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Retina as a potential biomarker in schizophrenia spectrum
disorders: a systematic review and meta-analysis of optical
coherence tomography and electroretinography
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INTRODUCTION: Abnormal findings on optical coherence tomography (OCT) and electroretinography (ERG) have been reported in
participants with schizophrenia spectrum disorders (SSDs). This study aims to reveal the pooled standard mean difference (SMD) in
retinal parameters on OCT and ERG among participants with SSDs and healthy controls and their association with demographic
characteristics, clinical symptoms, smoking, diabetes mellitus, and hypertension.

METHODS: Using PubMed, Scopus, Web of Science, and PSYNDEX, we searched the literature from inception to March 31, 2023,
using specific search terms. This study was registered with PROSPERO (CRD4202235795) and conducted according to PRISMA 2020.
RESULTS: We included 65 studies in the systematic review and 44 in the meta-analysis. Participants with SSDs showed thinning of
the peripapillary retinal nerve fiber layer (pbRNFL), macular ganglion cell layer- inner plexiform cell layer, and retinal thickness in all
other segments of the macula. A meta-analysis of studies that excluded SSD participants with diabetes and hypertension showed
no change in results, except for pRNFL inferior and nasal thickness. Furthermore, a significant difference was found in the pooled
SMD of pRNFL temporal thickness between the left and right eyes. Meta-regression analysis revealed an association between retinal
thinning and duration of illness, positive and negative symptoms. In OCT angiography, no differences were found in the foveal
avascular zone and superficial layer foveal vessel density between SSD participants and controls. In flash ERG, the meta-analysis
showed reduced amplitude of both a- and b-waves under photopic and scotopic conditions in SSD participants. Furthermore, the
latency of photopic a-wave was significantly shorter in SSD participants in comparison with HCs.

DISCUSSION: Considering the prior report of retinal thinning in unaffected first-degree relatives and the results of the meta-
analysis, the findings suggest that retinal changes in SSDs have both trait and state aspects. Future longitudinal multimodal retinal
imaging studies are needed to clarify the pathophysiological mechanisms of these changes and to clarify their utility in individual
patient monitoring efforts.
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INTRODUCTION

Schizophrenia is in most cases a chronic mental illness with
varying degrees of positive and negative symptoms, cognitive
dysfunction, and decline in real-world functioning. No clinically
applicable state/trait biomarkers for use in monitoring and
prediction efforts for participants with schizophrenia have been
identified, and further research in this field is warranted. Prior
brain imaging studies suggest that schizophrenia participants
show volume loss in gray and white matter and abnormalities in
the microstructure of white matter [1]. However, brain imaging is
an expensive technique that is not yet feasible to incorporate into
everyday clinical practice. In contrast, the retina is the part of the

central nervous system that can be directly observed noninva-
sively and with high accuracy, using a retinal imaging technique
known as optical coherence tomography (OCT). The retina
consists of a layered structure composed of neurons such as
ganglion cells, bipolar cells, photoreceptor cells, horizontal cells,
and amacrine cells, as well as glial cells such as Miller cells [1].
Previous brain imaging studies have shown that reduced
thickness of the retinal layers is associated with decreased brain
volume and abnormal white matter integrity in population-based
cohort studies [2, 3].

Recently, there has been an increasing number of studies
examining the thickness of the retinal layer using OCT in
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schizophrenia participants. Prior meta-analytic (MA) studies have
supported the hypothesis of thinning of retinal neural layers and
structures such as the pRNFL, macula region, and ganglion cell
layer-inner plexiform layer (GCL-IPL) measured at the macula, in
addition to enlargement of the optic disc (presumed to be due to
neurodegeneration of surrounding neural tissue) [4-9]. The latest
MA includes studies through January 31, 2023 [8]. The results of
the MA of pRNFL average thickness and pRNFL thickness in the
four quadrants are generally highly heterogeneous. Several
studies have indicated correlations between retinal thickness in
both macular and peripapillary regions and duration of disease, as
well as positive and negative symptoms [10-16]. However, as with
brain imaging, there are potential confounds from factors
associated with schizophrenia that can affect neural and vascular
health, such as smoking, diabetes, and hypertension [17-20].
Silverstein et al. previously reported that after adjusting for
diabetes and hypertension, the difference in retinal thickness
among participants with schizophrenia and healthy controls (HCs)
was no longer significant (although some macula findings were at
the trend level) [21]. However, studies that have excluded
participants with diabetes or hypertension have generally
reported evidence of retinal neurodegeneration in SSDs [9].

In addition to relatively consistent evidence of retinal neural
layer thinning in SSDs, recent evidence indicates pathology of the
retinal microvasculature as well, using a recently developed
extension of OCT called OCT angiography (OCTA) [22]. OCTA
allows noninvasive measurement of retinal perfusion density, in
addition to characteristics of retinal capillaries (e.g., width, total
vessel length, extent of branching, tortuosity, and fractal dimen-
sion). Several studies have used OCTA to investigate these
characteristics in participants with schizophrenia. Abnormalities
in the density of retinal blood vessels, in vessel width, and fractal
dimension [23], in addition to enlargement of the foveal avascular
zone (FAZ) (due to loss of blood vessels at the fovea) and change
in vascular tortuosity and branching, have been reported in
participants with schizophrenia [14, 24-27]. While the findings are
not consistent across all studies, this may be due to differences in
participants (younger, more acutely ill vs. older, more chronically ill
participants) and differences in which retinal vascular layers were
imaged (e.g., superficial versus deep) across studies. Overall,
however, OCTA findings in SSDs parallel brain imaging and
postmortem brain studies that indicated microvascular abnorm-
alities in participants with schizophrenia [28-31]. As with OCT
findings, some of the OCTA findings were primarily attributable to
the higher prevalence of diabetes and hypertension in this
population, rather than to schizophrenia itself, illustrating the
need to consider these confounding variables when exploring the
potential role of retinal features as biomarkers in SSDs.
Importantly, though, even after controlling for medical illness or
excluding SSD participants with those conditions, independent
effects of SSDs can be observed on OCTA (e.g., reduced FD in both
eyes) [25].

Finally, several studies have indicated asymmetry of retinal
thickness in normal individuals [32, 33], and some of the retinal
findings in SSD participants have been stronger in one eye [15, 34].
This parallels findings of asymmetry in brain structure in participants
with schizophrenia [35, 36]. Considering the association between
retinal thickness and brain structure in participants with psychotic
disorders [37], asymmetry in retinal thickness in schizophrenia
participants is also assumed to influence heterogeneity in the
estimates in each study in the MA. This finding, and the literature
reviewed above, emphasizes the complexity of retinal changes in
schizophrenia and sets the stage for our systematic review (SR) and
MA, aiming to disentangle the effects of schizophrenia from
underlying health conditions on retinal integrity.

In SSDs, changes in retinal functioning can be observed in
addition to those in retinal structure. Retinal function in SSDs has
most often been measured using electroretinography (ERG),
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particularly the flash ERG (fERG). The most commonly studied
waveforms are the negative a-wave, reflecting the hyper-
polarization of photoreceptors. In photopic conditions, a-wave
mainly reflects the function of cone cells. On the other hand, in
scotopic conditions, the a-wave reflects the function of rod cells.
The positive b-wave that follows the a-wave, reflects the function
of bipolar cells and Miiller cells. The photopic negative response
(PhNR) is a negative wave following the b-wave and is thought to
originate mainly from retinal ganglion cells. Several prior fERG
studies have shown changes in amplitudes and latencies of a-
wave, b-wave, and PhNR in schizophrenia participants [38-40].

The first aim of this study was to provide an updated MA based
on more recent studies of retinal thickness in participants with
SSDs and to determine the association between pooled estimates
of the retinal thicknesses and the following characteristics:
demographic data, symptom severity, diabetes, hypertension,
and smoking. We also sought to clarify the degree of asymmetry
in OCT findings in SSDs. The second aim was to conduct an MA on
OCTA findings in SSD participants relative to HCs. Finally, we
conducted the MA and meta-regression to investigate the
difference in amplitude and latency of a- and b-wave in fERG
under photopic and scotopic conditions in addition to PhNR
amplitude among SSD participants and HCs, and the association
of clinical factors with their overall estimates.

METHODS

Search strategy

We performed an SR and MA according to the Preferred Reporting
ltems for Systematic reviews and Meta-Analyses PRISMA2020
guidelines [41]. The protocol was registered in the International
Prospective Register of Systematic Reviews (PROSPERO) database
(CRD4202235795). Two investigators (HK and GO) independently
searched using PubMed, Scopus, Web of Science, and PSYNDEX
for retina-related reports in participants with SSDs from the
database inception to March 31, 2023. We used the following
terms to search the reports: (macula* OR retina* OR “optical
coherence” OR electroretinograph*) and (schizophreni* OR
psychosis OR “treatment resistant schizophrenia” OR “treatment
resistant psychosis” OR “treatment refractory schizophrenia” OR
“treatment refractory psychosis” OR clozapine). All reports
identified in the search were imported into EndNote (version
X9.3.3, Clarivate Analytics, Philadelphia, PA, USA) as RIS-formatted
files. Two investigators (HK and GO) independently screened and
assessed the eligibility of the reports identified in the search using
EndNote.

Selection criteria

Inclusion criteria were: 1) cross-sectional or prospective studies
using OCT, OCTA, or fERG to measure retinal parameters in both
HCs and participants with SSDs (ICD-10 code F20-29 and DSM
criteria-based schizophrenia, schizoaffective disorder, brief psy-
chotic disorder, and delusional disorder); 2) studies with a score on
the Newcastle-Ottawa Scale (NOS) of > 6 points; 3) studies
included means and standard deviations of retinal parameters,
and reported the number of participants in both SSD and HC
groups. Exclusion criteria were 1) inclusion of cases overlapping
with those in other papers; 2) lack of necessary data on the retinal
parameters; 3) combining of schizophrenia and bipolar disorder
participants in case groups; 4) non-inclusion of HCs group; and 5)
a study containing only choroidal data. For articles in which data
required for MA were not included, we contacted the correspond-
ing authors by e-mail and requested the data needed for MA.

Assessments of quality of studies and certainty in the body of
evidence

We used the NOS to assess the quality of each study included in
the SR and MA [42]. NOS is a nine-point scale, with four points for
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selection, two points for comparability, and three points for
exposure; a higher NOS score indicates a higher-quality study.
Using the NOS, two researchers (HK and GO) independently
assessed the quality of each study. When the NOS scores differed
among the two researchers, the final NOS score was determined
by discussion. We used the GRADE profiler v3.6 to assess the
certainty in the body of evidence [43].

Statistical analysis
The supplementary information provides a detailed description of
the statistical analysis.

We performed an MA to investigate the difference in OCT
retinal parameters [(pPRNFL average thickness, pRNFL thickness in
four quadrants, macular average thickness (MAT), macular volume
(MV), macular thickness (MT) in Early Treatment Diabetic Retino-
pathy Study (ETDRS) grid [44], macular GCL-IPL thickness (mGCL-
IPL), optic cup volume (OCV), cup-to-disk area ratio (CDR), FAZ,
and superficial foveal vessel density (VD)] among SSD participants
and HCs. We also evaluated the differences in amplitude and
latency of fERG a- and b-waves under scotopic and photopic
conditions and PhNR amplitude among the two groups in an MA.

We adopted a random-effects model to calculate the pooled
standardized mean difference (SMD) [45]. Influence analysis was
performed using leave-one-out (LOO) analysis [46], and we
created a graphical display of study heterogeneity (GOSH) analysis
of outliers influencing statistical heterogeneity [47]. To assess
publication bias, contour-enhanced funnel plots were plotted, and
if the number of studies included in the MA was =10, we also
performed Egger’s regression analysis [48]. If publication bias was
suspected, we recalculated the pooled SMD after adjusting for
publication bias using the trim-and-fill method [49] after removing
outliers.

We performed a meta-regression analysis to evaluate the effects
of SSD participant age, duration of illness, percentage of male SSD
participants, OCT device type (time domain [TD]-OCT, spectral
domain (SD)-OCT, or swept source [SS]-OCT), psychiatric symp-
toms, antipsychotic dosage (chlorpromazine equivalent [mg/day]),
NOS, smoking (%), and body mass index (kg/m?) on the pooled
estimates of the retinal parameters.

In the subgroup analysis, we compared the pooled estimates of
retinal thickness between the left and right eyes, and performed a
MA for only studies that excluded diabetes and hypertension
(exclusion group) to assess the effect of the diabetes and
hypertension on the retinal parameters.

We used “meta” [50], “metafor” [51], and “dmetar” [52] packages
in R version 4.2.0 for MA. Statistical significance was set at P < 0.05
for all analyses.

RESULTS

After searching the four databases, we identified a total of 2505
reports. After removing duplicates and excluding irrelevant
reports (i.e., reports that did not include schizophrenia) and
reports for which full text was unavailable, we screened the
abstracts of 1522 reports. We assessed the full text of the
remaining 178 reports. We included 64 reports in the SR
[10-16, 21, 23-25, 34, 38-40, 53-101], after excluding 38 reviews
[4-9, 102-133] including meta-analyses [4-9], three books
[134-136], 19 commentaries [137-155], six editorials [156-161],
three letters [162-164], one perspective [22], two corrections
[165, 166], 35 meeting abstracts [167-201], two conference papers
[202, 203], three reports including both schizophrenia and bipolar
disorder in participant groups [37, 204, 205], one report that
included only choroidal data [206], and one report that did not
include HCs [207]. In addition, after carefully reading the citations,
we added to the SR one report on retinas in participants with
schizophrenia not identified in the database search [208]. From a
total of 65 reports included in the SR (Fig. 1, Tables S1-3), 44
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reports were included in the MA, excluding 11 reports with
overlapping cases [38, 71, 72, 76, 80, 89-91, 93, 95, 97], six reports
with NOS score < 6 [66, 73, 75, 99-101], and four reports without
the required numerical retinal data [10, 24, 59, 81] (Fig. 1).
Tables S1-3 describe the NOS score of all reports included in the
SR. Since 10 of the 64 reports in the SR had NOS scores that
differed between the two researchers, the final NOS score was
determined through discussion.

OCT Findings

Table S1 shows the main findings of the OCT studies included in
the SR. Thirty-seven studies with a total of 368,420 eyes of 202,982
participants (2680 participants with SSDs and 200,302 HCs) were
included in the MA (Fig. 1).

PRNFL thickness. In the MA of pRNFL average thickness and
superior, inferior, temporal, and nasal thickness, we included 26
studies (1921 eyes in 1083 SSD participants and 1778 eyes in 995
HCs), 17 studies (1389 eyes in 755 SSD participants and 1343 eyes
in 733 HCs), 17 studies (1389 eyes of 755 SSD participants and
1343 eyes of 855 HCs), 21 studies (1449 eyes of 855 SSD
participants and 1283 eyes of 742 HCs), and 22 studies (1496 eyes
of 902 SSD participants and 1333 eyes of 792 HCs), respectively.
The pRNFL average thickness and pRNFL thickness in four
quadrants were significantly thinner in SSD participants (Figs. 2, S1).
The LOO analysis showed that the difference remained significant
for pRNFL thicknesses, except for pRNFL nasal thickness
(Figs. S2-6). GOSH analysis identified one outlier [65] in pRNFL
average thickness (Fig. S7). After removing the outlier, statistical
significance remained for pRNFL average thickness (Table S4). For
pRNFL superior, inferior, temporal and nasal thickness, we
identified four [13, 21, 63, 65], three [12, 55, 65], six
[11, 21, 34, 53, 82, 83], and two outliers [13, 85], respectively
(Figs. S8-11). After removing the outliers, the significant difference
was lost for only pRNFL nasal thickness (Table S4). For pRNFL
average thickness and pRNFL thickness in four quadrants, a
counter-enhanced funnel plot and Egger’s regression test showed
no significant publication bias (Figs. S12, S13 and Table S5). The
meta-regression analysis showed no association between any of
the explanatory variables and the overall effect size for pRNFL
average thickness (Table 1). On the other hand, we observed a
negative correlation between the pooled estimates of pRNFL
superior thickness, duration of illness, and Positive and Negative
Symptom Scale (PANSS) negative scale score (Table 1). The pooled
estimate of pRNFL inferior thickness was negatively associated
with SSD participant age and duration of iliness (Table 1). Results
of the subgroup analysis showed that the differences remained
significant except for pRNFL inferior and nasal thickness, even in
the exclusion group (Figs. 3, S14). We found a significant
difference between the right and left eyes in the pooled estimates
of pRNFL temporal thickness (Figs. 3, S15). Due to high
heterogeneity for all pRNFL thicknesses, the GRADE rating result
was “very low” (Table S6).

MAT and MV. For MA of MAT and MV, we included 11 studies
(1069 eyes of 573 SSD participants and 196,168 eyes of 98,124
HCs) and 14 studies (1312 eyes of 660 SSD participants and
103,998 eyes of 52,014 HCs), respectively, in the MA. Participants
with SSDs showed a significant thinning of MAT and a significant
reduction in MV (Figs. 2, S16). The LOO analysis showed that a
significant difference remained after removing each study for MAT
and MV (Figs. S17, S18). In the GOSH analysis of MAT and MV, we
identified [54] and three studies [11, 34, 87], respectively, as
outliers (Figs. S19, S20). The significant difference remained after
removing outliers for MAT and MV (Table S7). Counter-enhanced
funnel plot and Egger's regression test showed significant
publication bias in MAT (Fig. S21, Table S5). The significant
difference was lost after adjusting for publication bias in MAT
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Identification of studies via databases

Identification of studies via other methods

Reports identified from: PubMed (n
=540). Web of Science (n = 565).
Scopus (n=1.213). PSYNDEX (n =

(n=0983)

Duplicate reports removed

Reports identified from:
Citation searching (n =2)

187) (n = 2.505)

Identification

A 4

Reports excluded: n = 1344

) Reports sought for eligibility ¢ Irrelevant reports(n=1.298)
m=1,522) * Not schizophrenia reports (n =45 )

+ Full-text reports not available (n=1)

Reports excluded: n=114

Books(n=3)
A 4

Editorials n=6)
Letters n=3)
Perspective (n=1)
Correction (n = 2)

Full-text reports assessed for :
eligibility (n=178) .

Screening

. . . =1
Reports included in a systematic )

review n=65) OCT(n=47). controls (n =1)

Reviews including meta-analysis (n=38)

Commentaries (n=19)

Meeting abstracts (n =35 )

Conference paper (n = 2)

Reports that combined schizophrenia and
bipolar disorder in patient groups (n=3)
* Areport containing only choroidal data (n

* A report that donot include normal

h 4

Reports excluded:
* Meeting abstract (n
=1)

Reports assessed for eligibility
m=2)

vy

OCTA(n=6).ERG(n=17) e

Reports excluded: n =21

Included

cases(n=11)

=6)

Reports included in meta-analysis (n =44 )
OCT(n=37).0OCTA(n =4).ERG(n=7) 4)

S

»{ *+ Reportsthat included overlapped
* Reports with NOS scores <6 (n

* Reports that do not include
necessary data on the retina (n =

Fig. 1 Flow diagram of the systematic review and meta-analysis according to PRISMA 2020. PRISMA preferred reporting items for
systematic reviews and meta-analyses, OCT optical coherence tomography, OCTA optical coherence tomography angiography, ERG

electroretinography, NOS Newcastle-Ottawa Scale.

(Table S5). No significant publication bias appeared to exist in MV
(Fig. S21, Table S5). SSD participant age and duration of illness
were positively associated with the overall estimates of MAT
(Table 2). There was no association between any of the
explanatory variables and the pooled estimate of MV (Table 2).
The subgroup analysis showed that differences remained sig-
nificant, even in the exclusion group, for both MAT and MV
(Figs. 3, S22). We found no significant difference between the right
and left eyes in the pooled estimates of MAT and MV (Fig. S23).
Due to the high heterogeneity and publication bias for MAT and
the high heterogeneity for MV, the GRADE rating results were
“very low" (Table S6).

MT in ETDRS grid. We included 20 studies (1867 eyes of 1031 SSD
participants and 1572 eyes of 872 HCs) in the MA for macular
central foveal thickness (MCFT). Participants with SSDs had
significantly thinner MCFT (Fig. S24). The LOO analysis showed
that the difference remained significant for MCFT after removing
each study one by one (Fig. S25). The GOSH analysis identified
three outliers [60, 61, 67] (Fig. S26). After removing the outliers,
the statistical significance remained for MCFT (Table S7). The
counter-enhanced funnel plot and Egger’s regression test showed
significant publication bias in MCFT (Fig. S27, Table S5). However,
after adjusting for publication bias, the differences remained
statistically significant (Table S5). The pooled estimate of MCFT
was positively associated with SSD participant age and duration of
iliness (Table 2). On the other hand, we found a negative
correlation between PANSS positive scale scores and pooled
estimates of MCFT (Table 2). Results of the subgroup analysis
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indicated that the differences remained significant, even in the
exclusion group (Fig. $28). We found no significant difference
between the right and left eyes in the pooled estimate of MCFT
(Fig. S29).

In the MA of superior, inferior, temporal, and nasal thickness in
the outer ring of the macula, we included 11 studies (850 eyes of
503 SSD participants and 783 eyes of 460 HCs), 11 studies (850
eyes of 503 SSD participants and 783 eyes of 460 HCs), nine
studies (687 eyes of 398 SSD participants and 663 eyes of 375
HCs), and ten studies (734 eyes of 445 SSD participants and 713
eyes of 425 HCs), respectively. All MTs in the outer ring were
significantly thinner in participants with SSDs (Fig. S24). The LOO
analysis showed that the difference remained significant after we
removed each study for all MTs in the outer ring (Figs. S30-S33). In
the superior, inferior, temporal, and nasal thickness in the outer
ring, we identified one [60], one [60], one [67], and two outliers
[61, 87], respectively (Fig. S34-37). After removing the outliers,
statistical significance remained for the four segmental MTs in the
outer ring (Table S7). The counter-enhanced funnel plot and
Egger’s regression test showed no significant publication bias in
the superior, inferior, and nasal thicknesses in the outer ring
(Figs. S27, 38, Table S5). For temporal thickness in the outer ring,
we did not perform Egger’s regression test because there were
fewer than ten studies. Assuming the existence of publication bias,
we performed the trim-and-fill method in the temporal thickness,
and the differences remained statistically significant (Table S5). We
found a positive correlation between SSD participant age and
duration of illness and the pooled estimate of temporal thickness
(Table 2). In all MTs in the outer ring, the subgroup analysis
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Kurtulmus et al. 2023 86 100.02 10.1400 80 9938 8.9500 007 [0.24; 037] 4.2%
Boudriot et al. 2022 120 90.44 86600 136 94.71 8.0800 051 [0.76,-0.26] 4.5%
Kaya et al. 2022 92 122.09 12.8800 92 12250 10.4900 003 [0.32; 025] 4.3%
Khalia et al. 60 102.17 9.3800 60 108.67 5.9000 082 [-1.20,-0.45] 3.9%
Hanifi Kokacya et al. 2022 47 107.89 133100 50 112.46 9.6100 039 [0.79; 001] 3.8%
Asanad et al 16 9180 93000 70 96.60 104000 049 [0.79,-019] 4.2%
Alizadeh et al. 2021 0 8674 12.9200 30 9 0 042 [0.87; 002] 3.6%
Gandu etal. 2021 58 99.15 10.4500 38 10120 14.8000 016 [0.57; 025] 3.7%
Jerotic et al. 202 4 9201 132400 78 9361 7.9200 014 [0.45] 0.16] 4.2%
Koman-Wierdak et al. 2021 24 118.00 23.5600 30 112557 9.0100 032 [0.22] 0.86] 3.1%
Liu et al. 20 6 8882 18.5000 320 103.66 123100 096 [-1.13,-0.79] 4.8%
Sarkar et al. 2021 20 102.11 11.9500 20 105.14 7.2600 030 [092; 032] 2.8%
Altun et al. 20 70 9587 10.8870 62 9925 12.6900 029 [0.63; 0.06] 4.0%
Budakoglu et al. 2020 22 108.50 12.0500 26 106.90 16.6000 011 [0.46] 0.68] 3.0%
Hosak et al. 2020 78 9264 99200 64 96.44 7.4400 043 [0.76,-009] 4.1%
Miller et al. 2020 21 9091 126300 24 9100 67100 001 [0.59; 0.58] 2.9%
Schonfeldt-Lecuona etal. 2020 49 97.00 10.4100 46 98.50 11.9200 013 [054; 027] 3.8%
Topcu-Yilmaz et al. 10132 85300 37 10127 6.9800 001 [0.40; 042] 3.7%
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Random effects model 1921 1778 -0.30 [-0.45; -0.14] 100.0%
Heterogeneity: /° = 80%, © = 01236, p < 0.01
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Fig. 2 Results of the meta-analysis of pRNFL average thickness, macular average thickness, mGCL-IPL, and optic cup volume. A pRNFL
average. B Macular average thickness. C Macular GCL-IPL. D Optic cup volume. Horizontal bars indicate 95% confidence intervals (95% Cls).
Total indicates the total number of participants’ eyes for which the mean and standard deviation were calculated. SMD standardized mean
difference, SD standard deviation, pRNFL peripapillary retinal nerve fiber layer, mGCL-IPL macular ganglion cell layer-inner plexiform layer.

showed that differences remained significant, even in the
exclusion group (Fig. S28). We found no significant difference in
pooled estimates between the right and left eyes in all MTs in the
outer ring (Fig. S29).

In the MA of superior, inferior, temporal, and nasal thickness in
the inner ring of the macula, we included 11 studies (907 eyes of
536 SSD participants and 861 eyes of 500 HCs), 11 studies (907
eyes of 536 SSD participants and 861 eyes of 500 HCs), ten studies
(721 eyes of 478 SSD participants and 729 eyes of 465 HCs), and
ten studies (791 eyes of 478 SSD participants and 791 eyes of 465
HCs), respectively. We observed a significant thinning in SSD
participants for all MTs in the inner ring (Fig. S2). In the LOO
analysis, the statistical significance remained after we removed
each study for all MTs in the inner ring (Figs. $S39-42). In the
superior, inferior, temporal, and nasal thickness in the inner ring,
we identified one [60], one [60], one [61], and two outliers [61, 67],
respectively (Figs. S43-46). After we removed the outliers, the
statistical significance remained for four segmental thicknesses in
the inner ring (Table S7). The counter-enhanced funnel plot and
Egger’s regression test showed no significant publication bias in
all MTs in the inner ring (Figs. S38, 47, Table S7). There was a
positive association between SSD participant age, duration of
illness, and the pooled estimate of the macular inner nasal
thickness, in addition to the same association between SSD
participant age and overall effect size of macular inner temporal
thickness (Table 2). For MT in four segments of the inner ring, the
results of the subgroup analyses revealed that the differences
remained significant, even in the exclusion group (Fig. $28). In MT
in four segments of the inner ring, we observed no significant
differences in the pooled estimates between the right and left
eyes (Fig. S29). Due to high heterogeneity and publication bias for
MCFT and high heterogeneity for all MTs in the outer and inner
rings, the GRADE rating results were “very low” (Table S6).

MGCL-IPL thickness. Nine studies (1384 eyes of 808 SSD
participants and 165,974 eyes of 101,219 HCs) were included
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in the MA for mGCL-IPL. The mGCL-IPL thickness was thinner in
participants with SSDs (Fig. 2). The LOO analysis revealed that
significant differences remained after each study was omitted
(Fig. S48). We identified one outlier [14] (Fig. S49). After the
outlier was removed, a significant difference remained (Table S8).
Fig. S47 shows the counter-enhanced funnel plot. Significant
differences remained after adjusting for publication bias
(Table S5). None of the explanatory variables (N=5) was
associated with the pooled estimate of mGCL-IPL thickness
(Table 2). Although only two studies excluded diabetes and
hypertension, the subgroup analyses revealed that the differ-
ence remained significant, even in the exclusion group (Fig. 3).
We also observed no significant differences in the pooled
estimates between the right and left eyes (Fig. S50). The GRADE
rating results were “very low” due to high heterogeneity for
mGCL-IPL (Table S6).

Optic cup. We included five studies (306 eyes of 164 SSD
participants and 258 eyes of 142 HCs) and four (540 eyes of 270
SSD participants and 532 eyes of 266 HCs) in the MA, respectively,
for CDR and OCV. OCV was significantly enlarged in participants
with SSDs (Fig. 2). On the other hand, no significant difference in
CDR was found between SSD participants and HCs (Fig. S16). In
OCV, the LOO analysis revealed significant differences were lost
after omitting the study by Jerotic et al. [63] or the study by Liu
et al. [65] (Fig. S51). No outliers were detected in both CDR and
OCV (Fig. S52). We show the counter-enhanced funnel plots in
CDR and OCV in Fig. S52. In OCV, significant differences
diminished after adjusting for publication bias (Table S5). We
did not meta-regression due to the small number of studies
included in the MA of CDR and OCV. The difference remained
significant, even in the exclusion group in CDR (Fig. S53).
Subgroup analyses were not performed in OCV because the
number of studies is 2 in both the exclusion and non-exclusion
groups. No significant differences in pooled estimates between
the right and left eyes were observed in CDR and OCV (Fig. S50).
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Table 1. Meta-regression analysis of the association between the explanatory variables and pooled estimates of pRNFL thicknesses.

Retinal parameter

PRNFL average
thickness

PRNFL thickness in four quadrants

Superior thickness

Inferior thickness

SPRINGER NATURE

No. of
studies

26

26
19
12
7

8
8
26
2
23
1
26

17

17
12

17

15

17
17

17

a0 O N

Explanatory variable
SSD participant age

Sex (% of male SSD participants)
Duration of illness (M)

PANSS total score

PANSS positive scale score
PANSS negative scale score

PANSS general psychopathology scale
score

Antipsychotic dose (chlorpromazine
equivalent [mg/dayl)

Smoking (%)

Body mass index (kg/m?)
OCT device type
TD-OCT

SD-OCT

SS-OCT

NOS

SSD participant age
Sex (% of male SSD participants)
Duration of illness (M)

PANSS total score
PANSS positive scale score
PANSS negative scale score

PANSS general psychopathology scale
score

Antipsychotic dose (chlorpromazine
equivalent [mg/day])

Smoking (%)

Body mass index (kg/m?)
OCT device type
TD-OCT

SD-OCT

SS-OCT

NOS

SSD participant age

Sex (% of male SSD participants)
Duration of illness (M)

PANSS total score
PANSS positive scale score
PANSS negative scale score

PANSS general psychopathology scale
score

Antipsychotic dose (chlorpromazine
equivalent [mg/day])

Smoking (%)

Body mass index (kg/m?)
OCT device type
TD-OCT

Coefficient

—0.0144

—0.0058
—0.0012
—0.0111
—0.0356
—0.0284
—0.0273

0.0002

0.0016
0.0607
0.0817

—0.1093

—0.0122
—0.0124
—0.0024

—0.0081
—0.0249
—0.0325

—0.0265

—0.0008

0.0027

—0.115
—0.0261

—0.0003
—0.0029

—0.0022
—0.0021
—0.0047
—0.0045

—0.0006

—0.125

95% CI

[—0.0412; 0.0125]

[-0.0183; 0.0068]
[—0.0034; 0.0010]
[—0.0253; 0.0032]
[-0.0927; 0.0215]
[—0.0936; 0.0367]
[-0.0728; 0.0182]

[—0.0008; 0.0013]

[-0.0165; 0.0197]
[-0.1077; 0.2291]
[—0.3799; 0.5433]

[-0.2701; 0.0515]

[-0.0397; 0.0152]
[-0.0250; 0.0002]

[—0.0048;
—0.0001]

[-0.0168; 0.0006]
[-0.0604; 0.0107]

[-0.0631;
—0.0019]

[-0.0531; 0.0001]

[—0.0022; 0.0007]

[—0.4774; 0.4829]

[-0.2687; 0.0387]

[—0.0487;
—0.0034]

[-0.0125; 0.0120]

[-0.0043;
—0.0016]

[—0.0142; 0.0098]
[—-0.0486; 0.0443]
[—0.0495; 0.0400]
[—0.0426; 0.0336]

[-0.0015; 0.0002]

[-0.5774; 0.3274]

SE

0.0137

0.0064
0.0011
0.0073
0.0291
0.0332
0.0232

0.0005

0.0092
0.0859
0.2355

0.0821

0.014
0.0064
0.0012

0.0044
0.0182
0.0156

0.0136

0.0007

0.245

0.0784
0.0115

0.0063
0.0007

0.0061
0.0237
0.0228
0.0194

0.0004

0.2308

p value
0.2941

0.368
0.274
0.1271
0.2215
0.3925
0.2397

0.657

0.8637
0.4798
0.7287

0.1828

0.3822
0.0533
0.0413

0.0672
0.1708
0.0373

0.0508

0.2873

0.9911

0.1427
0.0239

0.966
<0.0001

0.7142
0.928

0.8364
0.8176

0.1404

0.5881
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Table 1. continued
Retinal parameter No. of Explanatory variable Coefficient 95% ClI SE p value
studies
15 SD-OCT
SS-OCT
17 NOS —0.111 [—0.2574; 0.0354] 0.0747 0.1371
Temporal thickness 21 SSD participant age 0.0007 [—0.0236; 0.0250] 0.0124 0.9574
21 Sex (% of male SSD participants) —0.0059 [-0.0157; 0.0039] 0.005 0.2359
15 Duration of illness (M) 0.001 [-0.0012; 0.0033] 0.0011 0.3781
9 PANSS total score —0.0017 [—0.0138; 0.0104] 0.0062 0.7811
5 PANSS positive scale score —0.0135 [—0.0566; 0.0297] 0.022 0.5411
5 PANSS negative scale score 0.0022 [—0.0418; 0.0462] 0.0225 0.9212
5 PANSS general psychopathology scale 0.0017 [—0.0372; 0.0407] 0.0199 0.931
score
7 Antipsychotic dose (chlorpromazine 0.0000 [—0.0012; 0.0012] 0.0006 0.9473
equivalent [mg/day])
Smoking (%) 0.0002 [-0.0116; 0.0120] 0.006 0.9698
4 Body mass index (kg/m?) _
21 OCT device type —0.0484 [—0.4543; 0.3574] 0.2071 0.8151
2 TD-OCT
19 SD-OCT
0 SS-OCT
21 NOS —0.0869 [-0.2153; 0.0415] 0.0655 0.1845
Nasal thickness 22 SSD participant age 0.0018 [—0.0273; 0.0309] 0.0148 0.9041
22 Sex (% of male SSD participant) —0.0092 [—0.0208; 0.0023] 0.0059 0.1162
15 Duration of illness (M) —0.0003 [—0.0034; 0.0028] 0.0016 0.8609
10 PANSS total score —0.0122 [—0.0244; 0.0001] 0.0063 0.052
5 PANSS positive scale score —0.0408 [-0.1007; 0.0191] 0.0306 0.1816
5 PANSS negative scale score —0.0492 [—0.1163; 0.0179] 0.0342 0.1506
5 PANSS general psychopathology scale —0.0433 [—0.1029; 0.0164] 0.0304 0.1551
score
7 Antipsychotic dose (chlorpromazine —0.0006 [—0.0013; 0.0002] 0.0004 0.148
equivalent [mg/day])
Smoking (%) 0.0043 [—0.0064; 0.0149] 0.0054 04316
Body mass index (kg/m?) =
22 OCT device type 0.1172 [-0.3749; 0.6093] 0.2511 0.6407
2 TD-OCT
20 SD-OCT
0 SS-OCT
22 NOS —0.0299 [—0.1962; 0.1365] 0.0849 0.725

Cl confidence interval, NOS Newcastle-Ottawa Scale, PANSS Positive and Negative Symptom Scale, pRNFL peripapillary retinal nerve fiber layer, SD-OCT spectral
domain-optical coherence tomography, SS-OCT swept source-optical coherence tomography, TD-OCT time domain-optical coherence tomography.

The GRADE rating result was “very low” due to high heterogeneity
for OCV (Table S6).

OCTA findings

Table S2 shows the main findings of the OCTA studies included in
the SR. We included OCTA studies with a total of 488 eyes of 320
participants (148 SSD participants and 172 HCs) in the MA (Fig. 1).
In the MA of the FAZ and supefrficial foveal VD, we included three
studies (202 eyes of 136 SSD participants and 231 eyes of 157 HCs)
and three studies (118 eyes of 83 SSD participants and 150 eyes of
100 HCs), respectively. The FAZ and superficial foveal VD were not
significantly different between SSD participants and HCs (Fig. S54).
GOSH identified no outlier (Table S9). Figure S55 shows the
counter-enhanced funnel plots. There was no change in the
results after adjusting for publication bias (Table S5).

Molecular Psychiatry

Findings of photopic and scotopic fERG

Table S3 shows the main findings of the fERG studies included in the
SR. Seven studies (311 SSD participants and 362 HCs) were included
in the MA of fERG in the photopic and scotopic conditions (Fig. 1). In
the a-wave amplitude of photopic and scotopic fERG, we included
six studies (261 SSD participants and 307 HCs) and four studies (209
SSD participants and 259 HCs), respectively. The amplitude of the
a-wave was significantly reduced in SSD participants in photopic
and scotopic fERG (Fig. 4). In the a-wave amplitude of both
conditions, no significant differences were lost after we removed
each study in the LOO analysis (Figs. S56, 57). Outliers were not
identified in the GOSH analysis (Table S10). After we adjusted for
publication bias, significant differences remained (Fig. S58,
Table S11). In the photopic a-wave amplitude, we found no
association between age, sex, and overall effect size (Table $12). In
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Fig. 3 Results of the subgroup analysis. A The results of the subgroup analysis between the studies in which diabetes mellitus and
hypertension were excluded (exclusion) and not excluded (non-exclusion) in pRNFL average thickness. B The results of the subgroup analysis
between exclusion and non-exclusion in macular average thickness. C The results of the subgroup analysis between exclusion and non-
exclusion in mGCL-IPL. D The results of the subgroup analysis between exclusion and non-exclusion in optic cup volume. E The results of the
subgroup analysis between right and left eyes in pRNFL temporal thickness. Horizontal bars indicate 95% confidence intervals (95% Cls). Total
indicates the total number of participants’ eyes for which the mean and standard deviation were calculated. SMD standardized mean
difference, SD standard deviation, pRNFL peripapillary retinal nerve fiber layer, mGCL-IPL macular ganglion cell layer-inner plexiform layer.

the b-wave amplitude of photopic and scotopic fERG, we included
seven studies (287 SSD participants and 337 HCs) and four studies
(209 SSD participants and 259 HCs), respectively. The b-wave
amplitude was significantly reduced in participants with SSDs in
photopic and scotopic fERG (Fig. 4). In the b-wave amplitude of both
conditions, the significant differences remained after we removed
each study in the LOO analysis (Figs. S59, 60). Outliers were not
identified in the GOSH analysis (Table S10). Significant differences
remained after adjusting for publication bias (Table S11). There was
no association between age, sex, and pooled estimates of photopic
b-wave amplitude (Table S12). The GRADE rating results were
“moderate” to “low” for a- and b-wave amplitudes in photopic and
scotopic fERG (Table S6). In PhNR amplitude, we observed no
significant differences between SSD participants and HCs. In
photopic and scotopic a-wave latency time, we included six studies
(261 SSD participants and 307 HCs) and four studies (209 SSD
participants and 259 HCs), respectively. Photopic a-wave latency
time was significantly shorter in participants with SSDs (Fig. 4). We
found no significant differences in photopic b-wave and scotopic a-
and b-wave latency time (Fig. S61). In photopic a-wave latency time,
the LOO analysis revealed that the significant difference was lost
after we omitted the study by Fridel et al. [56] (Fig. S62), and the
GOSH analysis identified no outliers (Table S10). After adjusting for
publication bias, we found that the difference was no longer
significant (Fig. S63, Table S11). We found no association between
any of the explanatory variables (N > 5) and the pooled estimate of
photopic a-wave latency time (Table S12). The GRADE rating result
was “low” for photopic a-wave latency time (Table S6).

DISCUSSION
The MA for retinal thickness, which includes more studies than any
previously reported MA, shows that SSD participants have
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thinning of pRNFL average thickness, pRNFL thicknesses in all
four quadrants, MAT, MTs in all sectors of the ETDRS grid, and
mGCL-IPL, in addition to reduced MV, and enlarged optic cup
values. In addition, the exclusion of participants with diabetes and
hypertension did not change the results, except in the case of
PRNFL inferior and nasal thickness. Furthermore, there was a
significant difference between the right and left eye in pRNFL
temporal thickness, although, for the most part, there is not
asymmetry. There was a positive correlation between disease
duration and MAT, in contrast to a negative association between
disease duration and pRNFL average thickness. Also, a negative
correlation was found between the severity of positive and
negative symptoms, and MCFT and pRNFL superior thickness,
respectively. The MA for fERG revealed that SSD participants had
reduced amplitudes of light- and dark-adaptive a- and b-waves
and a shortened light-adaptive a-wave latency.

Although the mechanism of retinal thinning remains unclear in
SSD participants, several hypotheses have been postulated. One
hypothesis is retrograde transsynaptic degeneration [5, 128, 2091. In
rodents with damaged occipital lobes, neurodegeneration of the
retina has been reported to occur after degeneration of neurons in
the lateral geniculate nucleus of the thalamus that project to V1,
and abnormalities in the structure and function of the occipital
lobes and thalamus have been reported in schizophrenia partici-
pants [210, 211]. In a more recent study involving a larger sample
size, participants with psychosis showed significant reductions in
area, thickness, and volume in the primary visual area (Brodmann
area 17/V1), secondary visual area (Brodmann area 18/V2), and
middle temporal (V5/MT) region, with gender-dependent changes
in area and volume in V1 and V2 areas (i.e., reduction in area and
volume of these regions limited to female probands) [212]. In a
follow-up study of untreated participants with first-episode schizo-
phrenia presenting with visual impairment, the authors found a
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Table 2. Meta-regression analysis of the association between the explanatory variables and pooled estimates of macular thicknesses.

Retinal parameter No. of Explanatory variable Coefficient 95% Cl SE p value
studies
Macular average 11 SSD participant age 0.0409 [0.0152; 0.0667] 0.0131 0.0018
thickness
1 Sex (% of male SSD participants) 0.0036 [—0.0119; 0.0190] 0.0079 0.6496
5 Duration of illness (M) 0.0046 [0.0005; 0.0086] 0.0021 0.0289
3 PANSS total score —
2 PANSS positive scale score —
2 PANSS negative scale score —
2 PANSS general psychopathology scale —
score
3 Antipsychotic dose (chlorpromazine —
equivalent [mg/day])
2 Smoking (%) —
2 Body mass index (kg/m?) —
11 OCT device type 0.2468 [-0.5782; 1.0719] 0.421 0.5576
0 TD-OCT
10 SD-OCT
1 SS-OCT
11 NOS —0.0341 [—0.0052; 0.0002] 0.1632 0.0673
Macular volume 14 SSD participant age —0.0154 [—0.0362; 0.0054] 0.0106 0.1469
14 Sex (% of male SSD participants) 0.0024 [—-0.0106; 0.0155] 0.0067 0.7136
9 Duration of illness (M) —0.0025 [—1.8300; 0.0673] 0.0014 0.0673
4 PANSS total score —
3 PANSS positive scale score —
3 PANSS negative scale score —
2 PANSS general psychopathology scale —
score
6 Antipsychotic dose (chlorpromazine —0.0002 [-0.0010; 0.0005] 0.0004 0.5449
equivalent [mg/day])
3 Smoking (%) —
5 Body mass index (kg/m?) 0.0753 [—0.1390; 0.2896] 0.1094 0.4911
14 OCT device type —0.2168 [—0.5128; 0.0792] 0.1510 0.1512
2 TD-OCT
11 SD-OCT
1 SS-OCT
14 NOS —0.1585 [—0.3336; 0.0166] 0.0893 0.0761
Macular thickness in ETDRS grid
Macular central foveal 20 SSD participant age 0.034 [0.0011; 0.0669] 0.0168 0.0426
thickness
20 Sex (% of male SSD participants) —0.0021 [—0.0152; 0.0109] 0.0066 0.7472
13 Duration of illness (M) 0.0038 [0.0007; 0.0070] 0.0016 0.0175
11 PANSS total score —0.0043 [—0.0213; 0.0126] 0.0087 0.6156
6 PANSS positive scale score —0.1911 [—0.2955; —0.0868] 0.0532 0.0003
6 PANSS negative scale score 0.0859 [-0.0453; 0.2171] 0.067 0.1996
5 PANSS general psychopathology scale 0.0257 [-0.1103; 0.1617] 0.0694 0.7112
score
10 Antipsychotic dose (chlorpromazine 0.0002 [—0.0007; 0.0011] 0.0004 0.6636
equivalent [mg/day])
7 Smoking (%) 0.0038 [—0.0082; 0.0159] 0.0061 0.5356
5 Body mass index (kg/mz) —0.0426 [-0.1677; 0.0825] 0.0638 0.5047
20 OCT device type 0.2285 [—0.2974; 0.7543] 0.2683 0.3945
18 TD-OCT
1 SD-OCT
1 SS-OCT
20 NOS 0.0002 [-0.1816; 0.1820] 0.0927 0.9982
Inner ring
Superior thickness 1 SSD participant age 0.0113 [—0.0288; 0.0515] 0.0205 0.5801
11 Sex (% of male SSD participants) 0.0055 [—0.0064; 0.0174] 0.0061 0.3624
6 Duration of illness (M) —0.0007 [—0.0026; 0.0012] 0.001 0.4577
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Table 2. continued

Retinal parameter No. of Explanatory variable Coefficient 95% Cl SE p value
studies
5 PANSS total score —0.0038 [—0.0120; 0.0044] 0.0042 0.3644
3 PANSS positive scale score =
3 PANSS negative scale score —
3 PANSS General psychopathology scale —
score
2 Antipsychotic dose (chlorpromazine —
equivalent [mg/day])
4 Smoking (%) —
2 Body mass index (kg/m?) —
1 OCT device type —
0 TD-OCT
1 SD-OCT
0 SS-OCT
1 NOS 0.0572 [—0.1058; 0.2202] 0.0832 0.4916
Inferior thickness 1 SSD participant age 0.0178 [-0.0165; 0.0521] 0.0175 0.3089
1 Sex (% of male SSD participants) 0.0061 [—0.0044; 0.0166] 0.0053 0.2556
6 Duration of illness (M) 0.0004 [—0.0015; 0.0023] 0.001 0.6979
5 PANSS total score —0.0051 [—0.0148; 0.0046] 0.005 0.3069
3 PANSS positive scale score —
3 PANSS negative scale score —
3 PANSS general psychopathology scale —
score
2 Antipsychotic dose (chlorpromazine —
equivalent [mg/day])
4 Smoking (%) —
2 Body mass index (kg/m?) =
1 OCT device type —
0 TD-OCT
1 SD-OCT
0 SS-OCT
1 NOS 0.085 [—-0.0485; 0.2185] 0.0681 0.2122
Temporal thickness 10 SSD participant age 0.0386 [0.0025; 0.0747] 0.0184 0.036
10 Sex (% of male SSD participants) 0.006 [—0.0071; 0.0191] 0.0067 0.3677
6 Duration of illness (M) 0.0024 [—0.0008; 0.0056] 0.0017 0.1469
5 PANSS total score —0.0058 [-0.0179; 0.0064] 0.0062 03514
3 PANSS positive scale score —
3 PANSS negative scale score —
3 PANSS General psychopathology scale —
score
2 Antipsychotic dose (chlorpromazine —
equivalent [mg/day])
4 Smoking (%) —
2 Body mass index (kg/m?) —
10 OCT device type —
0 TD-OCT
10 SD-OCT
0 SS-OCT
10 NOS 0.0373 [—0.1375; 0.2121] 0.0892 0.6757
Nasal thickness 10 SSD participant age 0.0553 [0.0228; 0.0879] 0.0166 0.0009
10 Sex (% of male SSD participants) 0.0002 [-0.0147; 0.0150] 0.0076 0.9818
6 Duration of illness (M) 0.0041 [0.0010; 0.0072] 0.0016 0.009
5 PANSS total score —0.0068 [—0.0308; 0.0173] 0.0123 0.5827
3 PANSS positive scale score —
3 PANSS negative scale score —
3 PANSS general psychopathology scale —

score
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Table 2. continued

Retinal parameter No. of Explanatory variable Coefficient 95% Cl SE p value

Outer ring
Superior thickness

Inferior thickness

Temporal thickness
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studies
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10

11
11
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11

11

11

11
11

N NN D

— —

N N N WU OV OV = O = O = = N
-

Antipsychotic dose (chlorpromazine
equivalent [mg/day])

Smoking (%)

Body mass index (kg/m?)
OCT device type
TD-OCT

SD-OCT

SS-OCT

NOS

SSD participant age

Sex (% of male SSD participants)
Duration of illness (M)

PANSS total score

PANSS positive scale score
PANSS negative scale score

PANSS general psychopathology scale
score

Antipsychotic dose (chlorpromazine
equivalent [mg/day])

Smoking (%)

Body mass index (kg/m?)
OCT device type

TD-OCT

SD-OCT

SS-OCT

NOS

SSD participant age

Sex (% of male SSD participants)
Duration of illness (M)
PANSS total score

PANSS positive scale score
PANSS negative scale score

PANSS general psychopathology scale
score

Antipsychotic dose (chlorpromazine
equivalent [mg/day])

Smoking (%)

Body mass index (kg/m?)
OCT device type

TD-OCT

SD-OCT

SS-OCT

NOS

SSD participant age

Sex (% of male SSD participants)
Duration of illness (M)
PANSS total score

PANSS positive scale score
PANSS negative scale score

PANSS general psychopathology scale
score

Antipsychotic dose (chlorpromazine
equivalent [mg/day])

Smoking (%)
Body mass index (kg/m?)
OCT device type

0.0337

—0.0015
—0.0007
—0.0016

0.0628
0.0362
0.001

0.0019

0.1451
0.0436
—0.0029
0.0028

[-0.1621; 0.2294]

[-0.0555; 0.0525]
[-0.0174; 0.0160]
[—0.0072; 0.0040]

[-0.2111; 0.3366]
[—0.0063; 0.0788]
[-0.0132; 0.0151]
[—0.0006; 0.0044]

—0.0663; 0.3565]
0.0189; 0.0683]
—0.0156; 0.0099]

[
[
[
[0.0006; 0.0050]

0.0999

0.0275
0.0085
0.0029

0.1397
0.0217
0.0072
0.0013

0.1079
0.0126
0.0065
0.0011

0.736

0.9562
0.9346
0.5859

0.6533
0.0949
0.8955
0.1276

0.1786
0.0005
0.6584
0.0113
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Table 2. continued

No. of
studies
0 TD-OCT
9 SD-OCT
0 SS-OCT
9 NOS
Nasal thickness 10

Retinal parameter Explanatory variable

SSD participant age

10 Sex (% of male SSD participants)

5 Duration of illness (M)
PANSS total score
PANSS positive scale score

N NN D

score

PANSS negative scale score

Coefficient 95% Cl SE p value

0.0457
0.0401
0.007
0.002

[—0.1936; 0.2850]
[-0.0020; 0.0822]
[-0.0083; 0.0223]
[—0.0014; 0.0055]

0.1221
0.0215
0.0078
0.0018

0.7083
0.062

0.3698
0.2462

PANSS general psychopathology scale —

2 Antipsychotic dose (chlorpromazine —

equivalent [mg/day])
Smoking (%)
Body mass index (kg/m?)

o

OCT device type
TD-OCT

SD-OCT

SS-OCT

NOS

SSD participant age

o

o

Macular GCL-IPL

Duration of illness (M)
PANSS total score
PANSS positive scale score

W w w w u vV VvV = O = 0O = = W

score

v

equivalent [mg/day])
Smoking (%)

Body mass index (kg/m?)
OCT device type
TD-OCT

SD-OCT

SS-OCT

NOS

O = N O 0 b W

Sex (% of male SSD participants)

PANSS negative scale score

Antipsychotic dose (chlorpromazine

0.0171
0.0054
0.0049
0.0012

[-0.2596; 0.2937
[-0.0102; 0.0210
[-0.0136; 0.0233
[-0.0022; 0.0047

0.1411
0.008

0.0094
0.0018

0.9038
0.4968
0.607

1
]
]
1 0.4923

PANSS general psychopathology scale —

[-0.0017; 0.0030] 0.0012 0.5879

[—0.3258; 0.9419] 0.3234 0.3409

—0.0487 [-0.2010; 0.1036] 0.0777 0.5308

Cl confidence interval, GCL-IPL ganglion cell layer-inner plexiform layer, NOS Newcastle-Ottawa Scale, PANSS Positive and Negative Symptom Scale, SD-OCT
spectral domain-optical coherence tomography, SS-OCT swept source-optical coherence tomography, TD-OCT time domain-optical coherence tomography.

significant correlation between decreased volume of gray matter in
the visual cortex and retinal thinning [69]. However, not all studies
reported that participants with schizophrenia have structural
abnormalities in the occipital lobe or thalamus, which raises
questions that cannot be explained by this hypothesis alone
[213]. Another hypothesis is that amacrine cells in the retina, which
synapse with ganglion cells in the inner reticular formation,
synthesize and release dopamine [214], and that changes in
dopamine signaling between amacrine cells and ganglion cells may
cause ganglion cell damage, which is reportedly caused by changes
in dopamine signaling between amacrine cells and ganglion cells
[10]. An additional consideration is the potential link between these
observed effects and the process of excessive synaptic pruning
[215]. This phenomenon, known for its association with the
reduction of cortical grey matter in schizophrenia, could underlie
some of the retinal changes. Another possibility is that the genetic
factors involved in the risk of developing schizophrenia affect the

SPRINGER NATURE

brain and retina, which are the same embryologically and have
shared functional and structural characteristics. This genetic linkage
is supported by genome-wide single nucleotide polymorphisms
identified in the whole genome association analysis of macular
retinal thickness that were at risk for developing schizophrenia
[216]. Future neuro-retinal imaging genetics studies to identify the
shared genetic basis for brain volume reduction and retinal thinning
in SSD participants may be useful in elucidating the pathogenesis of
retinal thinning. Also, further investigation into these genetic
markers could provide deeper insights into both the development
of schizophrenia and the correlated retinal changes. The discovery
of common genetic pathways between the retina and brain may
open new avenues for early detection and targeted therapies in
schizophrenia spectrum disorders. Despite these promising leads,
our understanding of the underlying mechanisms for retinal cell loss
in psychosis is, at this stage, largely theoretical and requires further
investigation.

Molecular Psychiatry
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Results of the meta-analysis of fERG in the photopic and scotopic conditions. A The a-wave amplitude of photopic fERG. B The

b-wave amplitude of photopic fERG. C The a-wave amplitude of scotopic fERG. D The b-wave amplitude of scotopic fERG. E The a-wave latency
of photopic fERG. Horizontal bars indicate 95% confidence intervals (95% Cls). Total indicates the total number of participants for which the
mean and standard deviation were calculated. fERG flash electroretinography, SMD standardized mean difference, SD standard deviation.

It is not clear when retinal thinning occurs, i.e.,, whether SSD
participants have an inherently thinner retina or whether retinal
thinning occurs after the onset of the disease. A study by
Kurtulmus et al., reported that even unaffected first-degree
relatives of participants with schizophrenia show retinal thinning
compared to HCs, suggesting that retinal thinning is a trait marker
[74]. Given the preliminary evidence of retinal thinning in
unaffected first-degree relatives, as well as the evidence that
OCT findings are related to the level of symptoms, OCT findings
show characteristics of both vulnerability markers and episode
markers may thus represent mediating vulnerability markers [217].
Recently, a longitudinal study investigated whether macular
retinal thickness is related to the risk of developing SSDs [54].
Interestingly, the study found no association between macular
retinal thickness and the development of SSDs. It should be noted,
however, that the participants in the study were in their 405,
which is not typically the age of onset of schizophrenia. As such,
this age discrepancy might have affected the findings. On the
other hand, thinning of the retina has been reported in
participants with first-episode untreated schizophrenia with visual
disturbances [69], and a decrease in retinal thickness was
observed for a period of time after treatment, suggesting that
thinning of retinal thickness may reflect both an early onset of
pathological processes and the effects of antipsychotic treatment
in specific subtypes of schizophrenia. On the other hand, Lai et al.
reported no significant differences in macular retinal thickness
and pRNFL thickness among age-matched participants with first
psychotic episodes and HCs, with the exclusion of diabetes and
hypertension. The results suggest that retinal structure is not
affected early in the onset of SSDs [75]. However, Lai and
colleagues’ study should be interpreted with caution due to the
relatively small number of cases and unmatched sexes. Of note,
however, a follow-up study observed significant atrophy in the
retinal microvasculature in the same first episode participants [25],
suggesting evidence of retinal changes at the first episode, and
possibly a sequence wherein vascular changes precede neural
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changes. To determine whether thinning of the retina reflects the
pathological process at the onset of schizophrenia or the effect of
treatment, a longitudinal study based on young adults in the age
at which schizophrenia occurs may be warranted to examine
retinal thickness before and after the onset of schizophrenia. We
found a negative correlation between estimates of pRNFL
thickness and duration of illness. This finding suggests that the
degree of thinning of pRNFL thickness in SSD participants increase
with the duration of illness compared to HCs, which supports the
hypothesis that schizophrenia is a neurodegenerative disease. On
the other hand, unexpectedly, MT was positively correlated with
the duration of illness. Different from the peripapillary region, the
macula is an area with a high density of neuronal cells. Therefore,
the results suggest that neuronal loss in the macular retina is more
pronounced in the early stages of disease onset, followed by a
slowing of the degree of loss due to treatment and other factors.
This pattern emphasizes the dynamic nature of the disease, which
is in line with contemporary thinking about the course of
schizophrenia [218]. Another potential explanation is that
increased macular thickness could result from macular edema,
which is seen in diseases such as diabetic retinopathy and age-
related macular degeneration [219, 220]. Thus, the positive
correlation between MT and the duration of illness may suggest
the presence of a progressive condition, such as macular edema,
that intensifies with longer disease duration rather than indicating
a slowing of neuronal loss. However, this is a very tentative
hypothesis as there are no prior studies reporting that older
individuals with SSD have more edema than younger individuals
with SSD. A third possible explanation is based on the fact that
individuals with schizophrenia have a life expectancy approxi-
mately 15-20 years shorter than that of non-psychiatrically ill
peers [221]. Much of this premature mortality is due to diseases
such as cardiovascular disease and diabetes, which could
exacerbate macular thinning. This means that older SSD
individuals who, if they lived, would have a thinner macula are
dying due to comorbid medical conditions. Thus, those who are
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still alive (and participate in studies) are, on average, physically
healthier than younger individuals with SSD. A fourth explanation
is that older SSD individuals have been treated with first-
generation antipsychotics (e.g., Haloperidol), which have fewer
metabolic side effects. Many of these individuals will have been
maintained on these antipsychotics (if effective) as they aged. In
contrast, younger individuals with SSD are more likely to have
been initially treated with second-generation antipsychotics,
which we have major metabolic side effects (weight/body mass
index gain, diabetes, etc.) [222, 223] associated with macular
thinning. In other words, it could be that older individuals have
thicker MT simply because they have had lower exposure to a
class of medications likely to have caused macula thinning. On the
other hand, more recent studies have accelerated age-related
decline in SSD participants compared to HCs [23, 224, 225].
Further studies are needed to clarify the discrepancy and to
examine how the retinal findings vary with age and disease
duration (e.g., are these relationships linear or non-linear, or do
they vary over decades).

A prior study reported that significant differences in retinal
thinning in schizophrenia participants disappeared when hyper-
tension and diabetes were excluded [21]. However, we found that
most retinal thicknesses were significantly thinner in SSD
participants, even in an MA, including only studies that excluded
hypertension and diabetes. We also found significant differences
between the left and right eyes in pRNFL temporal thickness. This
result indicates the importance of bilateral analysis when
comparing retinal thickness between SSD participants and HCs.

Several studies have reported abnormalities of VD in the
peripapillary and macula region in SSD participants
[24, 25, 58, 64, 70]. However, the results are inconsistent.
Silverstein et al. reported lower VD in the superficial vascular
layer at the macula in the left eye in SSD participants [25]. On the
other hand, Bannai et al. reported higher superficial skeletonized
VD (SVD), choriocapillaris VD, and choriocapillaris SVD in the
macular region, and in participants with disease duration <5 years,
higher superficial VD, choriocapillaris SVD, and choriocapillaris
fractal dimension in the right eye [24]. These discrepancies may be
due to differences in the area of measurement for VD, as well as in
the characteristics of the participants, but further investigation is
required. Although the number of studies included in the MA is
limited, the present study revealed no significant difference
between SSD participants and HCs in FAZ and superficial foveal
VD. Budakolglu et al. reported thinning of the pRNFL temporal
thickness and decreased VD in the same area [70]. Silverstein et al.
also reported a significant positive correlation between macular
PD and central retinal thickness [25], and MV. These results
suggest that retinal neural changes in SSD participants reflect
microvascular abnormalities.

The a- and b-waves amplitudes were significantly attenuated in
SSD participants. Further, we also revealed a shortened a-wave
latency under photopic conditions in participants with SSDs. Fridel
et al. found a reduction in fERG a-wave amplitude and thinning of
the outer nuclear layer (ONL) in participants with schizophrenia,
and a significant positive correlation between a-wave amplitude
and ONL thickness [56]. The findings suggest that structural
changes in the retina partially contribute to the reduced a-wave
amplitude. Furthermore, b-waves reflect bipolar cell functions, and
thinning of the inner nuclear layer containing the cell bodies of
bipolar cells has been previously reported in SSD participants [78],
which may contribute to b-wave attenuation. Ultimately, the
intricate connections between functional loss and structural
changes in the retina are yet to be fully understood. The dynamic
interactions between variations in the photoreceptor layer and
higher-order structures such as mGCL-IPL [56], along with their
correlations with distinct dopaminergic states in different stages
(acute vs. chronic) and proposed classifications (hyperdopaminer-
gic vs. normodopaminergic) [226], add layers of complexity that
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keep this subject an open and intriguing question. These observed
changes may not merely reflect neuronal degeneration tied to the
disease but could also be indicative of early markers or factors
predisposing to the condition.

Retinal structure and function can be measured noninvasively,
making these potentially useful biological indicators for predict-
ing prognosis and functional decline, and assessing treatment
response. However, interpretation of retinal data can be
complicated due to the increase of various confounding factors
(e.g., smoking, metabolic factors, etc.) with aging, and the
association of these factors (as well as others such as sleep
disturbance) with SSDs. Therefore, it may be useful to conduct
longitudinal studies in young adults or adolescents with at-risk
mental states and with first-episode psychosis to examine the
applicability of these measures for predicting the transition to
psychosis and treatment response, and for assessing the severity
of symptoms and cognitive dysfunction. Furthermore, most of
the studies so far have been using only either OCT or ERG, and
therefore, a multimodal approach that simultaneously measures
OCT, OCTA, and fERG, combined with other genetic factors and
neuroimaging findings, may accelerate the understanding of the
pathology underlying retinal abnormality and the development
of more accurate prediction models for prognosis, treatment
response, and neurodegeneration in the brain, cognitive decline,
and decline in real-world functioning. In addition, studies have
also reported the association between other psychiatric dis-
orders, such as bipolar disorder [8, 227, 228], major depressive
disorders [229], autism spectrum disorders [230], attention-
deficit/hyperactivity disorder [231, 232], and retinal thinning. To
clarify the pathophysiology of shared retinal thinning across
several psychiatric disorders, a dimensional approach examining
the association between clinical features common in all
psychiatric disorders (e.g., cognitive impairment) and retinal
thinning would be useful.

This study has several limitations. First, because there were
fewer OCTA and fERG studies relative to OCT studies, we were
unable to assess associations with clinical indicators such as
psychiatric symptoms for these variables in the meta-regression
analysis. Furthermore, we did not perform a subgroup analysis in
OCTA and fERG studies. The small number of studies, especially for
OCTA, suggests that further studies and an MA including more
studies would be needed to draw conclusions. Second, we
excluded from the MA studies that did not include necessary
numerical data for the MA.

In conclusion, the study revealed that pRNFL thickness and
retinal thickness in macular regions were thinner in SSD
participants, even after excluding the effects of hypertension
and diabetes. Furthermore, the fERG a- and b-waves amplitude in
photopic and scotopic conditions was attenuated, and the latency
of the a-wave in photopic conditions was shortened. These results
suggest that functional and structural abnormalities in the retina
may be potential state/trait markers for predicting prognosis,
assessing treatment response, and severity of disease in SSD
participants. Future longitudinal multimodal neuro-retinal imaging
genetics studies are needed to clarify the pathological mechan-
isms of retinal abnormalities and to establish the retina as a state/
trait marker.
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