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Cannabis is widely used worldwide, yet its links to health outcomes are not fully understood. DNA methylation can serve as a
mediator to link environmental exposures to health outcomes. We conducted an epigenome-wide association study (EWAS) of
peripheral blood-based DNA methylation and lifetime cannabis use (ever vs. never) in a meta-analysis including 9436 participants
(7795 European and 1641 African ancestry) from seven cohorts. Accounting for effects of cigarette smoking, our trans-ancestry
EWAS meta-analysis revealed four CpG sites significantly associated with lifetime cannabis use at a false discovery rate of 0.05
ðp<5:85 ´ 10�7Þ: cg22572071 near gene ADGRF1, cg15280358 in ADAM12, cg00813162 in ACTN1, and cg01101459 near LINC01132.
Additionally, our EWAS analysis in participants who never smoked cigarettes identified another epigenome-wide significant CpG
site, cg14237301 annotated to APOBR. We used a leave-one-out approach to evaluate methylation scores constructed as a
weighted sum of the significant CpGs. The best model can explain 3.79% of the variance in lifetime cannabis use. These findings
unravel the DNA methylation changes associated with lifetime cannabis use that are independent of cigarette smoking and may
serve as a starting point for further research on the mechanisms through which cannabis exposure impacts health outcomes.
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INTRODUCTION
Cannabis use is highly prevalent around the world [1]. In the
United States, the legal use of cannabis has expanded across the
states over time [2]. Despite the potential therapeutic benefits of
medical use [3, 4], the widespread recreational use of cannabis has
raised concerns because of its reported associations with many
adverse health outcomes, including mental health (anxiety,
depression, psychosis, schizophrenia, and mania) [5–8], cognitive
deficits [9–11], and addiction [12]. It is a pressing public health
issue to better understand the full spectrum of the benefits and
adverse consequences associated with cannabis use.
DNA methylation (DNAm), which involves the addition of a

methyl group to the C5 position of cytosine in the context of CpG
dinucleotides, has been extensively studied in relation to gene
expression and can be influenced by the genome, the environ-
ment, and stochastic processes [13–15]. The DNAm changes
induced by environmental exposure are sometimes persistent and
long-lasting, while others are transient and reversible. For
example, cigarette smoking has been shown to induce DNAm
changes at CpGs throughout the genome. Some of these DNAm

changes may revert after smoking cessation, while other DNAm
changes may persist for years after cessation [16].
In recent years, research toward understanding the effect of

cannabis use on DNAm has grown [17]. Previous candidate gene
studies identified DNAm changes of CB1 receptor [18] and DAT1
[19] in cannabis-dependent patients, COMT in adolescents defined
as high-frequent cannabis users ( > four times in the past 4 weeks)
[1], and DRD2 and NCAM2 in moderate to heavy cannabis users
( > 10 days in the last 30 days) [20]. The first epigenome-wide
association study (EWAS) of cannabis use, which compared DNAm
between 12 cannabis users and 12 non-users in human sperm,
found at least 10% DNAm differences at 3979 CpG sites [21]. Our
group performed the first blood-based EWAS of lifetime cannabis
use (ever vs. never) in 2583 women and found significant DNAm
changes at cg15973234 (CEMIP) [22]. Cannabis use–associated
DNAm changes in blood have also been reported in heavy
cannabis users (N= 96) [23] and adolescents (N= 525) [24]. Taken
together, these studies provide evidence that cannabis use
impacts the epigenome, but knowledge of specific DNAm
changes remain limited.
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In this study, we conducted the largest trans-ancestry EWAS
meta-analysis for lifetime cannabis use (ever vs. never) in 9436
participants from seven cohorts. The initial model, which adjusted
for sex, age at blood collection, blood cell proportions, and
technical covariates, yielded 608 significant (False Discovery Rate
(FDR) < 0.05) CpGs, among which 82% overlapped with prior
EWAS findings for cigarette smoking, whose confounding effects
have been found for many other phenotypes like educational
attainment [25, 26], aggressive behavior [27] and coffee con-
sumption [28]. We explored this finding further by first adjusting
the analyses for cigarette smoking status and next conducting the
EWAS in participants who never smoked cigarettes. These two
analyses identified a total of five cigarette smoking-independent
CpGs significantly associated with lifetime cannabis use. We
evaluated these findings by constructing a methylation score,
summarizing regional DNAm changes using differential methyla-
tion region (DMR) analysis, and integrating the DNAm findings
with gene expression and genetic data.

METHODS
Study cohorts
This study included data from seven participating cohorts: the Sister Study
[29], Gulf Long-Term Follow-Up Study (GuLF) [30], Netherlands Twin
Register (NTR) [31], Veteran Aging Cohort Study (VACS) [32], Finnish Twin
Cohort (FinnTwin) [33], Avon Longitudinal Study of Parents and Children
(ALSPAC) [34], and UK Adult Twin Registry (TwinsUK) [35]. The final sample
size consisted of 9436 participants, including 4190 individuals who
reported ever using cannabis and 5246 who reported never using
cannabis (Table 1). Detailed information for each cohort can be found in
the Supplementary Methods. Informed consent was obtained from each
participant, and each study was approved by their Institutional Review
Boards.

Cannabis assessment
Our analyses focused on lifetime cannabis use based on self- or parent-
report. Participants were classified as ever users if they reported using
cannabis at least once prior to the blood sample collection used to
generate DNAm data, and as never users if they reported never using
cannabis prior to the blood draw. This definition of the phenotype aligns
with the “Substances—Lifetime Use” variable in the PhenX Toolkit [36],
making the results comparable and combinable.

DNA methylation measurements
DNAm was measured in peripheral blood using either the Illumina Infinium
HumanMethylation450 BeadChip (450K array, 76%) or the Illumina Infinium
Methylation EPIC BeadChip (EPIC array, 24%), as shown in Table 1. DNAm
levels were calculated as β-values, which represent the percentage of DNA
that is methylated at the interrogated CpG site and ranges from 0 to 1.
Quality control and normalization procedures were implemented consis-
tently across all cohorts, with considerations specific to each cohort
(detailed in the Supplementary Methods). Cohort-specific methods are
shown in Supplementary Table 1.

EWAS for lifetime cannabis use
In each cohort, the association between DNAm levels and lifetime cannabis
use was tested under a linear model or a GEE model if participants were
related. We stratified the EWAS analyses by genetic ancestry groups (EA
and AA) and DNAm array types (450K and EPIC). For each CpG site, the
DNAm beta value was considered as the outcome with lifetime cannabis
use as the predictor of interest, and two separate models were applied. In
the basic model (Model 1), we included sex (except in cohorts with only
one sex), age at blood collection, blood cell type estimation, and technical
covariates. In Model 2, we additionally adjusted for cigarette smoking
status defined as current, former, or never. Comparing with prior smoking
EWAS [37], the results from Model 2 were considered as cigarette smoking-
independent DNAm biomarkers for lifetime cannabis use. Additionally, we
implemented EWAS within the subset of participants who never smoked
cigarettes using Model 1 to minimize the possible confounding effect of
cigarette smoking. More detailed information for models and covariates
used in each cohort is provided in the Supplementary Methods. Ta
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Meta-analysis
We summarized cohort- and ancestry-specific EWAS results using inverse
variance fixed effects meta-analysis implemented in the METAL software
[38], with Model 1 (all participants), Model 2 (all participants), and Model 1
in participants who never smoked cigarettes, respectively. We reported
overlapping CpGs between 450K and EPIC arrays, which included 452,453
CpG probes. Epigenome-wide significance was defined as FDR less than
5%. Manhattan and QQ plots were genearted using the CMplot function
within the R package rMVP [39]. Heterogeneity among the studies was
assessed using the Cochran’s Q-test implemented in METAL.

Methylation scores
As the single largest cohort included in this study, the Sister Study was
reserved as the testing dataset to evaluate DNAm scores. For each
individual in the Sister Study, a methylation score was calculated as a
weighted sum of CpGs significantly associated with lifetime cannabis use
in the EWAS meta-analysis conducted without the Sister Study [40]. At a
given CpG site i, the methylation beta value (methi) was multiplied by the
effect size of the CpG in the meta-analysis (eff i ). Then a methylation score
was obtained by summing over a selected CpG set:

methylation score ¼ meth1 � eff1 þmeth2 � eff2 þ � � � þmethn � effn

We applied different p-value thresholds to select the significant CpG sets
for both Model 1 (p<10�1; 10�3; 10�5; 10�7; 10�9; 10�11; 10�13) and model
2 (p<10�1; 10�3; 10�5; 10�7). To evaluate performance of the methylation
scores, we quantified the percentage of variance (R2) explained as
proposed by Lee et al. [41] for binary responses.

Integrating EWAS results with gene expression
To investigate the potential relationship between DNAm and gene
expression levels, we used the correlations between DNAm and expression
data available in six tissues (brain, colon, kidney, liver, stomach, testis) in
the EWAS Atlas [42]. Specifically, we analyzed the DNAm levels of the
significant CpGs to determine if they were associated with the expression
levels of nearby genes.

Correlation of DNAm between blood and brain tissues
An online database (https://epigenetics.essex.ac.uk/bloodbrain/) [43] was
used to examine the correlations of DNAm between whole blood and four
brain regions (prefrontal cortex, entorhinal cortex, superior temporal gyrus,
and cerebellum), respectively. For each CpG site, a boxplot was generated
to display the distribution of DNAm levels across all five tissues, and the
Pearson correlation was calculated between the DNAm level in whole
blood and each of the four brain tissues.

Enrichment analysis against previous EWAS results
To determine the potential overlap of our top CpGs with previously
reported EWAS results, we used the EWAS Atlas toolkit [42] to conduct
enrichment analyses. To meet the minimum input requirement, we
selected the top 20 CpGs from the EWAS meta-analysis using Model 2 and
the top 20 CpGs in participants who never smoked cigarettes, and ran
enrichment analyses on each group separately.

Methylation quantitative trait loci (meQTL)
To explore the potential genetic basis for DNAm changes identified in our
study, we looked up genetic variants that are associated with DNAm levels
of CpG sites within the Genetics of DNA Methylation Consortium (GoDMC)
database [44], which includes both local (cis) and distal (trans) meQTLs. We
examined the overlap between the meQTL variants for cannabis
use–associated CpG sites and the variants identified in a GWAS for lifetime
cannabis use [45].

DMR analyses
We used an R software tool, ipDMR [46], to identify DMRs in which a cluster
of correlated CpGs showed evidence for association with lifetime cannabis
use. ipDMR calculates an overall p-value for small intervals bordered by
two adjacent CpGs based on the association p-values from an EWAS
analysis. It then combines all nearby significant intervals (using a seed
threshold) and calculates an FDR-adjusted p-value for the combined
region. We applied ipDMR to summary statistics from our EWAS meta-
analysis with the following parameters: seed p-value < 0.05, maximum

distance to combine adjacent intervals 1000 bp and bin size 50 bp. To
assess the biological significance of the identified DMRs, we then
conducted gene set enrichment analysis using the tool provided by
Functional Mapping and Annotation of Genome-Wide Association Studies
(FUMA) [47] to test for enrichment of the genes that overlapped with the
DMRs in predefined pathways.

Sensitivity analyses
To evaluate the potential confounding effects of alcohol use and BMI on
the association between DNAm and lifetime cannabis use, we conducted
sensitivity analyses. In these analyses. We compared the effect sizes and
p-values of the significant CpGs identified in the main analysis with those
obtained in the sensitivity analyses to assess the robustness of our results.
Detailed definitions of alcohol use in each cohort can be found in the
Supplementary Methods section.

Comparison of results across ancestry groups
Considering the differential DNAm patterns across different ancestry
groups, we conducted a separate EWAS meta-analysis in EA (N= 7795) and
AA (N= 1641) groups with Model 2. We compared the effect sizes and
p-values of the top significant CpGs from the main EWAS results with the
results in each ancestry group.

RESULTS
Sample characteristics
The demographic characteristics of 9436 study participants are
summarized in Table 1. The sample consisted of 57% females, and
the mean age at DNAm sampling ranged from 17.1 years in the
ALSPAC cohort to 58.8 years in the TwinsUK cohort. A total of 44%
of the participants reported having used cannabis at some point
in their lives. Within the subset of participants who reported never
smoking (N= 4146), 27% indicated having used cannabis at least
once. DNAm sites were assessed using either the Illumina
HumanMethylation450K BeadChip (76%) or the Illumina Human-
Methylation EPIC (850K) BeadChip (24%). The sample included
individuals of both European ancestry (EA, 83%) and African
ancestry (AA, 17%).

EWAS meta-analysis results for lifetime cannabis use
We conducted EWAS meta-analysis on peripheral blood DNAm
data from 9436 participants for lifetime cannabis use. In each
cohort, we tested the association between lifetime cannabis use
and DNAm at each CpG site using either a linear model (for
unrelated participants) or a generalized estimation equation (GEE)
model (for related participants) with the family ID as the clustering
variable. To investigate the confounding effect of cigarette
smoking, we compared two models. Model 1 included sex (in
cohorts with more than one sex), age at blood collection,
measured or estimated white blood cell proportions, and technical
covariates. In addition to these covariates, Model 2 included
cigarette smoking status defined as current, former, or never. The
EWAS meta-analysis with Model 1 identified 608 CpGs significantly
associated with lifetime cannabis use at an FDR threshold of 5%.
Of these, 500 CpGs had been previously reported as being
significantly associated with cigarette smoking [37, 48] (Supple-
mentary Fig. 1). After adjusting for cigarette smoking, Model 2
EWAS meta-analysis identified four CpGs (Fig. 1; Table 2)
significantly (FDR < 0.05) associated with lifetime cannabis use.
None of these four cannabis use–associated CpGs had been
reported as being significant in previous EWAS for cigarette
smoking after accounting for multiple testing (p>0:05=4) [48]. The
quantile-quantile (QQ) plots from both models suggested minimal
inflation (λ ¼ 1:1). Although many CpGs did not reach epigenome-
wide significance with Model 2, their effect sizes showed
consistent directions of associations as in Model 1 (Supplementary
Fig. 2), and their effect sizes were highly correlated (r ¼ 0:85). The
four cigarette smoking-independent CpGs identified with Model
2—cg01101459, cg22572071, cg15280538, and cg00813162—
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were annotated to LINC01132, ADGRF1, ADAM12, and ACTN1,
respectively, as the closest genes (Supplementary Fig. 3). The full
list of top CpGs (p<0:001) from the Model 2 EWAS meta-analysis
are summarized in Supplementary Table 2, and a forest plot
showing the effect sizes of the four significant CpGs is in
Supplementary Fig. 4.
Considering potential differences by ancestry, we performed

EWAS meta-analyses stratified into EA (N= 7795) and AA
(N= 1641) groups. The ancestry-specific results for the top CpGs
reported from the Model 2 EWAS meta-analysis are shown in
Supplementary Table 2. The effect sizes for the top CpGs were
highly correlated between the EWAS results in the EA and AA
groups (r ¼ 0:77, Supplementary Fig. 5).
We additionally compared EWAS meta-analyses results within

male-only cohorts (VACS and GuLF, N= 2311) and female-only
cohorts (Sister Study and TwinsUK, N= 2693). More than 95% of
the top CpGs demonstrated consistent effect directions between
males and females (Supplementary Table 2). The correlation of the
effect sizes of the top CpGs was 0.69 between males and females
(Supplementary Fig. 6).

EWAS meta-analysis results for lifetime cannabis use in
participants who never smoked cigarettes
To further explore the confounding effect of cigarette smoking on
DNAm, we conducted an EWAS meta-analysis on the subset of
participants who reported never having smoked cigarettes
(N= 4146). The EWAS meta-analysis, using Model 1, identified
one CpG significantly associated with lifetime cannabis use at
FDR < 0.05 in this subset of participants (Fig. 2; Table 2). This CpG
site, cg14237301, is annotated to the gene APOBR, which has been
reported to be significantly associated with lifetime cannabis use
in a genome-wide association study (GWAS) [45] (Fig. 3). The full
list of top CpGs (p<0:001) from the EWAS meta-analysis in
participants who never smoked cigarettes is summarized in
Supplementary Table 3. Their effect sizes were highly correlated
with the EWAS meta-analysis results in all participants under either
model (r>0:7, Supplementary Fig. 2).

Replication of previous reported DNAm changes associated
with cannabis use
We compared our results with previously reported EWAS for
cannabis use (Supplementary Table 4). All seven nominally
significant CpGs identified in Markunas et al. [49] remained
significant in our EWAS results using Model 2 after applying a
Bonferroni correction (0.05/7= 0.0071). Osborne et al. reported
CpGs associated with cannabis use in individuals who exclusively
used cannabis or used it in conjunction with tobacco [23]. We

compared them with our findings in never smokers and EWAS
model 1, separately. Out of a total of 30 CpGs examined, we
successfully replicated 10 CpGs in our study with a Bonferroni
correction. Additionally, a recent study examined the associations
between DNAm and recent and cumulative cannabis use in
middle-aged adults [50]. Our results replicated four out of 40 CpGs
reported with a Bonferroni correction.

Methylation scores
To assess the ability of DNAm levels to predict lifetime cannabis
use, we calculated a methylation score based on summary
statistics from the EWAS meta-analyses without the Sister Study,
the largest cohort in this project. We then compared the
performance of multiple models with different p-value cutoffs
by the variance in lifetime cannabis use explained by the
methylation scores (Supplementary Table 5). The best-
performing methylation score, based on 50 CpGs with p<10�9 in
the EWAS meta-analysis using Model 1 (Supplementary Table 6),
explained 3.79% of the variance of lifetime cannabis use in the
Sister Study (p ¼ 1:71 ´ 10�17). To further examine the confound-
ing effect of cigarette smoking, we also evaluated the variance
explained by the methylation score in participants who never
smoked cigarettes. In this subset of participants, the methylation
score based on the same 50 CpGs explained 0.91% of the variance
of lifetime cannabis use (p ¼ 1:19 ´ 10�3). In contrast, the
methylation score constructed based on EWAS meta-analysis
results with Model 2 can explain 0.58% of the variance of lifetime
cannabis use in all participants of the Sister Study, achieved with
p-value cutoff at 10�5.

Sensitivity analysis
We conducted additional analyses to adjust for other factors that
influence DNAm as shown in previous studies: alcohol use [51]
and BMI [52]. We examined if the EWAS results with Model 2
differed by expanding Model 2 to also include alcohol use and
body mass index (BMI) as covariates. The effect sizes of the top
cannabis use–associated CpGs (p<0:001) from Model 2 (Supple-
mentary Table 2) were strongly correlated (r ¼ 0:99) with the
results of the sensitivity analyses (Supplementary Fig. 7).

Follow-up of CpGs significantly associated with lifetime
cannabis use
We examined the five CpGs that were epigenome-wide signifi-
cantly associated with lifetime cannabis use, four of which were
identified using Model 2 in all participants (adjusted for cigarette
smoking) and one CpG identified in participants who never
smoked cigarettes. Using the EWAS Atlas [42] (https://

Fig. 1 Results from the EWAS meta-analysis for lifetime cannabis use with Model 2 adjusted for cigarette smoking. a Manhattan plot. The
dotted red line indicates the epigenome-wide significance cutoff at FDR < 0.05 (P < 5:96 ´ 10�7). b QQ plot.
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ngdc.cncb.ac.cn/ewas/tools), we found that three of the five CpGs
were significantly correlated with nearby gene expression in brain
(Supplementary Table 7, cor cg01101459; LINC01132ð Þ ¼ 0:121,
cor cg00813162;ACTN1ð Þ ¼ �0:135, cor cg14237301;APOBRð Þ ¼
�0:389).
We also looked up the correlation of DNAm for the five CpGs

between whole blood and four brain regions (prefrontal cortex,
entorhinal cortex, superior temporal gyrus, and cerebellum)
through an existing database (http://epigenetics.essex.ac.uk/
bloodbrain/) [43]. No significant correlations were observed after
applying the Bonferroni correction. Among the five CpGs
examined, moderate correlations (r > 0.2) were observed between
whole blood and the prefrontal cortex for DNAm at cg22572071-
ADGRF1 and cg14237301-APOBR. Similarly, at cg22572071-ADGRF1
and cg15280358-ADAM12, moderate correlations (r > 0.2) were
observed between whole blood and the cerebellum (Supplemen-
tary Fig. 8, Supplementary Table 8).
Enrichment analyses comparing the top cannabis

use–associated CpGs from Model 2 to previously reported EWAS
results in EWAS Atlas identified associations with other diseases
and environment exposures (Supplementary Table 9). Among the
enriched traits detected, Crohn’s disease, alcohol consumption,
BMI, and multiple sclerosis were significantly overlapped with our
EWAS results. Interestingly, cannabis use–associated CpGs identi-
fied in participants who never smoked cigarettes showed
significant overlap with CpGs previously associated with smoking
(p ¼ 5:58 ´ 10�8), smoking cessation, lung function, and lung
carcinoma.
To explore whether the DNAm changes were genetic-driven, we

looked up the methylation quantitative trait loci (meQTLs) for the
five epigenome-wide significant CpGs in the Genetics of DNA
Methylation Consortium (GoDMC) database [44] (http://
mqtldb.godmc.org.uk/about), and overlapped them with the
GWAS results for lifetime cannabis use [45] (Supplementary
Table 10). None of the meQTLs were significantly associated with
lifetime cannabis use (p ¼ 5 ´ 10�8), indicating that our signifi-
cantly associated CpGs were not directly driven by the genetic
variants. The meQTLs for cg00813162-ACTN1 and cg14237301-
APOBR showed some degree of significance in the GWAS (p<0:01,
Supplementary Table 10).

Differentially methylated regions
We used an R software tool, ipDMR [46], to identify DMRs based
on EWAS meta-analysis results (Supplementary Table 11). Model 1
(no adjustment for cigarette smoking) yielded 514 significant
DMRs (FDR < 0.05) with a minimum of two probes, while Model 2
(accounting for cigarette smoking) had 10 significant DMRs,
showing that one of the four epigenome-wide significant CpGs
(cg00813162-ACTN1) reside in a region where proximate CpGs
were associated with lifetime cannabis use. Additionally, there
were nine DMRs that included no single epigenome-wide
significant CpG, and instead multiple correlated CpGs showed
some evidence of association. The DMR analysis in participants
who never smoked cigarettes identified six DMRs with a minimum
of two probes, none of which included the epigenome-wide
significant CpG sites. The gene set enrichment analysis of the
genes that overlap with the DMRs from Model 2 identified four
Gene Ontology (GO) biological processes (Supplementary Fig. 9):
growth, response to metal ion, actin filament bundle organization,
and cellular response to zinc ion.

DISCUSSION
In this study, we performed the largest EWAS meta-analyses of
lifetime cannabis use to date (9436 multi-ancestry participants)
using DNAm data from peripheral blood samples. The basic model
showed that DNAm changes associated with lifetime cannabis use
largely overlapped with cigarette smoking–associated DNAm sites.Ta
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After additionally adjusting for smoking in the EWAS model, we
found four CpG sites statistically independent of cigarette
smoking that were significantly associated with lifetime cannabis
use. Additionally, we conducted EWAS in participants who never
smoked cigarettes to further eliminate the influence of the
participants’ cigarette smoking. This analysis showed high
consistency with the smoking-adjusted model in all participants
(Model 2) and yielded one additional CpG significantly associated
with lifetime cannabis use. The genes annotated to these five
cannabis use–associated CpGs are relevant to a range of health
outcomes [53–63].
The five epigenome-wide significant CpGs are annotated to the

nearest genes: LINC01132, ADGRF1, ADAM12, ACTN1, and APOBR.
Of these, cg01101459-LINC01132, cg00813162-ACTN1, and
cg14237301-APOBR were inversely associated with cannabis use,
meaning that individuals who had used cannabis had lower
DNAm at these CpG sites compared to those who had never used
cannabis. LINC01132 is a long noncoding RNA gene that has been
reported to function as an oncogene that relates to the malignant
behaviors of cancer cells in hepatocellular carcinoma (HCC)
[53, 64, 65] and ovarian cancer [64, 65]. Interestingly, cannabis
use has been linked to a reduced incidence rate of HCC [66] and
the potential for treating ovarian cancer [67, 68]. ACTN1 (Alpha-
Actinin-1) encodes a non-muscle cytoskeletal protein that binds
actin to the cell membrane [54]. Genetic variants and differential
expression of the ACTN1 have been reported in various diseases,
including congenital macrothrombocytopenia, Angelman syn-
drome, Bowen disease, postmenopausal osteoporosis, lupus
erythematosus, and COVID-19 [54–57, 69, 70]. There is evidence
that cannabinoids can attenuate seizures and EEG abnormalities
in Angelman syndrome [71, 72], effective in treating individuals
with osteoporosis [73], reduce cell proliferation and induce
apoptosis in melanoma cells [74], as well as downregulate the
immune response in lupus erythematosus [75]. Notably, ACTN1
was also reported as a differentially methylated gene in sperms
associated with cannabis use [21]. APOBR (Apolipoprotein B
receptor) encodes a receptor protein that binds to dietary
triglyceride-rich lipoproteins. Its genetic variants have been
associated with obesity [58, 76], bladder cancer [61], pneumonia
[60], allergy [59], and lifetime cannabis use [45]. Relatedly,
cannabis use has been associated with a reduced obesity rate
[77] but an increased risk for pneumonia [78]. Overall, DNAm
may serve as a mediator between cannabis use and its impact
on health outcomes.
On the other side, cg22572071-ADGRF1 and cg15280358-

ADAM12 were positively associated with cannabis use. ADGRF1 is
a receptor gene that that is critical in neurodevelopment and
neuroinflammation [62, 79]. The overexpression of ADGRF1 has

been reported in breast cancer [80]. ADAM12 encodes protein that
involving in cell-cell interaction, muscle development, and
neurogenesis. The expression of ADAM12 has been reported to
be upregulated in various tumor cells and is an emerging
prognostic biomarker for cancer [81–85]. Genetic variants in
ADAM12 have been associated with neurological diseases such as
multiple sclerosis and Alzheimer’s disease. Taking together,
cannabis use is associated with regulation of genes that function
in neurogenesis, neurodevelopment, brain structures and onco-
genesis. Further experimental studies are needed to determine
the potential effects of changes in DNAm levels on the
corresponding gene expressions.
The majority of significant CpGs in EWAS for cannabis use with

the basic model (Model 1) overlapped with those identified in the
EWAS for cigarette smoking [48]. The number of significant CpGs
decreased dramatically after adjusting for smoking status in our
Model 2. These findings suggest that cigarette smoking is a strong
confounder for cannabis use. The overlap with EWAS results for
cigarette smoking were also found for many other phenotypes like
educational attainment [25, 26], aggressive behavior [27] and
coffee consumption [28]. However, we found that DNAm scores
calculated as weighted sums of the beta values of significant CpGs
from Model 1 explained a greater amount of variance in lifetime
cannabis use than the DNAm scores based on Model 2 (3.79% vs.
0.58%). Even in participants who never smoked cigarettes, the
DNAm scores based on Model 1 could explain 0.91% of the
variance in lifetime cannabis use. Additionally, the EWAS results in
participants who never smoked cigarettes showed enrichment of
CpGs associated with cigarette smoking. These results suggest
that cannabis use and cigarette smoking may independently
influence the DNAm levels of these CpGs, implying the potential
influence of common combustible chemicals that are shared
between cannabis use and cigarette smoking.
In previous studies, DNAm scores have been used to predict

various outcomes with the variance explained ranging from 0.6%
in low-density lipoprotein, 2.5% in educational attainment, 12.5%
in alcohol use, to 60.9% in cigarette smoking [86]. Such predictors
may provide more accurate measurements than self-reported
phenotypes and could have clinical applications by relating to
health outcomes. We assessed whether blood-based DNAm could
predict cannabis use and found that the variance in lifetime
cannabis use explained by DNAm scores was (3.79%) moderate
and not as accurate as DNAm-based score for cigarette smoking.
Future applications that integrate both polygenic risk scores and
DNAm scores may improve prediction power [40, 86]. The
accumulation of even larger scale GWAS and EWAS for lifetime
cannabis use will be necessary to establish reliable biomarkers for
clinical purposes.

Fig. 2 Results from the EWAS meta-analysis for lifetime cannabis use in participants who never smoked cigarettes. a Manhattan plot. The
dotted red line indicates the epigenome-wide significance cutoff at FDR < 0.05 (P < 2:45 ´ 10�7). b QQ plot.
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As a complement to the main EWAS, the DMR analysis that
combined nearby correlated CpGs identified additional regions
associated with cannabis use. After adjusting for smoking, the
EWAS for lifetime cannabis use identified fewer epigenome-wide
significant hits, and the DMR analysis provides an improved power
to detect correlated CpGs with small effects influenced by
cannabis exposure. The gene set enrichment analysis revealed
biological processes related to growth, response to stress, and
assembly of actin filament bundle. The stress response pathways
have been linked to the use of Δ9-tetrahydrocannabinol (THC),
which has led to DNA damage and induced oxidative stress in
both blood and brain cells [87, 88]. The actin filament bundle gene
set was also reported in cellular remodeling events induced by
cannabinoid that affect the brain architecture and wiring [89].
The large sample set included in this study provides a good

representation for a wide range of populations across countries,
sexes, ancestry groups, and age ranges, empowering more
generalizable findings in identifying a common and robust DNAm
signature for lifetime cannabis use. A recent genetic study [90] has
shown that increased sample sizes of diverse ancestries improved

detection power and generated more generalizable polygenic risk
scores. However, one limitation of this approach is that associa-
tions with ancestry effects may have been attenuated when all
data were combined, as heterogeneity across different cohorts
would have reduced power to detect such specific associations in
underrepresented populations. Such heterogeneity is also
reflected by inconsistent directions of effects in meta-analysis.
Future studies on more data from diverse populations may reveal
ancestry-, sex- and age-specific DNAm associations. There may
also be relevant confounders that we have not been able to adjust
for, such as exposures and experiences that lead to cannabis use.
In this study, we analyzed DNAm profiles from blood samples.

While DNAm profiles differ across tissues and cell types, our results
based on blood samples may not be generalizable to other tissues
that may be more biologically relevant to the addiction and other
behavioral effects of cannabis use, such as the brain. It should also
be noted that the current EWAS results may suffer from potential
confounding effects caused by blood cell subtype heterogeneity
that were not fully captured by reference-based deconvolution
that we applied [91, 92].

Fig. 3 Regional plot for EWAS results in participants who never smoked cigarettes (a) and GWAS results (b) for lifetime cannabis use
around the genes APOBR/CLN3. The x-axis shows the genomic position in base pair (bp) in hg19, while the y-axis shows the significance of
associations (−log10 p-values). a Each dot is a CpG probe, and the red dotted line indicates the epigenome-wide significance at FDR < 0.05.
b Each dot is a SNP site, and the colors show different levels of LD in r2. The box in the bottom includes the genes within the genomic region,
and genes underlined in yellow were significant in the gene-based test while those underlined in green were identified in the S-PrediXcan
analysis [45].
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The EWAS meta-analysis conducted in this study only reflects
the association between lifetime cannabis use and DNAm levels,
without any causal inference. The differentially methylated CpGs
identified indicate persistent rather than transient associations
with cannabis use. We expect that including ever users who had
used cannabis long before blood drawn may bias results towards
the null, attenuating effect sizes that may be driven by heavy
users within the case group. To delve deeper into the persistent
and transient effects of cannabis on DNAm alterations, more
precise measurements of cannabis use regarding recency and
frequency are needed. Taken together, we propose future studies
to integrate cannabis use patterns, GWAS results, DNAm data from
multiple tissues, and gene expression data, to infer causal links
between cannabis exposure and DNAm levels.
In conclusion, our EWAS found that a large proportion of DNAm

changes that are significantly associated with cannabis use
overlap with those observed for cigarette smoking, even in
participants who never smoked cigarettes, suggesting that
cannabis use and cigarette smoking may independently influence
the DNAm levels of shared CpGs. After adjusting for smoking
status in the EWAS and conducting additional association testing
in participants who never smoked cigarettes, we identified five
cigarette smoking-independent CpGs that were significantly
associated with lifetime cannabis use. The genes associated with
these CpGs have been linked to various health outcomes,
encompassing both disease risk and potential benefits related to
cannabis use, highlighting the role of DNAm in the investigation
of cannabis effects. These findings provide insights into DNAm
profiles that are shared between smoking and cannabis use or
specific to each substance, and suggest a substantial proportion of
the variance in lifetime cannabis use are captured by DNAm.
Follow-up studies are warranted to unravel the biological
relevance of the differential DNAm to health outcomes.

DATA AVAILABILITY
The summary statistics from EWAS meta-analysis and analysis codes are available
from the corresponding author upon reasonable request.
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