d: Polygenic nature of BD aetiology with imbalanced defined as
sWSRil;j
�� ��>2. c Left: distribution of the number of imbalanced genes per healthy control. Median of CMC-HBCC density marked by vertical
dotted line. Right: identical figure for BD cases. d Left: distribution of the fraction of imbalanced individuals (cases or controls) per gene for the
13 genes with significant coefficients in the logistic regression fitted with all four cortical datasets (Table S9). Right: identical figure for all
genes ranked outside top 13.
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the residualised absolute expression of all genes (with cross-
validation). The absolute expression values were standardised
using the HC mean and standard deviation in an identical fashion
to the standardisation of the WSRs. The predicted probabilities
were only marginally higher in cases (Fig. 6e) and the performance
metrics were markedly worse than those derived from the sWSR
(Fig. 6f) and were also mostly inferior to the performance of the SI
measures (Table 2).

Comparison to the polygenic risk score
The predicted probabilities computed from the relative expression
levels have AUCs in excess of 69% in all datasets. However, it is
possible that this high performance may be due to these datasets
being biased towards BD patients with very high genetic risk. To
test this, we computed the PRS for the three expression datasets
where genotype data is available (see methods) and found that its
AUC ranges between 28.5–54.2%, and 46.4–58.7% when only
including samples of European descent (Table S5), which indicates
that such a bias is not present.
For further context and a more challenging benchmark, we

collated data on the performance of the PRS in the PGC3 BD
GWAS sample. We computed the weighted mean metrics across
case-control cohorts (35,421 cases and 55,774 controls, Table S6),

using only genome-wide significant SNPs (97 SNPs) and using all
SNPs significant at 10% (153,445 SNPs) and obtained liability-
adjusted R2 of 0.7% and 4.6%, respectively. Thus, our predicted
probabilities of BD (based on 54 relative gene expressions from
genome-wide significant loci) outperform the most relevant
comparator by more than an order of magnitude (CMC-HBCC
17.4%, CMC-Pitt 10.0%, BrainGVEX 10.2%, BipSeq-sACC 13.5%,
Table 2) and also perform several times better than the 153k SNP
PRS.

Control analyses
Our gene expression modelling process, which uses a subset of
the control samples (repeated with random re-samplings), was
designed to avoid any systematic bias that would inflate the
residuals in cases relative to controls. To verify this empirically, we
performed control analyses in which we switched to performing
modelling with case samples instead of controls. If there were a
bias, we would then expect to see the control samples displaying
SI. Instead, we observed that cases still had higher SI scores than
controls with statistical significance comparable to modelling with
controls (Table S7) and the patterns of over- and under-expression
at the gene level were highly similar (Fig. S4). We also performed a
second control analysis to check that our method returns a

Fig. 6 SI score and predicted probabilities. a Density distribution of SI score in each dataset (HC in green and BD in yellow) and b the
associated ROC curves. c Density of the predicted probabilities estimated from the logistic regression of diagnosis as a function of relative
gene expression (sWSR) and d the associated ROC curves. e Density of the predicted probabilities estimated from the logistic regression of
diagnosis as a function of absolute gene expression and f the associated ROC curves.
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negative result when no SI is present. In the two datasets with
large numbers of controls (CMC-HBCC and BipSeq-sACC), we split
the controls into two groups and performed modelling with the
first group. There were no statistically significant differences
between the two groups, neither at the SI level (Table S8), nor at
the gene level after correction for multiple-testing (Fig. S5).

The polygenic nature of BD aetiology
It is unclear to what extent BD is characterised by each patient
suffering from the dysregulation of a few genes that vary across
patients, or by most associated genes being dysregulated in most
patients. The sWSRi;j measures the deviation of the WSRi;j from the
HC mean in units of HC standard deviation and can be used to
define values that lie in the outer edges of the HC distribution
(imbalanced value: sWSRi;j

�� ��>2). We summarised each dataset’s
gene-individual matrix of values (Fig. 5a) along both the individual
and the gene dimension to gain insight into the disorder’s
polygenicity. For controls, the median individual had approxi-
mately one to two imbalanced genes and very few individuals had
more than five, whereas for cases, the median was three
imbalanced genes and many individuals had more than five
(Fig. 5c). Interestingly, even for cases, few individuals had more
than 15 imbalanced genes. This suggest that dysregulation of a
large number of the associated genes is not necessary to trigger
the disorder, but disruption of only one or two tends to not be
sufficient. To determine whether some genes are more frequently
imbalanced than others, we compute the proportion of individuals
(HC or BD in a dataset) in which a specific gene has an extreme
value. The mean proportion was approximately 4.5% in HC, but
was consistently higher in BD across all datasets (Fig. 5d). This
pattern was strongest for the 13 genes with a significant effect on
the predicted probability (p < 5%), as determined by a logistic
regression of diagnosis against sWSR of all genes fitted using all
samples from all datasets (Table S9). Interestingly, the pattern was
also visible in genes with a less significant effect on the predicted
probability. Further, the largest fraction of imbalanced individuals
for a gene is 23% (Fig. 5d and S6), suggesting that there are no
genes that are ubiquitously disrupted in BD. Instead, the data
indicated high variance in the set of disrupted genes across
individuals.

DISCUSSION
We focused on the expression levels of GWAS-associated genes
and found consistent patterns of DE for many of these genes in
four large case-control cortical brain RNAseq datasets. We also
observed modules of strong co-expression between GWAS-
associated genes which replicated across the four datasets. This
is not unexpected given that many neurobiological processes are

dependent on a delicate cellular balance of specific molecules for
optimal function. For example, the electrophysiological properties
of neurons are sensitive to the relative balance of ion channels
and pumps [24]. This led us to hypothesise that SI may be part of
BD aetiology. In four independent datasets, we found that many
of the genes consistently displayed either relative under- or over-
expression in BD patients and that this stoichiometric imbalance
could be aggregated across genes to provide diagnostic
classification at a level approaching clinical utility.

Differential absolute expression of GWAS-associated genes
Several rounds of increasingly well-powered GWAS have been
performed in BD, culminating in the PGC3 GWAS which identified
64 genome-wide significant loci (p < 5.0E-08). Transcriptome-wide
searches for case-control differentially expressed genes in human
brains have been performed in at least four case-control datasets
[11, 13]. Typically, these studies have identified many hundreds of
differentially expressed genes, but only a few were located in
regions identified by GWAS. However, the transcriptome-wide
approach potentially bears a high risk of failing to identify true DE
in the GWAS loci. Indeed, the odds ratio (OR) of the lead SNPs in
GWAS are small which suggests that any DE is likely to involve
small fold changes that will have relatively low nominal
significance in these RNAseq datasets of limited sample size. A
transcriptome-wide search requires correcting for over 15k tests
which is likely to lead to true DE being non-significant.
A statistically valid alternative approach is to limit the test of DE
to genes located in the 64 genome-wide significant loci and
correct for multiple testing of this set of genes. This approach
resulted in the identification of 15 genes that were FDR-corrected
DE in the BipSeq-sACC dataset. Further, many of these
genes displayed a consistent direction of effect in the other
datasets and were also often nominally or FDR-corrected
significant.

Stoichiometric imbalance
The high correlation in expression level between GWAS genes,
which replicated across datasets, led us to propose the SI
hypothesis of BD. At the centre of our approach to testing this
hypothesis, are models which predict each gene’s expression
given the expression of other associated genes. Because of the
case-control DE in absolute gene expression levels, the modelling
was initially limited to controls. However, when modelling with
the case samples, we obtained remarkably similar results (Table S7)
even at the gene level (Fig. S4), thus empirically confirming that
the results are independent of which samples are used to fit the
models. This may seem counter-intuitive, but it is important to
note that a gene’s expression model uses expression of all other
genes as input variables and that each BD case is only subject to

Table 2. Classification performance of metrics based on relative or absolute gene expression levels.

Relative expression (sWSR) Absolute expression

SI score Predicted probabilities Predicted probabilities

Dataset Genes p AUC R2 Genes p AUC R2 Genes p AUC R2

CMC-HBCC 55 2.5E-05 0.67 5.3% 54 1.2E-10 0.76 17.4% 54 9.9E-02 0.57 1.3%

CMC-Pitt 55 3.7E-02 0.62 1.8% 54 7.4E-04 0.69 10.0% 54 2.8E-02 0.63 3.2%

BrainGVEX-SMRI 54 7.8E-04 0.66 6.1% 54 1.7E-05 0.71 10.2% 54 4.0E-01 0.54 0.9%

BipSeq-sACC 55 1.4E-07 0.69 4.8% 54 3.4E-11 0.74 13.5% 54 7.4E-03 0.60 1.8%

Predicted probabilities are estimated with validation across datasets: to predict the probabilities of a test dataset, the logistic regression model is fitted using
the three other datasets and predicted probabilities are computed for the test dataset from the fitted model. This required removal of one gene that does not
have expression in all datasets.
p: p value from the Wilcoxon Rank Sum test (Mann-Whitney-Wilcoxon) of difference between cases and controls.
AUC: Area under the ROC curve.
R2: Nagelkerke pseudo-R2 (liability-adjusted) from the logistic regression of diagnosis as a function of the SI score or the predicted probability.
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over- or under-expression in a small subset of genes, thus limiting
biases in model fitting when using BD cases.
Although we identified 24 genes with FDR-corrected significant

differential relative expression in at least one dataset, the
remaining genes do not display significant case-control differ-
ences. For some loci, our methods may have failed to identify the
correct gene or our models may not be accurate enough to
capture the effect. Another important consideration is that we do
not expect every locus to be associated with the disorder through
a stoichiometric imbalance effect: some locus associations may be
driven by genes that are only expressed early in neurodevelop-
ment, or the basis of the association may be entirely unrelated to
transcription. However, there are a sufficient number of genes that
display differential relative expression and the direction of effect is
sufficiently consistent across datasets that the cross-validated
predicted probabilities reach as high as 76.4% in CMC-HBCC,
which is close to the clinical utility threshold of 80%. Further,
measured in liability-corrected R2, these predicted probabilities
achieve a classification performance that is several times higher
than what is achieved by the PRS in the GWAS cohorts (based on
all 153k SNPs significant at 10%).

Epistatic effects
The predicted probability suffers from two handicaps relative to
the 153k SNP PRS. First, it incorporates expression from only 54
genes in the genome-wide significant loci (some of which may be
misidentified). And second, expression, unlike genotype, may
fluctuate over time such that the relative expression levels may
not always be disrupted. Indeed, in cases, we observe a bimodal
distribution of predicted probabilities (Fig. 6c) with one peak
below 0.5 and one above. We suggest that the first peak may
consist of patients in a euthymic state who were in stoichiometric
balance at the time of death and are indistinguishable from
controls.
The scale of the outperformance despite these handicaps

suggests that our SI metrics capture an important aspect of
disease aetiology which the PRS does not. GWAS and the PRS are
both based on an assumption of independent additive effects
between SNPs, whilst SI implies epistatic effects. Indeed, if the
protein product of a gene is required to be in stoichiometric
balance with another set of proteins, then the effect of a
regulatory SNP would be dependent on the SNPs regulating
stoichiometrically-related proteins. For example, the effect size of
a SNP allele causing high transcriptional levels of a gene would
depend on whether variation at other loci drives stoichiometric
balance at a high or a low transcription level.
The results produced by GWAS continue to suffer from the

missing heritability paradox whereby the proportion of pheno-
typic variance explained by the PRS is very low [4]. The three
commonly proposed explanations for this deficit are rare coding
variants, BD being highly polygenic with very small effect sizes
that are difficult to quantify, and epistatic effects between
variants [25]. In model organisms, systematic screens of genetic
interactions affecting quantitative traits have shown the ubiquity
of epistasis [26]. In humans, there is mounting general evidence
that eQTLs identified by GWAS are context-dependent and non-
additive [27], and there is also some direct evidence of synergistic
effects between common risk variants, for example in schizo-
phrenia [28]. However, statistical challenges in identifying
epistatic interactions have made it difficult to quantify their
contribution to the missing heritability [29, 30]. Our finding that a
metric aggregating SI between genes explains a significantly
higher fraction of the phenotypic variation than the PRS, suggests
that non-additive epistatic interactions may be relevant to
disease aetiology and may explain part of the missing heritability
in BD. Further, SI may be relevant to other polygenic pathologies
of the brain with large missing heritability, schizophrenia

being an obvious candidate due to its high genetic correlation
with BD [31].

Limitations
We limited this study to genes with the strongest statistical
association with BD i.e. those located in the genome-wide
significant loci. As a result, genes that may be important for
disease aetiology, but are located outside these loci, will have
been excluded. And, even with this stringent approach, we
cannot be certain that the gene identified for each locus is the
one driving the GWAS association signal. Future work should
aim to improve fine mapping as each correctly mapped locus
adds to the number of informative genes, potentially improves
the expression models of other genes, and thus may further
improve the classification performance. A second limitation is
that we have only investigated SI in bulk RNAseq from cortical
brain regions. So, we are unable to determine whether the
observed SI extends to other regions such as the temporal lobes,
insula or corpus callosum which have all been implicated in BD
brain imaging studies [32, 33]. A third important caveat is that
gene expression may be affected by the cause of death and, in
patients, may also be affected by drug treatments [34, 35].
Unfortunately, this data was either absent or incomplete in the
available datasets.
Although the performance of the predicted probabilities

approaches the clinical utility level of 80%, it is not clinically useful
as it relies on measures of gene expression in inaccessible brain
tissue. Future work should, therefore, aim to develop methods that
can infer SI risk from genotype data which has the added advantage
of not fluctuating across time. Finally, we limited this study to the
testing of the stoichiometric imbalance hypothesis without
identifying specific pathological mechanisms which remains the
ultimate goal of molecular genetic research in BD.

Conclusion
We developed a method for measuring SI in the expression of BD
GWAS genes. We found that many genes displayed either a
relative over- or under-expression in cases, and that these patterns
were similar across datasets. We used these gene-level measures
of SI to compute the predicted probability of BD and found that
the fraction of phenotypic variation explained by this probability is
many times higher than what is achieved by using absolute
expression values or any PRS measure. The strength of these
results suggests that dysregulation of stoichiometric balance is an
important factor in BD aetiology and raises the question of
whether it may also be central to other pathologies.
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