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Autism Spectrum Disorder (ASD) is a common neurodevelopmental disorder in children. It is currently diagnosed by behaviour-
based assessments made by observation and interview. In 2018 we reported a discovery study of a blood biomarker diagnostic test
for ASD based on a combination of four plasma protein glycation and oxidation adducts. The test had 88% accuracy in children
5–12 years old. Herein, we present an international multicenter clinical validation study (N= 478) with application of similar
biomarkers to a wider age range of 1.5–12 years old children. Three hundred and eleven children with ASD (247 male, 64 female;
age 5.2 ± 3.0 years) and 167 children with typical development (94 male, 73 female; 4.9 ± 2.4 years) were recruited for this study at
Sidra Medicine and Hamad Medical Corporation hospitals, Qatar, and Hospital Regional Universitario de Málaga, Spain. For subjects
5–12 years old, the diagnostic algorithm with features, advanced glycation endproducts (AGEs)—Nε-carboxymethyl-lysine (CML),
Nω-carboxymethylarginine (CMA) and 3-deoxyglucosone-derived hydroimidazolone (3DG-H), and oxidative damage marker, o,o’-
dityrosine (DT), age and gender had accuracy 83% (CI 79 – 89%), sensitivity 94% (CI 90–98%), specificity 67% (CI 57–76%) and area-
under-the-curve of receiver operating characteristic plot (AUROC) 0.87 (CI 0.84–0.90). Inclusion of additional plasma protein
glycation and oxidation adducts increased the specificity to 74%. An algorithm with 12 plasma protein glycation and oxidation
adduct features was optimum for children of 1.5–12 years old: accuracy 74% (CI 70–79%), sensitivity 75% (CI 63–87%), specificity
74% (CI 58–90%) and AUROC 0.79 (CI 0.74–0.84). We conclude that ASD diagnosis may be supported using an algorithm with
features of plasma protein CML, CMA, 3DG-H and DT in 5–12 years-old children, and an algorithm with additional features
applicable for ASD screening in younger children. ASD severity, as assessed by ADOS-2 score, correlated positively with plasma
protein glycation adducts derived from methylglyoxal, hydroimidazolone MG-H1 and Nε(1-carboxyethyl)lysine (CEL). The successful
validation herein may indicate that the algorithm modifiable features are mechanistic risk markers linking ASD to increased lipid
peroxidation, neuronal plasticity and proteotoxic stress.

Molecular Psychiatry; https://doi.org/10.1038/s41380-023-02357-9

INTRODUCTION
Autism Spectrum Disorders (ASD) is a prenatal disorder which
originates in the first trimester of pregnancy and affects 78 million
people worldwide [1, 2]. It has high heritability [3], which may
reflect genetic vulnerability to shared environmental exposures
[4]. Major concerns for subjects with suspected ASD, their parents,
and carers are timely access to clinical diagnosis. Guidelines for
diagnosis of ASD recommend involvement of a multidisciplinary
team of child and adolescent psychiatrists, child neurologists,
developmental-behavioural paediatricians, or child psychologists.
ASD diagnosis is based on assessments in structured observations,
interviews and examinations, medical/developmental review, and
assessment instruments. It is currently standardized to the
Diagnostic and Statistical Manual of Mental Disorders-5 criteria
(DSM-5) with recommended duration of the diagnostic procedure

of 3–6 months [5]. Due to a global shortage of specialists trained
to assess suspected children using these established criteria, and
the growing prevalence of the condition, diagnosis is often
preceded by a long delay, in some cases greater than one year,
from first referral to expert team evaluation [2].
There is an unmet clinical need for diagnostic techniques based

on biomarkers which corroborate well with diagnosis of ASD by
experts in child development [2]. The consensus report by the
American Psychiatric Association (APA) Work Group on Neuroima-
ging Markers of Psychiatric Disorders proposed that a promising
biomarker-based test for diagnosis of ASD should meet threshold
classification criteria of at least 80% specificity and sensitivity [6]. A
recent systematic review found no biomarker for diagnosis of ASD
meeting these criteria with evidence from two or more
independent studies in agreement [7].
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A diagnostic aid combining behavioural features from caregiver
and healthcare provider questionnaires and home videos recently
received regulatory approval by USA Food and Drug Administra-
tion (FDA) with sensitivity 98% and specificity 79% but had a high
no response rate, 68% [8]. Other studies using magnetic
resonance imaging (MRI) [9], visual attention/eye movement or
eye tracking assessments [10, 11], genetic mutation assessments
[12] and post-natal blood tests for ASD based on transcriptomic
analysis of peripheral blood mononuclear cells and proteomics
and metabolomics analysis of plasma have been reported but
require validation [13–16].
In 2018, we reported a discovery study of a blood test which

met the APA Work Group threshold classification criteria. It was
based on an algorithm with features of plasma protein glycation
and oxidation adducts. A combination of four plasma protein
glycation and oxidation adducts—namely Nε-carboxymethyl-
lysine (CML), Nω-carboxymethyl-arginine (CMA), 3-
deoxyglucosone-derived hydroimidazolone (3DG-H) and dityro-
sine (DT)—gave a diagnostic algorithm with accuracy 88%,
sensitivity 92% and specificity 84% in children 5–12 years old
[17]. Plasma protein glycation and oxidation adducts occur mostly
in albumin, accounting for 60% of plasma protein, which has a
half-life of 3 weeks [18]. Plasma protein glycation and oxidation
adduct levels thereby reflect changes in precursor glycation and
oxidation processes occurring over the 3–4 weeks preceeding
blood sampling [19]. Albumin in cerebrospinal fluid (CSF)
exchanges relatively rapidly with albumin in plasma (half-life
3.3 h [20]), so albumin modifications detected in plasma have
contributions from those occurring in CSF.
Herein, we describe an international multicenter clinical

validation study of the plasma protein glycation and oxidation
biomarker blood test for ASD. We were able to successfully
validate the 4-feature algorithm for classification of children with
ASD or typical development (TD) with a similar accuracy to the
discovery study in children 5 – 12 years old.

MATERIALS AND METHODS
Subject recruitment
A total of 478 children were recruited for this study: 311 had a diagnosis of
ASD (247 males and 64 females) and 167 were classified as TD children (94
males and 73 females). They were recruited in three cohorts. Firstly, Qatar
Biomedical Research Institute (QBRI) cohort (n= 167)—recruited at the
Child Development Centre, Rumailah Hospital, Hamad Medical Corporation
(HMC), Doha, Qatar (subjects with ASD) and Al-Wajbah Health Centre,
Primary Health Care Corporation (PHCC), Doha, Qatar (TD children); Project
lead Dr Abeer R. Al-Shammari. Secondly, the BARAKA cohort—recruited at
Sidra Medicine, Doha, Qatar (n= 249). Plasma samples collected from
unaffected recruited siblings served as the control population; project lead
Dr Kalid Fakhro. Thirdly, Malaga cohort (n= 62)—recruited at Hospital

Regional Universitario de Málaga, Málaga, Spain; Project lead Dr Yolanda
de Diego-Otero (Fig. 1). For QBRI and BARAKA cohorts, children with ASD
received a diagnosis of ASD by two child development experts, according
to the DSM-5 criteria [5]. For the Malaga cohort, children with ASD were
initially identified by completion of the Q-CHAT10 questionnaire [21]
completed by parents and paediatrician. ASD diagnosis was further
confirmed by ADI-R evaluation [22] by a trained psychiatrist at the
Department of Mental Health, Regional University Hospital of Malaga,
Spain. ASD severity assessment by Autism Diagnostic Observation
Schedule-2 (ADOS-2) [23] was recorded for the QBRI cohort. Children
1.5–12 years of age with ASD or with TD were recruited for this study. For
both ASD and TD subjects, inclusion criteria were: no family history of ASD;
no immune conditions, such as autoimmune disease, asthma, allergy, and
eczema; no neurological conditions, such as epilepsy; no suspected vision,
hearing or walking problems; no other health problems, such as
cardiovascular, lung, and kidney diseases; and taking any medications
and did not have any recent infection or vaccination at the time of study
enrolment. Exclusion criteria were: any surgery intervention in the four
months prior to blood sample donation. Comorbidities were: attention
deficit hyperactivity disorder (ADHD), epilepsy and anxiety. Children with
TD were recruited in the local community, with no sign of cognitive,
learning, and psychiatric involvement. They were attending mainstream
school and had not been subjected to stressful events. TD subjects in the
QBRI cohort were also screened using the Social Communication
Questionnaire (lifetime version) with a cutoff score <12 for eligibility to
exclude the risk of ASD.
The study was reviewed and approved by the Institutional Review Board

(IRB), Qatar University (approval numbers: QU-IRB 1599-E/21 and 2019-
003). QBRI cohort study was reviewed and approved by the IRB of HMC
(approval number: MRC-02-18-116; ASD subjects) and IRB of PHCC
(approval number: 2020/06/064; TD subjects). Baraka cohort study received
ethical approval of the IRB at Sidra Medicine (approval number: 1500767)
and HMC (approval number: MRC-03-20-515). Malaga cohort study
received ethical approval by the Ethical Committee of the Regional
University Hospital of Malaga, University of Malaga, Malaga, Spain. The
experiments conformed to the principles set out in the World Medical
Association Declaration of Helsinki. Whole blood samples were collected
from children with written informed consent of a parent of all eligible
children prior to enrolment, data, and sample collection.

Blood sampling
Blood samples collected from children with ASD or TD were drawn and
processed under the same conditions except for the Malaga cohort blood
samples were drawn after 8 h fasting whereas the others were not. Blood
donations were processed in the research laboratory within two hours of
sample collection. There was no site-specific difference in plasma protein
modification contents; cf. assays of albumin glycated by glucose, glycated
albumin, where fasting and non-fasting sampling gives similar estimates
[24]. Ethylenediaminetetra-acetic acid (EDTA) was used as anticoagulant.
Plasma and blood cells were separated immediately by centrifugation and
stored at –80 °C until analysis and transferred between collaborating
laboratories and recruitment sites on dry ice.

Assay of markers of plasma protein glycation, oxidation and
nitration
The content of glycated, oxidized and nitrated adduct residues in plasma
protein was quantified in exhaustive enzymatic digests of washed plasma
protein extracts by stable isotopic dilution analysis liquid chromatography-
tandem mass spectrometry (LC-MS/MS), with correction for autohydrolysis
of hydrolytic enzymes, as described previously [17] except a similar
updated model of tandem mass spectrometer, Xevo-TQXS (Waters,
Manchester, U.K.), was used. Analytes determined were: glycation
adducts—Nε-fructosyl-lysine (FL) and advanced glycation endproducts
(AGEs)—CML, Nε(1-carboxyethyl)lysine (CEL), CMA, glyoxal-derived hydro-
imidazolone (G-H1), methylglyoxal-derived hydroimidazolone (MG-H1),
3DG-H and glucosepane (GSP); oxidation adducts—methionine sulfoxide
(MetSO), DT, N’-formyl-kynurenine (NFK), and nitration adduct,
3-nitrotyrosine (3-NT); and related amino acids precursors, arginine, lysine,
methionine, tyrosine and tryptophan. Oxidation, nitration and glycation
adduct residues are normalised to their amino acid residue precursors and
given as mmol/mol amino acid modified. Average (AVE) additional protein
glycation and oxidation adduct variable was the mean value of all 12
plasma protein modifications measured. Sample classification was hidden
from the investigators performing sample analysis and data processing.

Fig. 1 Subjects recruited in the "Blood test for autism" valida-
tion study. Subject recruitment by cohort: QBRI, BARAKA, and
Malaga cohorts. ASD children with autism spectrum disorder,
TD children with typical development.
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Machine learning analysis
The objective was to distinguish between children with ASD or TD. The
initial objective was to validate a classifier algorithm with features of
plasma protein CML, CMA, DT and 3DG-H in subjects of 5–12 years old, as
developed in the discovery study [17]. We also explored if classification
performance could be further improved by addition of subject age,
gender and additional plasma protein glycation and oxidation adduct
features. A secondary objective was to assess the classification
performance of the algorithm over a wider age range, including children
from 1.5 years old. In all data analysis, the diagnostic algorithms were
trained on 80% subjects (training subset) before being used to predict
the ASD or TD class for each sample in the remaining subjects (test set)
through a fivefold cross-validation process. The outcome was to assign,
for each test set sample, a set of probabilities corresponding to each of
the ASD/TD groups—the group assignment being that for which the
probability is highest. Test data were held separate from algorithm
training; algorithm settings were not adjusted once we began to analyse
the test set data—thereby guarding against overfitting and hence
providing a rigorous estimate of predictive performance. Support Vector
Machines (SVMs) algorithms had previously proven optimum [17]
whereas herein ensemble classifier gave the best outcome. In addition
to algorithm methods tried previously, we also used extreme gradient
boosting (XG boost) [25]. In the larger validation set of more diverse age
and gender proportions, subject age and gender also emerged as
features improving the classification. For algorithm training and testing in
the cohort with subjects <5 years old, algorithm training involving the
complete panel of protein glycation and oxidation as features was
employed. The aim during the training was to select the set of features
that accomplishes the highest performance – as judged by classification
accuracy. For each performance metric, the mean and 95% CI was
determined and reported. The algorithm training and testing was
repeated 5 times, following the 5-fold cross-validation process, without
altering the algorithm parameters, with 80:20% data split, to test for
algorithm’s robustness against any bias towards data split. We developed
our computer programs using Statistics, Machine Learning Toolbox of
MATLAB® (MathWorks, Inc., Natick, USA) and Python with open-source
libraries: Sci-kit learn, Scipy and AutoGluon.

Statistical analysis
Data are presented as mean ± SD for parametric distributions and median
(lower—upper quartile) for non-parametric distributions. The test for
normality of data distribution applied was the Kolmogorov–Smirnov test.
95% Confidence intervals (CI) are given for classification performance
variables. Significance was evaluated by Student’s t test or by
Mann–Whitney U-test for parametrically or non-parametrically distributed
data, respectively. Bonferroni correction was made for analysis of multiple
analytes without preconceived hypothesis. Correlation analysis was
performed by the Spearman’s rho method with continuous variables. For
ADOS-2 categorical variables with ≥6 categories recorded, Spearman
correlation was performed—assuming approximation to a continuous
variable [26]. Data were analysed using SPSS, version 24.0.
For power analysis to deduce the number of subjects required for the

study design, we based power calculations on variance of area-under-the-
curve of receiver operating characteristic plot (AUROC) [27]. Assuming a
normal distribution, α confidence level and precision of sensitivity and
specificity of 0.05, we designed the study for validation of the autism blood
test to classify subjects 5–12 year old with an AUROC variance of 0.06.
Power calculations indicate a mean of 92 subjects for case and control
study groups is required. This was met by subject recruitment for this
study; mean case and control subjects recruited was 92.5. For application
of the autism blood test to subjects 1.5–<5 years old, we allowed for a
greater data dispersion with AUROC variance of 0.09. Power calculations
indicate a mean of 138 subjects for case and control study groups is
required. This was slightly exceeded by recruitment in our study where the
mean of case and control subjects recruited was 146.5. This allows for up to
ca. 5% outliers and extreme values.

RESULTS
Cohort characteristics
Clinical characteristics of children recruited for the study are given
in Table 1. Subject age was not significantly different between
children with ASD (5.2 ± 3.0 years) and children with TD (4.9 ± 2.4
years). The ratio of male to female was 1.3 in children with TD and

3.9 in children with ASD. Most study participants (416 of 478) were
recruited in Qatar. The recent estimate of prevalence of ASD in
Qatar was 1.14% in 6 to 11-year-old children [28]. Sixty-eight
percent of children with ASD had mild-to-moderate symptoms
and the remaining 32% had severe symptoms. There was minor
presence of comorbidities of which ADHD was highest at 5%.

Plasma protein glycation and oxidation
Plasma protein content of glycation, oxidation and nitration
adducts are reported in Table 2. In subjects with ASD, protein
content of AGEs - CML and CMA, and protein oxidation adducts
- DT and NFK, were increased, with respect to children with TD. All
increases remained significant after Bonferroni correction except
for NFK. Plasma protein content of AGE, 3DG-H, was uniquely
decreased in children with ASD, with respect to children with TD,
remaining significant after Bonferroni correction.
Correlation analysis of plasma protein adduct levels with subject

age are given in Table 3. Five of eight correlations of protein
adduct levels with age in children with TD were negative with
correlation coefficient r values ranging from –0.34 to –0.16. Eight
of 10 correlations of protein adduct levels with age in children
with ASD were negative with r values ranging from –0.35 to –0.13.
Only CEL, G-H1 and 3DG-H correlated positively with subject age.
Where correlations of a protein glycation or oxidation adduct with
age were found for both children with ASD and TD, the direction
of relationship (positive or negative) was the same for both
groups. 3DG-H correlated positively with age only in subjects with
TD and FL, NFK and 3-NT correlated negatively with age only in
children with ASD.
We explored the correlation of severity of ASD with age and

plasma protein glycation and oxidation markers with data from
ADOS-2 assessment in the QBRI cohort. ADOS-2 score correlated
negatively with age (r=−0.39, P < 0.001) and positively with
plasma protein CEL (r= 0.20, P < 0.05) and MG-H1 (r= 0.20,
P < 0.05).

Validation and development of diagnostic algorithms for ASD
To validate the ASD diagnostic algorithm with plasma protein
glycation and oxidation features, we initially used plasma protein
modification analyte data of subjects 5–12 years old. Ensemble
was the best-performing algorithm development method. The
best classifier algorithm had the following features: age, gender
and CML, CMA, DT and 3DG-H. Classification performance was:
accuracy 83%, sensitivity 94%, specificity 67% and area-under-the-
curve of receiver operating characteristic plot (AUROC) 0.87
(Table 4 and Fig. 2a). We explored if addition of other plasma
protein glycation and oxidation features added to the algorithm
improved the classification performance. The best outcome was
with addition of an average of all plasma protein glycation and
oxidation features, AVE, which increased accuracy and specificity.
Classification performance: accuracy 84%, sensitivity 91%, speci-
ficity 74%, and AUROC 0.89 (Table 4 and Fig. 2b).
We also explored the application of algorithms based on plasma

protein glycation and oxidation features to subjects over the wider
age range of 1.5–12 years. The classification performance declined
yet achieved upper limits of CIs for specificity and sensitivity
exceeding the APA Work Group classification quality threshold of
80%. The best classification achieved was with features: age,
gender and all plasma protein glycation and oxidation features
measured (FL, CML, CEL, CMA, G-H1, MG-H1, 3DG-H, GSP, MetSO,
DT, NFK and 3-NT). Classifier performance was: accuracy 74%,
sensitivity 75%, specificity 74% and AUROC 0.79 (Table 4 and
Fig. 2c).

DISCUSSION
The primary objective of this study was to validate the outcome of
our discovery biomarker study of ASD diagnosis via replication in
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additional cohorts of age range 5–12 years old [17]. The remarkable
outcome from this validation study is that training and testing
algorithms based on the same 4 biomarkers, CML, CMA, DT and 3DG-
H, of plasma protein analysed in subjects recruited at 3 centres and
two countries different from the discovery study produced an
algorithm of similar classification performance. With accuracy of 83%,
LR+ 3.0 and LR- 0.09, the diagnostic test provides moderate
evidence for presence of ASD and strong, often convincing evidence
of absence of ASD (Table 4). It is therefore particularly good for
identifying absence of ASD and thereby allowing child development
experts to stratify attention to children that likely have ASD for
further follow-up interview and observation. Including additional
protein glycation, oxidation and nitration adducts improved the
specificity such that the 95%CI met the APA Work Group
classification quality threshold of 80%. The reason for the improve-
ment in specficity is unclear but additional input on changes in
protein glycation and oxidation status may reflect the association of
ASD with increased fasting plasma glucose (FPG) and insulin
resistance [29] and susceptibily to activaton of the unfolded protein
response (UPR) [30, 31] – see below. The successful validation
indicates that the combination of protein glycation and oxidation

biomarkers may find diagnostic application in early, laboratory-based
screening for potential cases of ASD.
Our diagnostic test is generally applicable with a zero no

response rate and 100% test validity rate, requiring a small aliquot
of venous blood. In the current study, subject age and gender
were also features contributing to the ASD and TD classification
accuracy of the diagnostic alogorithm – although not in the
discovery study [17]. We attribute this to the increased cohort size
and related statistical power, and increased dispersion of subject
age across the inclusion age range criteria.
Our approach is unique in focussing on biomarkers based on

spontaneous modifications of plasma protein by glycation and
oxidation as biomarkers for the diagnosis of ASD (Table 2).
Increased CML and CMA likely reflects increased lipid peroxidation
[32] – in agreement with earlier studies of increased plasma
malondialdehyde and increased urinary isoprostanes in subjects
with ASD [33–36]. Increased DT likely reflects increased activity of
dual oxidase which catalyses the formation of DT and has been
linked to host immunity and neuronal plasticity [37, 38].
Decreased 3DG-H may reflect increased activation of the UPR
and increased clearance of 3DG-H-modified proteins. Proteins
modified by reactive dicarbonyl metabolites such as
3-deoxyglucosone are misfolded and activate the UPR [30, 31].
Notably, a study of postmortem brain tissue of subjects with ASD
revealed increased expression of proteins of the UPR [39]. Finally,
decreased 3DG-H modification of albumin may be an indirect
marker of CNS activation of the UPR in the brain of subjects with
ASD. Mechanisms of formation of these plasma protein adducts
may be prospective targets for therapeutic intervention in ASD. If
so, our test may find future application in therapeutic monitoring.
Plasma protein modification anlaytes used herein have advan-

tages over other biomarkers. Firstly, by measuring modifications
on mainly albumin in plasma, in exchange with albumin of the
CSF, we have biomarkers potentially reporting on changes in
metabolites and protein modification status within the brain
where neuronal dysfunction in ASD originates [1]. Secondly,
plasma protein glycation and oxidation adducts provide a
cumulative report on metabolic dysfunction related to the
processes of their formation over 3 – 4 weeks prior to sampling;
cf. the use of glycated albumin to assess glycemic status [19].
A secondary objective of the current study was to explore the

application of plasma protein glycation and oxidation biomarkers to
the classification of children with ASD or TD of a lower minimum
inclusion age, 1.5 years, than in the discovery study [17]. Including

Table 1. Cohort demographic and clinical features.

Variable TD ASD

All subjects

N 167 311

Gender (M/F) 94/73 247/64

Age (years) 4.9 ± 2.4 5.2 ± 3.0

Severity of ASD (mild-to-moderate/
severe)

— 210/101

Comorbidities (ADHD/epilepsy/anxiety) — 17/3/1

Subjects >60 months old

N 69 116

Gender (M/F) 28/41 98/18

Age (years) 8.1 ± 2.3 7.6 ± 2.0

Subjects <60 months old

N 98 195

Gender (M/F) 66/32 149/46

Age (years) 3.1 ± 0.9 3.1 ± 0.7

Table 2. Glycation, oxidation and nitration adduct residue content of plasma protein of children with typical development or autism.

Protein modification marker TD ASD P value

FL (mmol/mol lys) 4.66 ± 2.50 4.34 ± 2.40 NS

CML (mmol/mol lys) 0.123 ± 0.044 0.141 ± 0.054 <0.001**

CEL (mmol/mol lys) 0.040 ± 0.025 0.040 ± 0.028 NS

G-H1 (mmol/mol arg) 0.163 ± 0.120 0.169 ± 0.110 NS

MG-H1 (mmol/mol arg) 0.887 ± 0.340 0.841 ± 0.320 NS

3DG-H (mmol/mol arg) 0.232 (0.180–0.290) 0.175 (0.140 – 0.230) <0.001***

CMA (mmol/mol arg) 0.154 ± 0.084 0.188 ± 0.081 <0.001***

GSP (mmol/mol lys) 0.238 ± 0.160 0.215 ± 0.130 NS

MetSO (mmol/mol met) 7.55 (0.67–11.30) 7.12 (0.70–10.69) NS

DT (mmol/mol tyr) 0.017 (0.009–0.030) 0.026 (0.010–0.050) <0.001***

NFK (mmol/mol trp) 1.23 (0.83–1.74) 1.32 (0.91–2.21) <0.05

3-NT (mmol/mol tyr) 0.008 (0.006–0.012) 0.008 (0.005–0.011) NS

NS not significant.
Data are mean ± SD or median (lower—upper quartile); TD, n= 167, and ASD, n= 311. Significance (Students t test or Mann–Whitney U); ** and ***, P < 0.01
and P < 0.001 after Bonferroni correction of 12 applied.
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this lower limit of subject age produced a decreased classification
performance of algorithms – although inclusion of additional protein
glycation and oxidation markers gave upper limits of 95% CI
exceeding 80% for both sensitivity and specificity. The accuracy and
AUROC of this classification was decreased compared to algorithms
for the 5–12 year age group (cf. algorithm-3 and algorithms-1 and
-2). This was linked to a lower sensitivity of 75% for algorithm-3. The
reason for this is not clear but it may be linked to the differences in
the correlation of protein glycation, oxidation and nitration adduct
features with age between subjects with TD and autism (Table 3)
leading to impaired classification for subjects of less than 5 years of
age. From correlation analysis with age, most but not all plasma
protein glycation, oxidation and nitration adducts correlated
negatively with age. This may be linked to increased degradation
and decreased half-life of albumin with age associated with
increased plasma concentration of albumin in the age range

studied [40]. For the 4 features of the mimimal algorithm, CML, CMA
and DT correlated negatively with age in both children with ASD
and TD whereas 3DG-H correlated positively with age in children
with TD and did not correlate with age in children with ASD.
We explored the correlation of plasma protein glycation and

oxidation biomarkrers with severity of ASD symptoms, as judged
by the ADOS-2 score available in a subset of the cohort (Table 3).
We found severity of ASD correlated negatively with subject age
and postively with CEL and MG-H1. These AGEs are both formed
from the reactive dicarbonyl glycating agent, methylglyoxal (MG).
MG is formed as a byproduct of glycolysis and is increased with
increased FPG and insulin resistance [41, 42]. This may suggest
that severity of ASD is linked to increased exposure to MG. This is
an interesting association deserving of further investigation.
Additional criteria of the APA Work Group on Neuroimaging

Markers of Psychiatric Disorders for a diagnostic test were: good
internal validity, external validity, and test-retest reliability and
inter-rater reliability [6]. Our test meets these requirements. It is
based on stable isotopic dilution analysis LC-MS/MS assay of small
molecule protein glycation and oxidation adducts. This analytical
technique is the gold standard reference technique for small
molecule quantitation with high analytical sensitivity and speci-
ficity, robust calibration, and good reproducibility [43]. LC-MS/MS
is often preferred for harmonization of analytic measurements
between laboratories [44] and is regarded by the FDA as an
appropriate analytical technology for Class 2 laboratory-based
tests – such as diagnostic tests for ASD [45, 46].
The advance made in this study is a successful validation of the

blood test for autism based on plasma protein glycation, oxidation
and nitration adduct features in diagnostic algorithms for children
5–12 years of age (Table 4). This was achieved in a large multicenter
clinical cohort study independent of the initial discovery phase study
cohort. This provides evidence of high performance classification of
children with autism and TD in support of regulatory approval and
clinical use of the blood test. We have also extended the application
of the blood test to children over a wider age range of 1.5–12 years.
Our test is unique in using diagnostic biomarkers based on
spontaneous post-translational modifications of proteins - glycation,
oxidation and nitration adducts—with the potential for input into
the test response of metabolic dysfunction in the central nervous
system producing these modifications of proteins in the CSF
exchanging with plasma.

Table 3. Correlation of glycation, oxidation and nitration adduct
residue content of plasma protein with subject age of children with
typical development or autism.

Protein
modification
marker

TD ASD

r P value r P value

FL –0.21 <0.001**

CML –0.28 <0.001** –0.19 <0.001**

CEL 0.25 <0.001* 0.28 <0.001***

G-H1 0.17 <0.05 0.16 <0.01*

3DG-H 0.19 <0.05

CMA –0.26 <0.001** –0.26 <0.001***

GSP –0.34 <0.001*** –0.28 <0.001***

MetSO –0.16 <0.05 –0.19 <0.01*

DT –0.29 <0.001** –0.28 <0.001***

NFK –0.13 <0.05

3-NT –0.35 <0.001***

Data are Spearman correlation coefficients for correlation of variable with
subject age; TD, n= 167, and ASD, n= 311. Significance: *, ** and
***, P < 0.05, P < 0.01 and P < 0.001 after Bonferroni correction of 12
applied (there were no significant correlations with MG-H1).

Table 4. Diagnostic algorithms developed for autistic spectrum disorder from plasma protein glycation and oxidation adducts.

Algorithm no 1 2 3

Subject age range (years) 5–12 5–12 1.5–12

Features Age, gender CML, 3DG-H,
CMA & DT

Age, gender CML, 3DG-H, CMA,
DT and AVE

Age, gender, FL, CML, CEL, CMA, G-H1, MG-H1,
3DG-H, GSP, DT, NFK and 3-NT

Accuracy (%) 83 (79–89) 84 (79–89) 74 (70–79)

Sensitivity (%) 94 (90–98) 91 (82–99) 75 (63–87)

Specificity (%) 67 (57–76) 74 (68–80) 74 (58–90)

AUROC 0.87 (0.84–0.90) 0.89 (0.82–0.96) 0.79 (0.74–0.84)

Positive likelihood ratio,
LR+

3.02 (2.23–3.81) 3.55 (2.63–4.47) 3.42 (2.01–4.82)

Negative likelihood ratio,
LR-

0.09 (0.04–0.15) 0.13 (0.01–0.24) 0.33 (0.20–0.46)

Positive predictive value
(%)

81 (72–90) 87 (82–91) 74 (62–86)

Negative predictive value
(%)

86 (76–96) 81 (62–99) 77 (69–85)

F-score 0.87 (0.82–0.91) 0.88 (0.84–0.92) 0.73 (0.68–0.79)

Algorithm outcomes for fivefold cross-validation (10 randomized repeat trials for robustness) using Ensemble. Data are mean (95% CI).
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When implemented clinically, diagnostic laboratories will be able to
offer a validated blood test that may facilitate the screening and
diagnosis of autism, aiding child development practitioners to make a
referral within weeks. It would thereby help address long delays for
autism diagnosis and enable experts in child psychology and
development to focus on clinical care and follow-up of children with
autism whilst being supported by a clinical chemistry blood test.
Further developments envisaged in future studies are application of
the blood test for risk prediction of autism progression to severe
symptoms and application to therapeutic monitoring in alleviation of
symptoms.

DATA AVAILABILITY
Analytical data produced in this study may be obtained from the corresponding
author.

CODE AVAILABILITY
We provide the code library in MATLAB® and Python described in this work through
Github.

REFERENCES
1. Courchesne E, Gazestani VH, Lewis NE. Prenatal origins of ASD: the when, what,

and how of ASD development. Trends Neurosci. 2020;43:326–42.
2. Lord C, Charman T, Havdahl A, Carbone P, Anagnostou E, Boyd B, et al. The Lancet

Commission on the future of care and clinical research in autism. Lancet.
2022;399:271–334.

3. Bai D, Yip BHK, Windham GC, Sourander A, Francis R, Yoffe R, et al. Association of
genetic and environmental factors with autism in a 5-country cohort. JAMA
Psychiatry. 2019;76:1035–43.

4. Lipkin WI, Bresnahan M, Susser E. Cohort-guided insights into gene–environment
interactions in autism spectrum disorders. Nat Rev Neurol. 2023;19:118–25.

5. Brian JA, Zwaigenbaum L, Ip A. Standards of diagnostic assessment for autism
spectrum disorder. Paediatr Child Health. 2019;24:444–51.

6. First MB, Drevets WC, Carter C, Dickstein DP, Kasoff L, Kim KL, et al. Clinical
applications of neuroimaging in psychiatric disorders. Am J Psychiatry.
2018;175:915–16.

7. Cortese S, Solmi M, Michelini G, Bellato A, Blanner C, Canozzi A, et al. Candidate
diagnostic biomarkers for neurodevelopmental disorders in children and ado-
lescents: a systematic review. World Psychiatry. 2023;22:129–49.

8. Megerian JT, Dey S, Melmed RD, Coury DL, Lerner M, Nicholls CJ, et al. Evaluation
of an artificial intelligence-based medical device for diagnosis of autism spectrum
disorder. npj Digital Med. 2022;5:57.

9. Bahathiq RA, Banjar H, Bamaga AK, Jarraya SK. Machine learning for autism
spectrum disorder diagnosis using structural magnetic resonance imaging: Pro-
mising but challenging. Front Neuroinformat. 2022;16:949926.

10. Wei Q, Cao H, Shi Y, Xu X, Li T. Machine learning based on eye-tracking data to
identify Autism Spectrum Disorder: A systematic review and meta-analysis. J
Biomed Inf. 2023;137:104254.

11. Shic F, Naples AJ, Barney EC, Chang SA, Li B, McAllister T, et al. The Autism
Biomarkers Consortium for Clinical Trials: evaluation of a battery of candidate
eye-tracking biomarkers for use in autism clinical trials. Mol Autism. 2022;13:15.

12. Antaki D, Guevara J, Maihofer AX, Klein M, Gujral M, Grove J, et al. A phenotypic
spectrum of autism is attributable to the combined effects of rare variants,
polygenic risk and sex. Nat Genet. 2022;54:1284–92.

13. Bao B, Zahiri J, Gazestani VH, Lopez L, Xiao Y, Kim R, et al. A predictive ensemble
classifier for the gene expression diagnosis of ASD at ages 1 to 4 years. Mol
Psychiatry. 2023;28:822–33.

Fig. 2 Receiver operating characteristic plots of diagnostic algorithms for detection of autism spectrum disorder by plasma protein
glycation and oxidation adducts. A Classification of children with ASD or TD, 5 – 12 years old with features: age, gender CML, 3DG-H, CMA
and DT (Algorithm 1; AUROC 0.89). B Classification of children with ASD or TD, 5 – 12 years old with features age, gender CML, 3DG-H, CMA,
DT and AVE (Algorithm 2; AUROC 0.95). C Classification of children with ASD or TD, 1.5 – 12 years old with features: age, gender and all plasma
protein glycation and oxidation markers (Algorithm 3; AUROC 0.82).

A.N.J.M. Al-Saei et al.

6

Molecular Psychiatry



14. Hewitson L, Mathews JA, Devlin M, Schutte C, Lee J, German DC. Blood biomarker
discovery for autism spectrum disorder: A proteomic analysis. PLoS ONE.
2021;16:e0246581.

15. Howsmon DP, Vargason T, Rubin RA, Delhey L, Tippett M, Rose S, et al. Multi-
variate techniques enable a biochemical classification of children with autism
spectrum disorder versus typically-developing peers: A comparison and valida-
tion study. Bioeng Transl Med. 2018;3:156–65.

16. Vargason T, Roth E, Grivas G, Ferina J, Frye RE, Hahn J. Classification of autism
spectrum disorder from blood metabolites: Robustness to the presence of co-
occurring conditions. Res Autism Spectr Disord. 2020;77:101644.

17. Anwar A, Abruzzo PM, Pasha S, Rajpoot K, Bolotta A, Ghezzo A, et al. Advanced
glycation endproducts, dityrosine and arginine transporter dysfunction in autism
- a source of biomarkers for clinical diagnosis. Mol Autism. 2018;9:3.

18. Peters T All about albumin. Academic Press: New York, 1996.
19. Rabbani N, Thornalley PJ. Protein glycation – biomarkers of metabolic dysfunc-

tion and early-stage decline in health in the era of precision medicine. Redox Biol.
2021;42:101920.

20. Cutler RWP, Watters GV, Hammerstad JP. The origin and turnover rates of cere-
brospinal fluid albumin and gamma-globulin in man. J Neurol Sci. 1970;10:259–68.

21. Allison C, Auyeung B, Baron-Cohen S. Toward Brief “Red Flags” for autism screening:
the short autism spectrum quotient and the short quantitative checklist in 1,000
cases and 3,000 controls. J Am Acad Child Adolesc Psych. 2012;51:202–12.e7.

22. Lord C, Rutter M, Le Couteur A. Autism diagnostic interview-revised: a revised
version of a diagnostic interview for caregivers of individuals with possible
pervasive developmental disorders. J Autism Dev Disord. 1994;24:659–85.

23. Lord C, Rutter M, DiLavore P, Risi S, Gotham K, Bishop S. Autism diagnostic
observation schedule–2nd edition (ADOS-2). Los Angeles, CA: West Psychological
Corporation. 2012;284:508–20.

24. Wu WC, Ma WY, Wei JN, Yu TY, Lin MS, Shih SR, et al. Serum Glycated Albumin to
Guide the Diagnosis of Diabetes Mellitus. PLoS One. 2016;11:e0146780.

25. Chen T, Guestrin C XGBoost: A Scalable Tree Boosting System. Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. Association for Computing Machinery: San Francisco, California, USA,
2016, 785–94.

26. Rhemtulla M, Brosseau-Liard PE, Savalei V. When can categorical variables be treated
as continuous? a comparison of robust continuous and categorical SEM estimation
methods under suboptimal conditions. Psychol Methods. 2012;17:354–73.

27. Xia J, Broadhurst DL, Wilson M, Wishart DS. Translational biomarker discovery in
clinical metabolomics: an introductory tutorial. Metabolomics. 2013;9:280–99.

28. Alshaban F, Aldosari M, Al-Shammari H, El-Hag S, Ghazal I, Tolefat M, et al. Pre-
valence and correlates of autism spectrum disorder in Qatar: a national study. J
Child Psych Psychiatry. 2019;60:1254–68.

29. Manco M, Guerrera S, Ravà L, Ciofi Degli Atti M, Di Vara S, Valeri G, et al. Cross-
sectional investigation of insulin resistance in youths with autism spectrum disorder.
Any role for reduced brain glucose metabolism? Transl Psychiatry. 2021;11:229.

30. Irshad Z, Xue M, Ashour A, Larkin JR, Thornalley PJ, Rabbani N. Activation of the
unfolded protein response in high glucose treated endothelial cells is mediated
by methylglyoxal. Sci Rep. 2019;9:7889.

31. Rabbani N, Xue M, Thornalley PJ. Dicarbonyl stress, protein glycation and the
unfolded protein response. Glycoconj J. 2021;38:331–34.

32. Thornalley PJ, Rabbani N. Detection of oxidized and glycated proteins in clinical
samples using mass spectrometry - A user’s perspective. Biochim Biophys Acta.
2014;1840:818–29.

33. Chauhan A, Chauhan V, Brown WT, Cohen I. Oxidative stress in autism: Increased
lipid peroxidation and reduced serum levels of ceruloplasmin and transferrin -
the antioxidant proteins. Life Sci. 2004;75:2539–49.

34. Ming X, Stein TP, Brimacombe M, Johnson WG, Lambert GH, Wagner GC.
Increased excretion of a lipid peroxidation biomarker in autism. Prostaglandins,
Leukotrienes Essent Fat Acids. 2005;73:379–84.

35. Nasrallah O, Alzeer S. Measuring some oxidative stress biomarkers in autistic
Syrian children and their siblings: a case-control study. Biomark Insights.
2022;17:11772719221123913.

36. Yui K, Imataka G, Sasaki H, Shiroki R. The role of lipid peroxidation in individuals
with autism spectrum disorders. Metab Brain Dis. 2020;35:1101–08.

37. Bae YS, Choi MK, Lee W-J. Dual oxidase in mucosal immunity and host-microbe
homeostasis. Trends Immunol. 2010;31:278–87.

38. Sobrido-Cameán D, Oswald MCW, Bailey DMD, Mukherjee A, Landgraf M. Activity-
regulated growth of motoneurons at the neuromuscular junction is mediated by
NADPH oxidases. Front Cell Neurosci. 2023;16:106593.

39. Gandal MJ, Haney JR, Wamsley B, Yap CX, Parhami S, Emani PS, et al. Broad
transcriptomic dysregulation occurs across the cerebral cortex in ASD. Nature.
2022;611:532–39.

40. Weaving G, Batstone GF, Jones RG. Age and sex variation in serum albumin
concentration: an observational study. Ann Clin Biochem. 2016;53:106–11.

41. Rabbani N, Xue M, Thornalley PJ. Methylglyoxal-induced dicarbonyl stress in
aging and disease: first steps towards glyoxalase 1-based treatments. Clin Sci.
2016;130:1677–96.

42. Xue M, Weickert MO, Qureshi S, Ngianga-Bakwin K, Anwar A, Waldron M, et al.
Improved glycemic control and vascular function in overweight and obese
subjects by glyoxalase 1 inducer formulation. Diabetes. 2016;65:2282–94.

43. Rabbani N, Thornalley PaulJ. Reading patterns of proteome damage by glycation,
oxidation and nitration: quantitation by stable isotopic dilution analysis LC-MS/
MS. Essays Biochem. 2020;64:169–83.

44. Visconti G, Boccard J, Feinberg M, Rudaz S. From fundamentals in calibration to
modern methodologies: a tutorial for small molecules quantification in liquid
chromatography–mass spectrometry bioanalysis. Anal Chim Acta. 2023;1240:340711.

45. Jannetto PJ, Fitzgerald RL. Effective use of mass spectrometry in the clinical
laboratory. Clin Chem. 2016;62:92–98.

46. US-Food-&-Drug-Adminstration Medical Devices; Neurological Devices; Classifi-
cation of the Pediatric Autism Spectrum Disorder Diagnosis Aid. Fed Register.
2022;87:80444–46.

ACKNOWLEDGEMENTS
We thank all the subjects recruited and their parents for agreeing to participate in
this study. We also thank Dr Patrick Wijten for providing technical support in LC-MS/
MS analysis, QBRI, and Samia M. Ltaief for assisting in QBRI cohort and Sura Ahmed
Hussain, Saba Elmubarak Elhag and Jyothi Lakshmi for assisting in BARAKA cohort,
and Dr Yolanda De Diego for providing consultancy and facilitating access of
biobanked clinical samples from Malaga.

AUTHOR CONTRIBUTIONS
NR and PJT designed the research and secured funding; AA-S, AA, MK and KAF led
QBRI and BARAKA cohort studies; ANJMA-S, and WNE-D processed and analysed the
samples; ANJMA-S, NR and PJT analysed the experimental data; KR and NA performed
machine learning studies; and PJT and NR wrote the mansucript. All authors read,
edited, and approved the final manuscript.

FUNDING
This project was funded by a High Impact Award, Qatar University, Doha, Qatar, to NR
and PJT (award no. QUHIG-CMED-2021/22-1). The QBRI study is funded by ECRA
Award (number ECRA01-001-3-001) from the Qatar National Research Fund (QNRF)
and the QBRI start-up fund (grant code VR03) to A.R.A.-S. The BARAKA-Qatar Study
was generously supported by the QNRF (NPRP10-0202–170320), the Qatar
International Islamic Bank (QIIB) and Mohammed AlSaad (MAS) Holding. Open
Access funding provided by the Qatar National Library.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Correspondence and requests for materials should be addressed to Naila Rabbani.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023

A.N.J.M. Al-Saei et al.

7

Molecular Psychiatry

http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Validation of plasma protein glycation and oxidation biomarkers for the diagnosis of�autism
	Introduction
	Materials and methods
	Subject recruitment
	Blood sampling
	Assay of markers of plasma protein glycation, oxidation and nitration
	Machine learning analysis
	Statistical analysis

	Results
	Cohort characteristics
	Plasma protein glycation and oxidation
	Validation and development of diagnostic algorithms for�ASD

	Discussion
	References
	References
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	ADDITIONAL INFORMATION




