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Genome-wide association study in 404,302 individuals
identifies 7 significant loci for reaction time variability
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Reaction time variability (RTV), reflecting fluctuations in response time on cognitive tasks, has been proposed as an endophenotype
for many neuropsychiatric disorders. There have been no large-scale genome-wide association studies (GWAS) of RTV and little is
known about its genetic underpinnings. Here, we used data from the UK Biobank to conduct a GWAS of RTV in participants of white
British ancestry (n= 404,302) as well as a trans-ancestry GWAS meta-analysis (n= 44,873) to assess replication. We found 161
genome-wide significant single nucleotide polymorphisms (SNPs) distributed across 7 genomic loci in our discovery GWAS.
Functional annotation of the variants implicated genes involved in synaptic function and neural development. The SNP-based
heritability (h2SNP) estimate for RTV was 3%. We investigated genetic correlations between RTV and selected neuropsychological
traits using linkage disequilibrium score regression, and found significant correlations with several traits, including a positive
correlation with mean reaction time and schizophrenia. Despite the high genetic correlation between RTV and mean reaction time,
we demonstrate distinctions in the genetic underpinnings of these traits. Lastly, we assessed the predictive ability of a polygenic
score (PGS) for RTV, calculated using PRSice and PRS-CS, and found that the RTV-PGS significantly predicted RTV in independent
cohorts, but that the generalisability to other ancestry groups was poor. These results identify genetic underpinnings of RTV, and
support the use of RTV as an endophenotype for neurological and psychiatric disorders.
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INTRODUCTION
Elevated intra-individual variability in reaction time, namely
increased trial-by-trial fluctuations in response time on cognitive
tasks, has been associated with neurodevelopmental and neuro-
degenerative disorders [1]. Increased variability in reaction time is
thought to reflect disruptions in attentional control and executive
function and it has been associated with abnormalities in brain
structure and function [1–4]. Increased reaction time variability
(RTV) has been demonstrated in attention-deficit hyperactivity
disorder (ADHD) [5, 6], schizophrenia [4, 7], bipolar disorder [8],
and major neurocognitive disorders [9]. The heritability of RTV has
been established in twin and family studies (h2= 0.28–0.5) [10, 11]
and consequently, RTV has been proposed as an endophenotype
for some of these disorders.
Measures of RTV and measures of central tendency, such as

mean reaction time, are known to be correlated however, it has
been suggested that RTV may provide insight into cognitive
function over and above mean performance metrics [1, 12, 13].
Abnormalities in RTV have been detected in people classified as at
risk mental state for psychosis when mean reaction times are
normal [12]. In studies of age-related changes in cognitive

performance, RTV has been a better predictor of subsequent
cognitive decline than measures of central tendency [14, 15].
Additionally, a systematic review of longitudinal changes in RTV
found that the association between elevated RTV at baseline and
accelerated cognitive decline, mild neurocognitive disorders,
dementia, and mortality remained after controlling for mean
reaction time [9]. Thus, RTV may offer unique predictive power
beyond the mean and may be useful in detecting early
neuropathological changes prior to the onset of more severe
cognitive dysfunction. Given the proposed utility of measures of
RTV, a better understanding of its neurobiological underpinnings
is required.
Despite increasing interest in the biological basis of RTV, its

genetic architecture remains poorly understood. A limited number
of candidate gene studies have provided evidence for an
association of RTV with catecholamine system genes [16–18].
However, candidate gene studies have largely failed to identify
replicable genes associated with behavioural traits, including RTV,
and there has been a shift towards genome-wide association
studies (GWAS) to identify genotype-phenotype associations using
a hypothesis-free approach [19]. There has only been one GWAS
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of RTV to date (n= 857), which identified one genome-wide
significant SNP, rs62182100 [20]. The significant SNP is an intronic
variant located within the HDAC4 gene, which plays a role in
transcriptional regulation and has been implicated in synaptic
plasticity, learning and memory [21]. However, due to the small
sample size and the lack of independent replication in this GWAS,
insight into the genetic underpinnings of reaction time variability
remains limited. A GWAS with a larger sample size may facilitate
the identification of more significant loci and provide the power
needed for a more comprehensive investigation of the genetic
architecture of this trait.
Here, we conduct the largest GWAS of RTV to date with a

sample size of 404,302 individuals using data from the UK
Biobank. We aim to identify common genetic variants and genes
associated with RTV, and we calculate the first SNP-based
heritability (h2SNP) estimate for the trait. We also calculate
estimates of genetic correlations with neurodevelopmental
disorders and other phenotypes that have been previously
associated with RTV. Lastly, we test the external validity of our
results by performing polygenic prediction of RTV in independent
samples of European and African ancestries.

MATERIALS AND METHODS
Participants and phenotype definition
This study used data from the UK Biobank (UKB), obtained under accession
number 27412. The UKB is a large-scale biomedical database with genotype
and phenotype data for approximately 500,000 individuals [22]. At baseline, a
brief cognitive assessment, including a custom-made reaction time test, was
administered to participants (aged 40–70 years) as part of the fully automated
questionnaire. The UKB reaction time test is based on a Go/NoGo test and is
designed to measure processing speed [23]. Participants were shown 2 cards
with symbols on them and asked to push a button as quickly as possible when
the symbols on the card matched. The test consisted of 12 trials, 9 of which
contained matching cards. The UKB reaction time test has demonstrated good
internal consistency (Cronbach α= 0.85) [24], moderate test-retest reliability
(Pearson r12= 0.55) [23], and good concurrent validity with well-validated tests
of reaction time [23]. In the discovery and replication GWAS, RTV was
operationalized as the intra-individual standard deviation (ISD) of reaction
times across correct trials. Prior to calculating the ISD, trials with a reaction time
<50ms (suggesting anticipation instead of reaction), and >200ms (indicating a
response after the cards had disappeared) were excluded. ISD scores were
calculated for participants with ≥3 correct trials. As RTV was non-normally
distributed, RTV values were rank-based inverse normal transformed. Since
longer reaction times may result in an increased ISD for an individual [25], we
also calculated the intra-individual coefficient of variation (ICV) for reaction
times for all participants. The ICV is calculated by dividing the ISD by the mean
reaction time for an individual. For the discovery dataset, we included 405,022
individuals with “white British” ancestry (54% females; mean age 56.88 years),
classified according to self-declared ethnicity and genetic principal component
analysis. We used all other ancestry groups from the UKB for replication
analysis - this included participants who completed the UKB reaction time test
with a self-reported ethnicity of “white non-British” (n= 28,600), “Asian or
Asian British” (n= 8904), or “Black or Black British” (n= 7415), totalling to 44
919 individuals (55% female, mean age 54.27 years) for inclusion in the
replication GWAS.

Genome-wide association analysis
GWAS was conducted using version 3 of the UKB genetic data.
Genotyping, imputation, and central quality control procedures for the
UKB genotypes are described in detail elsewhere [26]. The REGENIE
method was used and involves 2 steps. In step 1, polygenic predictors are
constructed by fitting a whole genome regression model to the UKB
genotype data. Additional quality control filters were applied to the UKB
genotype calls using PLINK 2.0 [27] prior to conducting step 1 of REGENIE.
Quality control steps included removing: (1) individuals with >10% missing
genotype data, (2) SNPs with >10% genotype missingness, (3) SNPs failing
the Hard-Weinberg equilibrium tests at p= 1 × 10−15, and (4) SNPs with a
minor allele frequency (MAF) < 1% or minor allele count (MAC) < 50. After
quality control, 582,052 variants and 405,019 samples were included in
step 1 of REGENIE. In step 2 of REGENIE, a linear regression model was used
to test for phenotype-genotype associations using imputed UKB genotype

data, conditional upon the predictions of the model from step 1. The
association model in step 2 included age, sex and the first 10 genetic
principal components as covariates. Variants with an INFO score <0.8 and
MAC < 20 were excluded in step 2 leaving 19,963,755 SNPs and
404,302 samples for inclusion in the GWAS.

Replication cohort and meta-analysis
We sought to replicate the lead SNPs from the discovery GWAS in an
independent association analysis. First, we used REGENIE to conduct
association analysis within all other ancestry groups (“White non-British”,
“Asian or Asian British”, and “Black or Black British”) from the UKB
separately. Quality control procedures were identical to those used for the
discovery analysis. Following GWAS, the summary statistics for 28 396 731
SNPs (n= 44,873 after quality control) were meta-analysed using an
inverse variance based approach implemented in METAL [28]. To assess for
replication, we determined whether lead SNPs from the discovery GWAS
reached significance in the replication GWAS (α= 0.05/7; p < 0.0071).
Additionally, we examined if the effect directions of the A1 allele of lead
SNPs from the discovery GWAS were concordant across the discovery and
replication GWAS. A binomial test was performed using R v4.1.0 [29] to
assess for an excess or deficit of concordant SNPs than would be expected
by chance. Lastly, we used METAL to conduct an inverse variance-
weighted meta-analysis of the discovery and replication GWAS.

Genomic risk loci characterisation
Genomic risk loci for RTV were characterised from the GWAS results using
Functional Mapping and Annotation of Genome-Wide Association Studies
(FUMA) [30]. First, the SNP2GENE function was used to identify
independent significant SNPs, defined as SNPs with a p-value ≤ 5 × 10−8

and independent of other genome-wide significant SNPs at r2 < 0.6. The
correlation estimates were calculated using the 1000 Genomes Project
Phase 3 release European reference panel [31]. A genomic risk locus
included all SNPs, including those from the reference panel, that were in
linkage disequilibrium of r2 ≥ 0.6 with an independent significant SNP.
Genomic risk loci that were within 250 kilobases (kb) of each other were
merged into one locus. Lead SNPs were defined as independent significant
SNPs that were independent of each other at r2 < 0.1. Regional visualisation
plots were produced using LocusZoom [32].

Functional mapping and annotation
The independent significant SNPs and SNPs in LD (r2 > 0.6) with the
independent significant SNPs (henceforth referred to as candidate SNPs)
were functionally annotated using ANNOVAR [33], combined dependent
depletion (CADD) [34], RegulomeDB (RDB) [35], and 15-core chromatin
states [36]. The NHGRI-EBI GWAS catalogue was searched to assess for
previous associations of the candidate SNPs. eQTL mapping for significant
SNP-gene pairs (FDR q < 0.05) was performed using GTEx v8 whole blood
and brain tissue (http://www.gtexportal.org/home/datasets), RNAseq data
from the CommonMind Consortium [37], and the BRAINEAC database
(http://www.braineac.org/).
Identified lead SNPs were mapped to likely target genes using The

OpenTargets Variant-to-Gene pipeline which integrates a positional score
(based on distance to the canonical transcription start site) with data from
quantitative trait loci and chromatin interaction experiments and in silico
functional predictions [38, 39]. For each lead SNP, we also report the
nearest gene identified through positional mapping using FUMA. Gene-
based analysis of 19,129 protein coding genes was performed using
MAGMA [40] as implemented in FUMA, with an SNP-wise mean model and
the 1000 genomes project phase 3 release European reference panel. To
control for multiple testing, a Bonferroni corrected p-value was used
(α= 0.05/19 129 genes tested; p < 2.61 × 10−6). Additionally, gene-set
enrichment analysis was conducted using: (1) significant genes from
MAGMA gene-based analysis, (2) genes identified through the Open-
tTargets’ Variant-to-Gene pipeline, and (3) genes identified through
positional mapping in FUMA. Hypergeometric tests were applied through
the GENE2FUNC function in FUMA to assess if the identified genes were
over-represented in 15,496 gene sets obtained from MsigDB v7.0 [41].
Bonferroni correction for multiple testing was applied and gene sets with
p < 3.23 × 10−6 were considered significant.

Heritability, polygenicity, and discoverability
We used univariate GCTA-GREML analysis [42] and MiXeR [43] to estimate
the proportion of variance explained by common genetic factors, i.e. h2SNP.
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The covariates included in the GCTA-GREML analysis were the same as
those included in the GWAS. The proportion of causal variants
(polygenicity) and the average explained variance per causal variant
(discoverability) were estimated using MiXeR v1.2 [43]. The univariate
mixture model considers MAF, sample size, LD structure, and genomic
inflation to derive estimates of heritability, polygenicity, and discoverability
using maximum likelihood estimation.

Genetic correlation and phenotypic associations
Genetic correlations between RTV and phenotypes known to be associated
with RTV were calculated using linkage disequilibrium score regression
(LDSC) [44, 45]. Summary statistics for general cognitive ability (GCA),
educational attainment, Alzheimer’s disease, post-traumatic stress disorder
(PTSD), ADHD, schizophrenia, neuroticism, intracranial volume, cortical
surface area, cortical thickness, and 7 subcortical brain volumes (nucleus
accumbens, amygdala, brainstem, caudate nucleus, pallidum, putamen,
and thalamus) were used to calculate genetic correlation estimates.
Supplementary Table 1 provides further details on the sources of the
GWAS summary statistics. Using data from the UKB, the relationships
between RTV and the same phenotypes as listed above were assessed
using linear regression (Supplementary Note; Supplementary Table 2).

Comparison with other measures of RTV and mean reaction
time
First, we conducted a GWAS of ICV, an alternative measure of RTV, using
the UKB reaction time test and the same participants and analysis pipeline
as the discovery RTV-GWAS (n= 404,302). Next, we assessed the
significance and effect direction of lead SNPs from the discovery RTV-
GWAS in the ICV-GWAS as well as a publicly available GWAS of mean
reaction time in the UKB [46]. We estimated the genetic correlation
between RTV (measured by ISD), mean reaction time, and ICV using LDSC.
Lastly, we estimated the genetic correlation between mean reaction time
and the same 17 phenotypes from the genetic correlation analyses with
RTV (Supplementary Table 1). We tested whether the genetic correlations'
estimates for the 17 traits were different for RTV compared to mean
reaction time (Supplementary Note).

Polygenic score validation
For polygenic score validation we used controls from two independent
cohorts of European and African ancestry, The Thematically Organised
Psychosis (TOP) Study [47] and The Genomics of Schizophrenia in the South
African Xhosa People (SAX) Study [48], respectively. RTV on a continuous
performance test was calculated for 182 healthy controls from the TOP
study and 563 controls (people without psychotic disorders) from the SAX
study. Additional information on the TOP and SAX study can be found in
Supplementary Note 1. We also assessed the predictive ability of an RTV
polygenic score (PGS) for RTV in the “White non-British”, “Asian or Asian
British”, and “Black or Black British” ancestry groups from the UKB.
The RTV-PGS were calculated from Z-score effect size estimates from the

discovery of RTV-GWAS using a pruning and thresholding approach
implemented in PRSice [49]. Prior to PGS calculation, SNPs with MAF < 0.05
were excluded and pruning was performed using an r2 < 0.1 within a
250 kb window. We calculated PGS across 10 p-value thresholds (1, 0.1,
0.05, 0.01, 1 × 10−3, 1 × 10−4, 1 × 10−5, 1 × 10−6, 1 × 10−7, 5 × 10−8) in the
white non-British participants from the UKB and linear regression models

were used to test the association between RTV and PGS at each threshold.
The best performing PGS was used to determine the p-value threshold for
PGS calculation in all other ancestry groups. Sex, age and the first ten
principal components were included covariates. For comparison, we
calculated an RTV-PGS in each target cohort using PRS-CS [50], which uses
a Bayesian regression framework and places a continuous shrinkage prior
on SNP effect sizes. The 1000 Genomes Phase 3 release European sample
[31] was used as the LD reference panel for PRS-CS. The Bonferroni
correction was applied to account for multiple testing (α= 0.05/19
polygenic scores; p < 2.63 × 10−3).

RESULTS
Genome-wide associations
Genome-wide association tests for RTV in the discovery analysis
identified 161 genome-wide significant SNPs (p < 5 × 10−8) (Fig. 1;
Supplementary Table 3). There were 13 independent significant
SNPs distributed across 7 genomic loci (Table 1). Regional
visualisation plots for the significant loci are depicted in Fig. 2
and Supplementary Fig. 3. Four of the seven genome-wide
significant loci have been reported as significant in previous
GWAS of general cognitive ability and intelligence (Supplementary
Table 4). The linkage disequilibrium score regression intercept was
1 (SE= 0.01), consistent with minimal inflation of the test statistic
due to population stratification.
None of the lead SNPs from the discovery GWAS reached

significance in the replication GWAS (Table 1; Supplementary
Fig. 1). Due to the limited number of lead SNPs at a genome-wide
significant threshold, binomial tests for concordance were
performed using lead SNPs from the discovery GWAS at a
suggestive threshold of p of ≤5 × 10−5. There were 261 lead SNPs
at the suggestive level in the discovery GWAS, with 156 of them
having concordant direction of effects (binomial test p= 0.047) in
the replication GWAS.
In the meta-analysis of the discovery and replication GWAS

(n= 449,175), there were 41 genome-wide significant SNPs
(p < 5 × 10−8) distributed across 6 genomic loci (Supplementary
Fig. 1; Supplementary Table 5). Thirty-six of the genome-wide
significant SNPs were also significant in the discovery GWAS.
Inspection of the quantile-quantile plot for the meta-analysis
shows greater test-statistic inflation above the null for moderately
significant p-values than in the discovery GWAS (Supplementary
Fig. 2). The linkage disequilibrium score regression intercept for
the meta-analysis was 1 (SE= 0.01), suggesting that the inflation
of the test statistic reflects true associations with RTV.

Integration with functional genomic data
Each lead SNP from the discovery GWAS was mapped to one gene
using the OpenTargets Variant-to-Gene pipeline, resulting in 7
mapped genes (Table 1). MAGMA gene-based analysis identified 5
genes significantly associated with RTV: EXOC4 (p= 6.3 × 10−7),
TBC1D21 (p= 2.57 × 10−6), CNTNAP4 (p= 2.59 × 10−7), LRRC37A

rs183204237
rs35206686

rs17167210

rs35859241

rs912243472

rs1863115

rs11697176

Fig. 1 Manhattan plot of discovery GWAS for RTV in the UK Biobank. Manhattan plot for the observed -log10 p-values for an association
with RTV in the discovery GWAS. The dotted line indicates a genome-wide significance threshold of 5 × 10-8. The lead SNPs from the GWAS are
outlined in black and the candidate SNPs are shown in bold.
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(p= 9.81 × 10−10), and NSF (p= 4.97 × 10−7) (Supplementary
Table 6). An additional 17 genes were mapped to candidate SNPs
from the discovery GWAS using FUMA positional mapping;
resulting in a total of 27 input genes (Supplementary Table 7)
for gene-set enrichment analysis. Gene-set enrichment analysis
did not identify any significant gene sets associated with RTV.
The lead variant for the GWAS, rs1863115 (p= 2.47 × 10−10)

(Fig. 2C), is a non-synonymous exonic variant for LRRC37A2 and an
intronic variant for ARL17A. The CADD score for rs1863115 is 18.32,
suggestive of variant deleteriousness. Based on annotation by the
OpenTargets genetic platform, the most likely gene affected by
this variant is LRRC37A2, a gene that encodes an integral
component of the cellular membrane. LRRC37A2 has been
associated with intelligence, and mean reaction time in previous
GWAS [46, 51].
There was evidence of functionality for variants in genomic risk

loci 3 and 4 (Table 1). The lead variant for locus 3, rs17167210
(p= 1.5 × 10−9), is located in an intron of EXOC4 and is an eQTL for
EXOC4 and LRGUK in brain tissue (CommonMind Consortium)
(Fig. 2A). A nearby intronic variant, rs11768150 (R2= 0.88,
p= 1.71 × 10−7), has a CADD score of 13.5, suggestive of variant
deleterious, and a RegulomeDB score of 3a, indicating that the
variant is likely to be involved in gene regulation. The lead variant
for locus 4, rs35859241 (p= 3.69 × 10−8), is an eQTL for SCG3 and
GLDN in brain tissue (CommonMind Consortium, GTEx Brain). This
variant is in LD with rs2606134 (R2= 0.81, p= 1.14 × 10−4), which
is located within the 5′ untranslated region of SCG3 (Fig. 2B). The
SNP, rs2606134, has a CADD score of 13.15 and a RegulomeDB
score of 2b, suggesting that this variant may be biologically
relevant.

Estimating heritability, polygenicity, and discoverability
The h2SNP for RTV was estimated at 0.029 (SE= 0.002) using GCTA-
GREML. MiXeR analysis suggested that RTV is highly polygenic
with an estimated 6800 causal variants explaining the h2SNP for
RTV. As expected for a trait with a low h2SNP and high polygenicity,
discoverability was low (σ2β= 5.38 × 10−6, SD= 2.85 × 10−7)
indicating that most SNP-associations have a weak effect. Akaike’s
Information Criteria (AIC) for MiXeR analysis was 18.39 indicating
reliable model fit.

Genetic correlations and phenotypic associations
We assessed the genetic correlations and phenotypic relationships
between RTV and 17 traits that have been posited to be
associated with RTV using LDSC and linear regression respectively
(Fig. 3; Supplementary Tables 8 and 9). After Bonferroni correction,
we found significant genetic correlations (α= 0.05/19 traits;
p < 2.63 × 10−3) between RTV and general cognitive ability (rg=
−0.44, SE= 0.03), educational attainment (rg=−0.23, SE= 0.03),
schizophrenia (rg= 0.26, SE= 0.03), and neuroticism (rg= 0.13,
SE= 0.03). The analysis of phenotypic data from the UKB revealed
a significant relationship between RTV and several traits, including
those that showed significant genetic correlations with RTV (Fig. 3,
Supplementary Table 9).

Comparison with other measures of RTV and mean reaction
time
We sought replication of the 7 lead SNPs from the discovery RTV-
GWAS in the GWAS of ICV and found that all lead SNPs were
significant (α= 0.05/7; p < 0.0071) in the ICV-GWAS (Supplemen-
tary Table 10). Similar to the replication analyses described earlier,
we used the 261 lead SNPs from the discovery GWAS at a
suggestive threshold of p ≤ 5 × 10−5 to conduct binomial tests for
concordance. All lead SNPs from the discovery RTV-GWAS had a
concordant direction of effect in the ICV-GWAS. We found
significant genetic correlations between RTV and ICV (rg= 0.89,
SE= 0.01) as well as RTV and mean reaction time (rg= 0.69,
SE= 0.02). Consistent with the relatively high genetic correlationTa
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between RTV and mean RT, the number of lead SNPs from the
RTV-GWAS that showed a concordant direction of effect in the
mean reaction time GWAS was greater than expected by chance
(binomial test p < 2.2 × 10−16). However, only one of the lead SNPs
from the discovery RTV-GWAS reached significance (p < 0.0071) in
the GWAS of mean reaction time. Further, we found that 7
(ARL17A, ARL17B, LRRC37A2, NSF, WNT3, TBC1D21, CDC27) of the 27
genes identified in the RTV-GWAS had a documented association
with mean reaction time in the GWAS catalogue [52]. Lastly, we
found that the genetic correlations between RTV and 17 selected
traits and mean reaction time and the same 17 traits were similar
for most traits. Notably, we found significant differences in the

genetic correlations between RTV and educational attainment,
general cognitive ability, and ADHD when compared to the
genetic correlations between mean reaction time and the same
traits (Supplementary Table 8). We show that ADHD has a
nominally significant positive genetic correlation with RTV (rg=
0.1, SE= 0.02, p= 5.1 × 10−3) and a nominally significant negative
correlation with mean reaction time (rg=−0.06, SE= 0.03,
p= 0.03) (Fig. 3; Supplementary Fig. 4; Supplementary Table 8).
The magnitude of genetic correlations was significantly greater
for RTV compared to mean reaction time for educational
attainment and general cognitive ability (Supplementary Fig. 4;
Supplementary Table 8).

Fig. 2 Regional association plots for three genome-wide significant loci in the discovery RTV-GWAS. Regional plots for rs17167210 (A),
rs35859241 (B) and rs1863115 (C). The dotted line denotes a genome-wide significance threshold of 5 × 10–8. SNPs in the genomic risk loci are
colour-coded as a function of their linkage disequilibrium r2 to the lead SNP in the region.
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Polygenic prediction of RTV
To evaluate the replicability and predictive ability of the results
from our discovery GWAS, we calculated a PGS for RTV in the five
independent target samples using PRSice and PRS-CS. For the PGS
calculated using PRSice, the most significant association between
the RTV-PGS and RTV in non-British European participants from
the UKB was achieved when all SNPs surviving LD pruning
(n= 166,662) were included in the PGS calculation (p-value
threshold= 1) (Supplementary Table 11). The variance explained
by this PGS was r2= 0.0027 (p= 6.09 × 10−18). The PRSice RTV-PGS
performed poorly in the other ancestry groups from the UKB and
there were no significant associations between the PGS and RTV in
the South Asian or African ancestry groups (Fig. 4). There was an
improvement in predictive power when using PRS-CS to calculate
the PGS and there was a significant association between the RTV-
PGS and RTV in the non-British European (r2= 0.0048,
p= 3.08 × 10−31) and South Asian ancestry groups (r2= 0.0012,
p= 1.73 × 10−3) from the UKB (Fig. 4). The PRSice and PRS-CS

RTV-PGS did not predict RTV in controls from the TOP and SAX
study (Supplementary Table 11; Supplementary Fig. 5).

DISCUSSION
Using UKB data, we have performed the largest GWAS of RTV to
date and have made several contributions to our understanding of
the genetic basis of this cognitive trait. We identified 161 genome-
wide significant SNPs for RTV distributed across 7 genomic loci, all
of which are novel for RTV. We identified several genes that may
play a role in RTV, many of which have been associated with
cognitive traits previously. We provide the first SNP-based
heritability estimate for RTV, and the first estimates for genetic
correlations between RTV and several neuropsychiatric traits. We
demonstrate that RTV-PGS derived from the discovery GWAS can
significantly predict RTV in an independent cohort, but that the
predictive ability declines if the discovery and target populations
are of different ancestries.
The genes identified by the GWAS may provide insight into the

biological underpinnings of RTV. Although the exact role that
many of the identified genes may play in RTV is unclear, several
are worthy of further investigation. For example, two of the
significant genes, contactin associated protein family member 4
(CNTNAP4) and N-ethylmaleimide sensitive factor, vesicle fusing
ATPase (NSF) encode proteins that play a role in synaptic function.
CNTNAP4 is involved in the synaptic transmission of dopamine
and GABA [53] and NSF regulates glutamate receptor binding
activity [54, 55]. Alterations in dopaminergic, glutaminergic and
GABAergic activity have been associated with RTV [1, 56–58] and
thus, further exploration of the association between RTV and
CNTNAP4 and NSF may be warranted. Variants in EXOC4 and SCG3
showed evidence of regulatory functionality and variant deleter-
iousness. Both genes are highly expressed in the brain and have
been associated with cognitive traits in previous GWAS [51, 59].
EXOC4 encodes a component of the exocyst complex which plays
a role in multiple physiological processes, including neuronal
development [60, 61]. SCG3 encodes a member of the granin
family of neuroendocrine secretory proteins and is involved in
secretory granule biosynthesis and the storage and transport of
neurotransmitters [62, 63]. Another identified gene, inhibitory
synaptic factor 1 (INSYN1), is involved in post-synaptic inhibition in
the central nervous system [64] and may be considered for further
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Fig. 3 Genetic correlations and phenotypic associations between RTV and 19 selected traits. A Genetic correlations were calculated with
LD score regression using SNP summary statistics from discovery RTV-GWAS and publicly available summary statistics for other traits
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Fig. 4 Bar chart showing the predictive accuracy of the RTV-PGS
in three independent cohorts. Prediction of RTV by polygenic score
(PGS) in the African, non-British European, and South Asian ancestry
groups from the UK Biobank. The predictive accuracy of the PGS (R2)
was assessed in each cohort for a PGS calculated using two
methodologies, PRSice and PRS-CS. PRSice PGS were calculated
using all single nucleotide polymorphisms surviving LD pruning
from the discovery GWAS (p-value threshold of 1). *p < 0.05,
***p < 2.63 × 10-3.
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study. INSYN1 is a novel association for a cognitive trait but it has
been associated with psychiatric disorders, including ADHD [65],
PTSD [66], and Tourette syndrome [67]. Many of the identified
genes play a role in neural development and synaptic functioning,
suggesting an important role for these processes in the biology of
reaction time variability.
We reported an h2SNP of 3%, high polygenicity, and low

discoverability for RTV. It is possible that the high polygenicity,
despite the relatively low heritability, may be explained by the
range of exogenous factors, such as age, sex, handedness, and
treatment effects [5, 68, 69], that influence RTV. We hypothesise
that a large proportion of the identified 6800 causal variants may
be associated with these exogenous factors and thus, only have
indirect and weak effects on RTV.
We found that a PGS, derived from the RTV-GWAS in white

British participants from the UKB, was significantly predictive of
RTV in the UKB white non-British participants, explaining 0.5% of
the variance in the measure, which is expected with a h2SNP of 3%
[70]. The predictive accuracy of the PGS was substantially lower in
non-European ancestry populations. This is in keeping with prior
work on the generalisability of PGS across ancestrally diverse
populations with the predictive accuracy of the PGS decreasing as
the genetic distance between the discovery and target popula-
tions increases [71]. These results further emphasise the need to
increase the representation of ancestrally diverse populations in
genomic studies.
We found significant positive genetic correlations between RTV

and schizophrenia, and neuroticism. The result for schizophrenia is
consistent with previous findings of increased RTV in people with
schizophrenia [4, 7]. It is hypothesised that the elevations in RTV
reflect cognitive control deficits that occur in the disorder [4]. The
positive genetic correlation between RTV and neuroticism is
supported by our phenotype analysis, which demonstrate a
positive relationship between the two phenotypes. To our
knowledge, the association between these two traits has not
been studied and future research is needed to explore the
mechanisms that contribute to a relationship between RTV and
neuroticism. There were significant negative genetic correlations
between educational attainment, and general cognitive ability.
This result is in keeping with the negative relationship between
these two traits and RTV on the phenotypic level reported in
previous literature [72, 73].
As our primary measure of RTV (ISD) is often highly correlated

with mean reaction time [25], we conducted an additional GWAS
of another measure of RTV, the ICV. ICV is the ratio of a
participant’s ISD to their mean reaction time and provides a
certain degree of control for mean reaction time. We found the
genetic basis of both measures of RTV, ISD and ICV, to be similar.
All lead SNPs from the discovery RTV-GWAS reached significance
in the ICV-GWAS and showed a consistent direction of effect. The
significant high genetic correlation between ISD and ICV provides
additional support for consistency between the common genetic
determinants of both measures of RTV. Consistent with the strong
phenotypic association between RTV and mean reaction time, we
found evidence of similarities in the common genetic determi-
nants of the two traits. However, we also demonstrate differences
in the genetic basis of RTV and mean reaction time and show that
most of the lead SNPs and identified genes from the RTV-GWAS
are not associated with mean reaction time. Additionally, the
results from our genetic correlation analyses show that while the
patterns of correlation with the 17 selected phenotypes are similar
for RTV and mean reaction time, there are significant differences in
the magnitude and direction of correlation for certain phenotypes
(e.g. educational attainment, general cognitive ability and ADHD).
These analyses demonstrate distinctions in the common genetic
variants associated with RTV and mean reaction time and provide
support for our approach of studying RTV separately to mean
reaction time.

There are some limitations to this study. First, the UKB reaction time
test is brief and consists of fewer trials than are typically used in
simple reaction time tests. This paucity of trials may have reduced the
reliability of the measurement thereby affecting our ability to
accurately capture RTV for participants, contributing towards the
low estimate for h2SNP. While the associations between RTV and other
mental health and cognitive phenotypes in the UKB are in keeping
with the associations observed in previous studies of RTV using
validated reaction time tests, future studies should consider using a
more comprehensive assessment of reaction time. Second, the
assessment of reaction time variability differed between the UKB,
SAX, and TOP study and heterogeneity in the phenotype may have
affected comparisons of RTV among studies. Third, there is a lack of
well-powered studies with which to conduct a replication GWAS. The
moderate sample size of the replication study and limitations
pertaining to the trans-ancestry replicability of risk variants may
account for the non-replication of the lead SNPs from our discovery
GWAS. Fourth, the low h2SNP of RTV may have affected the accuracy
and predictive power of the RTV-PGS. While this low h2SNP limits the
potential use of the PGS to predict RTV, we were still able to fulfil the
aim of the polygenic score analyses, which was to evaluate the
replicability of the results from the discovery GWAS. Lastly, we used
self-reported ethnicity as a population descriptor for participants from
the UKB. While using the ethnic groups provided by the UKB
facilitates comparability with other studies using the same data,
future work should consider alternative population descriptors that
are better able to capture genetic variation between groups.
In summary, we have conducted the first large-scale GWAS of RTV

using 404,302 samples and identified 7 independent associated loci.
Several of the implicated genes are involved in neural development
and synaptic function and are known to be associated with other
cognitive traits. These findings suggest that disruptions to these
processes may affect shared biological mechanisms responsible for
maintaining the integrity of various aspects of cognitive function.
Despite the relatively low SNP-based heritability of RTV observed in
our study, it provides evidence that there is a genetic contribution
to the trait. Future studies may leverage these findings to improve
our understanding of the genetic mechanisms contributing to RTV
and gain novel insight into the biological underpinnings of related
complex disorders, like schizophrenia.

CODE AVAILABILITY
The present study applied previously published approaches, of which codes are
shared on public repositories: regenie v3.1 (https://github.com/rgcgithub/regenie),
METAL (https://github.com/statgen/METAL/tree/master/metal), MiXeR v1.2 (https://
github.com/precimed/mixer), GCTA v1.94 (https://github.com/jianyangqt/gcta), LDSC
v1.0.1 (https://github.com/bulik/ldsc), PRSice v2.3.5 (https://github.com/
choishingwan/PRSice), and PRS-CS v1.0.0 (https://github.com/getian107/PRScs/tree/
v1.0.0). All code used for carrying out the described analysis is available upon request
from the corresponding author.
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