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The human body harbors a diverse ecosystem of microorganisms, including bacteria, viruses, and fungi, collectively known as the
microbiota. Current research is increasingly focusing on the potential association between the microbiota and various
neuropsychiatric disorders. The microbiota resides in various parts of the body, such as the oral cavity, nasal passages, lungs, gut,
skin, bladder, and vagina. The gut microbiota in the gastrointestinal tract has received particular attention due to its high
abundance and its potential role in psychiatric and neurodegenerative disorders. However, the microbiota presents in other body
tissues, though less abundant, also plays crucial role in immune system and human homeostasis, thus influencing the development
and progression of neuropsychiatric disorders. For example, oral microbiota imbalance and associated periodontitis might increase
the risk for neuropsychiatric disorders. Additionally, studies using the postmortem brain samples have detected the widespread
presence of oral bacteria in the brains of patients with Alzheimer’s disease. This article provides an overview of the emerging role of
the host microbiota in neuropsychiatric disorders and discusses future directions, such as underlying biological mechanisms,
reliable biomarkers associated with the host microbiota, and microbiota-targeted interventions, for research in this field.
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INTRODUCTION
According to the Global Burden of Diseases, Injuries, and Risk
Factors Study (GBD) 2019, neuropsychiatric disorders such as
schizophrenia, autism spectrum disorder (ASD), major depressive
disorder (MDD), bipolar disorder (BD), anxiety disorders, and
substance use disorder, continue to rank among the top ten
leading causes of global burden, with no evidence of a reduction
since 1990 [1]. These disorders have profound impacts on
individuals, their families, and communities, posing a significant
public health concern worldwide. Additionally, the prevalence of
MDD, anxiety disorders, and post-COVID-19 condition has
increased during and following the COVID-19 pandemic [2–9].
Accumulating evidence indicates that both genetic and environ-
mental factors contribute significantly to the development and
manifestation of these neuropsychiatric disorders [10–18]. Envir-
onmental factors encompass early life experiences, social and
cultural factors, traumatic events, chronic stress, substance abuse
and addiction, as well as limited access to mental healthcare
services. However, the precise biological mechanisms underlying
the development and progression of neuropsychiatric disorders
remain elusive.
Brain–body crosstalk constitutes a bidirectional network that

facilitates the regulation and maintenance of overall homeostasis
in the body by enabling communication between the brain and
peripheral organs [19–30]. This crosstalk involves various compo-
nents, including the central nervous system (CNS), peripheral
nervous system, neurotransmitters, chemical signaling, hormones,
feedback loops and homeostasis, and mind–body connection
associated with emotions. A comprehensive understanding of

brain–body crosstalk is crucial for scientists to unravel the
underlying mechanisms contributing to the pathogenesis of
neuropsychiatric disorders.
The human body is known to harbor a diverse and abundant

community of microorganisms called the microbiota. Host
microbiota can be categorized into various types, including oral,
nasal, lung, gut, skin, bladder, and vagina microbiota (Fig. 1)
[31–35]. The gut microbiota, which resides in the gastrointestinal
(GI) tract, has garnered increasing attention due to its role in
brain–body crosstalk, known as the gut–brain axis
[20, 28, 29, 36–40]. However, limited research has been conducted
on the role of other host microbiota in neuropsychiatric disorders
due to their lower abundance compared to the gut microbiota. It
is essential to comprehensively understand the role of the
predominant gut microbiota as well as other microbiota in
neuropsychiatric disorders.
In this article, the author provides an overview of the host

microbiota in humans and explores the emerging role of the host
microbiota in neuropsychiatric disorders. Furthermore, the author
proposes future research directions for investigating the role of
the host microbiota in neuropsychiatric disorders.

HOST MICROBIOME IN HUMAN
The role of the host microbiota in maintaining health and
contributing to various diseases has gained considerable atten-
tion. The host-microbiota encompasses a range of microbial
communications, including the oral, nasal, lung, gut, skin, bladder,
and vaginal microbiota (Fig. 1) [31, 34, 35]. Notably, the oral and
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nasal microbiota serve as crucial entry points for potential
pathogens that could spread to the CNS. Human microbial
communities are complex and interconnected (Fig. 2). Microbiota
in one organ have the potential to influence those in another. The
gut, which houses the majority of the host’s microbiome, plays a
central role in affecting overall health and influencing various
diseases throughout the body [31, 34, 41, 42]. Although potential
interactions among microbiota in different organs have been

suggested, empirical evidence to support these claims remains
limited (Fig. 2). Current research is focused on elucidating these
microbial interactions across various organs.
While numerous studies have focused on the gut microbiota in

the GI tract, research on other microbiota has been limited due to
their lower abundance compared to the gut microbiota [43]. In the
next sections, the author provides a summary of the role of the
host microbiota in the GI tract and the other different tissues.

Oral microbiota

Vaginal microbiota

Skin microbiota

Gut microbiota

Lung microbiota

Urinary microbiota

Nasal 
microbiota

Location Microbial density 
(gram)

Stomach 1 x 101

Duodenum 1 x 103

Jejunum 1 x 104

Ileum 1 x 107

Colon 1 x 1012

Fig. 1 Host microbiota in human body. The human microbiota resides in the various tissues of the body, including the mouth, nose,
gastrointestinal (GI) tract, lung, skin, bladder, and vagina. In the GI trats, the density of microbes in different locations, such as the stomach,
duodenum, jejunum, ileum, and colon, has been shown [43]. Part of the figure was designed using resources from Biorender.com.

Nasal microbiota

Oral microbiota

Vaginal microbiota

Urinary microbiota

Skin microbiota

Lung microbiotaGut microbiota

� Acne
� Atopic dermatitis
� Psoriasis
� Skin cancer

� Asthma
� COPD
� Pneumonia
� Cystic fibrosis
� Lung cancer

� Poor oral health
� Periodontitis

� Anosmia
� Hyposmia
� Abnormal olfactory function

� Dysbiosis of vaginal microbiota
� Mental health problems in women?

� Overactive bladder
� Urinary tract infections
� Urinary incontinence
� Kidney stones

Fig. 2 Potential interactions among the microbiota in the different organs. The microbiota in one organ may potentially influence that in
another organ. The gut microbiota, which constitutes the majority of the host’s microbiome, plays a central role in affecting health and
disease throughout the body. Although there are proposed interactions between the microbiota of different organs, current evidence
supporting these interactions remains limited. Dysbiosis in the microbiota across various different tissues may contribute to the incidence of
organ-specific diseases. COPD: chronic obstructive pulmonary disease. Part of the figure was designed using resources from Biorender.com.
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GUT MICROBIOTA
The density (gram) of microbiota in the GI tract varies across
different regions: stomach (1 × 101), duodenum (1 × 103), jejunum
(1 × 104), ileum (1 × 107), and colon (1 × 1012) (Fig. 1) [43]. The
composition and diversity of gut microbiota in these different
regions may differ across these regions; however, studying the gut
microbiota from fecal samples, which are closely related to the
colon, is more straightforward. The term “gut microbiota–brain
axis” refers to the bidirectional communications between the gut
microbiota in the GI tract and the brain. Accumulating evidence
strongly suggests that the gut microbiota plays a crucial role
in regulating brain function and behavior through various
mechanisms. These mechanisms include the production of
various neurotransmitters, including serotonin, dopamine,
γ-aminobutyric acid (GABA), kynurenic acid, as well as microbe-
derived metabolites (e.g., short-chain fatty acids [SCFAs], bile
acids, D-amino acids). With regard to D-amino acids, some studies
have demonstrated reduced blood levels of D-glutamate in
patients with Alzheimer’s disease (AD) compared to healthy
controls [44, 45]. Moreover, it has been observed that plasma
levels of D-glutamate were correlated with cognitive functions
[44, 45]. Given that D-glutamate is a component of the
peptidoglycan cell wall in bacteria, it is plausible that the gut
microbiota contributes to its production [46]. The immune system
also plays a role in this axis [20, 28, 29, 47]. Preclinical findings
have highlighted the significance of the vagus nerve in the gut
microbiota–brain axis [48–57]. Understanding the gut
microbiota–brain axis via the vagus nerve has opened up new
possibilities for the development of novel treatments (e.g., dietary
interventions, prebiotics, probiotics, symbiotics [synergistic com-
bination of prebiotics and probiotics], fecal microbiota transplan-
tation, and vagus nerve stimulation) for neuropsychiatric disorders
[9, 39, 40, 58].
Research on the gut microbiota–brain axis in neuropsychiatric

disorders is a rapidly evolving field. Alterations in the composition
and diversity of the gut microbiota have been linked to various
psychiatric disorders, including schizophrenia, MDD, BD, ASD,
anxiety, and even neurodegenerative disorders such as AD and
Parkinson’s disease (PD) [59–71]. A meta-analysis identified a
transdiagnostic pattern associating gut microbiota imbalances
with schizophrenia, MDD, BD, and anxiety [72]. These imbalances
were characterized by a reduction of certain anti-inflammatory
butyrate-producing bacteria and an increase in pro-inflammatory
bacteria [72]. Specifically, consistent reductions in the levels of
Faecalibacterium and Coprococcus, along with elevated levels of
Eggerthella, were observed across psychiatric disorders such as
schizophrenia, MDD, BD, and anxiety [72]. A separate systematic
review highlighted bacterial taxa frequently linked to psychiatric
disorders (e.g., schizophrenia, MDD, BD) [64]. These findings
include reduced levels of bacterial genera that produce SCFAs
(e.g., butyrate), increased levels of lactic acid-producing bacteria,
and a heightened presence of bacteria involved in the metabolism
of neurotransmitters such as glutamate and GABA [64].
A meta-analysis, which included discovery and replication

samples, confirmed that ten bacterial genera were significantly
correlated with AD [73]. Among these, four genera were
significantly associated with the APOE rs429358 risk allele, either
as protective or risk factors for AD. Importantly, the pro-
inflammatory genus Collinsella, identified as a risk factor for AD,
exhibited a positive correlation with the APOE rs429358 risk allele
across both sample sets. These findings indicate that the influence
of host genetic factors on the abundance of these ten genera is
significantly correlated with AD, suggesting that these genera
could serve as potential biomarkers and therapeutic targets for
the disease [73]. Another recent meta-analysis showed that, at the
phylum level, the relative abundance of Firmicutes was signifi-
cantly lower in AD patients compared to healthy controls [74].
Conversely, the relative abundance of Bacteroidetes was

significantly higher in patients with MCI than in healthy controls
[74]. Collectively, these findings highlight gut microbiota abnorm-
alities associated with AD.
PD is a neurodegenerative disorder primarily characterized by

motor symptoms, including tremors, rigidity, bradykinesia, and
postural instability. Notably, a significant number of PD patients
experience GI symptoms, such as constipation, well before the
onset of motor symptoms. This suggests that alterations in gut
motility could be linked to gut microbiota dysbiosis. A protein
named α-synuclein accumulates in the brains of PD patients,
forming aggregates termed Lewy bodies. Interestingly, these
protein aggregates are also found in the enteric nervous system
(the nerve of the gut). Current hypotheses suggest that pathologic
α-synuclein may originate in the gut and subsequently migrate to
the brain via the vagus nerve, thereby contributing to the
pathology of PD [60, 71, 75–78].
However, it is important to note that the gut microbiota–brain

axis is a complex and evolving field of research. Further studies are
needed to elucidate the mechanisms and develop new effective
therapies. Nonetheless, the emerging evidence underscores the
significant role of the gut microbiota in psychiatric and
neurodegenerative disorders, offering a new perspective on the
treatment and management of these disorders. The author has
not extensively explored the role of gut microbiota on neurop-
sychiatric disorders in this section, as numerous comprehensive
review articles have already been published [64–71].

ORAL MICROBIOTA
The oral microbiota refers to the collective microbial community
inhabiting the human oral cavity. It represents the second-largest
microbial community in the human body. Components of the oral
microbiome are viruses, bacteria, archaea, fungi, and protozoa
(Fig. 3) [34, 35, 79, 80]. The oral microbiota colonizes two distinct
regions: the hard surfaces of the teeth, including dentures, and the
soft tissues of the oral mucosa. Major phyla of the oral microbiota
include Actionobacteria, Bacteroidetes, Firmicutes, Fusobacteria, and
Proteobacteria (Table 1) [34, 35]. Considering that the oral cavity
serves as the primary entry point to the human body, disruptions
in the oral microbiota may potentially contribute to the
development and progression of psychiatric and neurodegenera-
tive disorders, as well as autoimmune diseases (Fig. 3)
[34, 35, 81–83]. In addition of the gut microbiota, research efforts
have expanded to investigate the role of the oral microbiota in
neuropsychiatric disorders [84–89].

Periodontal diseases in patients with psychiatric disorders
Patients with psychiatric disorders often exhibit poor oral hygiene
and a compromised periodontal status [84]. A meta-analysis has
indicated that all psychiatric disorders are associated with an
increased risk of dental decay, as reflected by higher decayed,
missing, and filled teeth scores, as well as greater tooth loss [90].
Dry mouth, a common side effect of medications, is prevalent
among many individuals with neuropsychiatric disorders and
serves as a significant risk factor for oral health issue [84].
Furthermore, the incidence of periodontitis in patients with
psychiatric disorders is 1.45 times higher compared to those
without psychiatric disorders [91]. Taken together, these findings
suggest that periodontitis may partly contribute to the risk for
developing neuropsychiatric disorders (Figs. 2 and 3). However,
further detailed studies with larger sample sizes are needed.
In a case-control study involving BD patients (n= 176) and

controls (n= 176), the prevalence of periodontitis was higher
among BD patients, and BD patients with periodontitis exhibited
elevated levels of Aggregatibacter actinomycetemcomitans, and
Porphyromonas gingivalis compared to controls [92]. Notably,
periodontitis showed a strong association with both the total
bacterial load and the depressive phase of BD [92]. These findings
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suggest that increased levels of these oral microbiota may
contribute to periodontitis, potentially leading to depressive
symptoms in BD patients. Additionally, the salivary microbiome
in patients (n= 85) with drug-naïve first-episode schizophrenia
was characterized by higher α-diversity (a measure of microbiome
diversity) and lower β-diversity (a measure of the similarity or
dissimilarity of microbial communities) heterogeneity than those
of subjects (n= 43) with clinical high risk for psychosis and
healthy controls (n= 80) [93]. Interestingly, hydrogen sulfide
(H2S)-producing bacteria exhibited disease-stage-specific enrich-
ment, and certain salivary microbiota exhibited disease-specific
correlation patterns with symptom severity [93]. This supports
previous findings highlighting the role of excess H2S in schizo-
phrenia [94]. The same group reported changes in salivary
metabolites in patients with drug-naïve first-episode schizophre-
nia compared to healthy controls, with these changes being
closely associated with peripheral inflammatory markers and
salivary microbiota [95]. These results suggest a connection
between the disturbed oral microbiota, microbe-derived metabo-
lites and the onset of schizophrenia, hinting at a possible role of
the oral–brain connection in the initiation of this disease.

However, further research involving larger sample sizes is
necessary to confirm these findings.
A recent narrative review proposes a possible link between the

oropharyngeal microbiome and schizophrenia, although addi-
tional research is needed to definitively establish this connection
[96]. Another recent study showed that alcohol consumption
influences the diurnal fluctuations in the oral microbiota of
individuals with functional impairment due to alcohol depen-
dence. This finding emphasizes the potential for interventions to
mitigate the negative consequences of alcohol dependence [97].
Using a cohort of Israel veterans from the 1982 Lebanon war,

Levert-Levitt et al. [98] found that the oral microbiota signature
(specifically, reduced levels of bacteria sp_HMT_914, 332 and 871,
as well as Noxia) correlated with the severity of post-traumatic
stress disorder (PTSD). Conversely, the duration of education was
associated with higher levels of sp_HMP_871 and decreased levels
of Bacteroides and Firmicutes. Notably, air pollution positively
correlated with PTSD symptoms, psychopathological symptoms,
and changes in oral microbiota composition [98]. These findings
suggest potential non-intrusive treatments for PTSD related to the
oral microbiota pathway.

Neurodegenerative disorders and detection of bacteria in the
brain
Mild cognitive impairment (MCI) represents an initial phase of
memory decline or other cognitive functions, yet individuals with
MCI retain the capability to conduct most daily activities. In
subjects with MCI, higher levels of Pasteurellacae were observed
compared to cognitively normal controls, whereas the abundance
of Lautropia mirabilis was lower in individuals with MCI [99].
Furthermore, the abundance of Pasteurellacae was associated with
inflammatory markers in the cerebrospinal fluid (CSF). These
preliminary findings suggest that an altered composition of the
oral microbiota may contribute to neuroinflammation, potentially
leading to cognitive decline. However, further longitudinal studies
involving elderly individuals are needed to better understand this
relationship.
Both AD and PD are prominent neurodegenerative disorders,

characterized by the accumulation of β-amyloid and α-synuclein
in the brain, respectively. Patients with AD or PD often exhibit

Table 1. Predominant microbiota in the different sites of human body.

Tissue Predominant bacterial phyla

Mouth Actinobacteria, Bacteroidetes, Firmicutes, Fusobacteria,
Proteobacteria

Nose Actinobacteria, Firmicutes, Proteobacteria

Stomach Actinobacteria, Bacteroidetes, Firmicutes, Fusobacteria,
Proteobacteria

Intestine Bacteroidetes, Firmicutes

Lung Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria

Skin Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria

Bladder Firmicutes

Vagina Firmicutes (the species Lactobacillus)

A slight modification from the references [34, 35].

Neuropsychiatric disorders

Fig. 3 Role of oral microbiota in neuropsychiatric disorders. The oral microbiota consists viruses, bacteria, archaea, fungi, and protozoa. In
comparison to a healthy microbiome (eubiosis), patients with periodontitis exhibit an imbalanced microbiome (dysbiosis), which can
contribute to the development of neuropsychiatric disorders. Studies utilizing postmortem brain samples have demonstrated the presence of
the oral microbiota in the brains from patients with Alzheimer’s disease (AD) or Parkinson’s disease [105]. Part of the figure was designed using
resources from Biorender.com.
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psychiatric symptoms, such as depression. A well-established
association exists between poor oral health, specifically period-
ontitis, and an increased risk of developing AD or PD (Fig. 3)
[100–102]. A cross-sectional study has revealed links between oral
health-related stressors and neuropsychiatric symptoms in
patients with AD [103]. Collectively, these findings highlight the
importance of managing oral health in patients with neurode-
generative disorders.
Several microorganisms have been identified in the CSF and

brains of individuals with AD or PD, suggesting a potential role in
the progression of these diseases [104–106]. A recent study using
the postmortem brain samples revealed the widespread presence
of oral bacteria in regions associated with AD and PD pathology
(Fig. 3). Interestingly, bacteria profiles in the brain were distinct
from those in blood samples [107]. Additionally, a recent meta-
analysis demonstrated a significant association between oral
bacteria and AD, particularly when oral bacteria were detectable in
the brain [108]. A recent study showed that the oral and gut
microbiota of partners of AD patients resembled that of the AD
patients themselves and differed from healthy controls [109],
suggesting a potential transmission of microbiota. This observa-
tion could provide insight into why spouses of AD patients have
an elevated risk of developing dementia [109]. Overall, it is
plausible that periodontal microbiota could enter the brain,
thereby contributing to the development of AD [110]. However,
further cohort studies involving larger sample sizes are necessary
to confirm the role of the oral microbiota in AD or PD. At present,
it remains unknown whether oral bacteria are detected in the
brains of patients with psychiatric disorders.
Increasing evidence highlights the role of oral microbiota in PD

[111]. Notably, the oral microbiota in early-stage PD patients
shows significant differences compared to healthy controls, with
specific oral bacteria exhibiting associations with motor and non-
motor functional measures [112]. Furthermore, significant dispa-
rities were observed in the composition of the oral and gut
microbiome between PD patients and healthy controls [113].
Notably, the oral bacteria Lactobacillus demonstrated increased
abundance in PD patients and was associated with opportunistic

pathogens in the gut. Another study revealed significant
differences in microbiota composition in the oral cavity and gut,
but not the nasal cavity, between PD patients (n= 91) and healthy
controls (n= 91) [114]. Interestingly, correlations between the
genera in the oral cavity and the severity of depression and
anxiety were observed in PD patients [114], suggesting a role of
the oral microbiota in psychiatric symptoms of PD. These findings
indicate a potential link between the oral and the gut microbiota
in PD (Fig. 2), which could lead to functional changes within the
microbiome of PD patients [113, 114]. Given the crucial role of oral
microbiota in maintaining oral health, it is plausible that changes
in the oral microbiota among the elderly population could
contribute to the development and progression of various
disorders such as AD, PD, and age-related systemic disorders
[115, 116].

NASAL MICROBIOTA
The nasal cavity harbors a diverse community of microorganisms
that contribute to the maintenance of the nasal mucosa health
and overall immune system function [117–119]. Major phyla
observed in the nasal microbiota include Actionobacteria, Firmi-
cutes, and Proteobacteria (Table 1) [34, 35]. The composition and
diversity of the nasal microbiota vary among individuals and are
influenced by factors such as age, genetics, environmental
exposures, and personal hygiene habits such as smoking
[34, 117, 119]. Considering the role of the nasal microbiota in
host immune responses, an imbalance in the nasal microbiota has
been associated with various health conditions [34, 117, 119]. The
role of the nasal microbiota in neuropsychiatric disorders is an
emerging area of research that explores the potential link
between the microbial communities in the nasal cavity and
mental health conditions. Additionally, the nasal microbiota may
influence the well-known gut microbiota–brain axis through
various pathways, including direct contact with the olfactory
system, immunes system modulation, and the production of
neurotransmitters or metabolites capable of crossing the blood-
brain barrier (Fig. 4). However, there are currently no reports

(a) Transcellular pathway (through epithelial cells)
(b) Paracellular pathway (between epithelial cells)
(c) Intracellular pathway (through olfactory nerve)

Fig. 4 Nasal microbiota in the olfactory function. The nasal cavity can be divided into distinct regions, including the nasal vestibules,
respiratory region, olfactory region, and nasopharyngeal region. The nasal microbiota colonizes these regions, and plays a crucial role in
maintaining the health of the nasal mucosa and overall immune system function. There are three pathways from the mucus layer to the
olfactory bulb: (a) the transcellular pathway, which involves passage through epithelial cells; (b) the paracellular pathway, which occurs
between epithelial cells; and (c) the intracellular pathway, which occurs through the olfactory nerve. Considering the crucial role of the nasal
microbiota within the nasal cavity, it is plausible that both the nasal microbiota and their metabolites may have a role in neuropsychiatric
disorders. Part of the figure was designed using resources from Biorender.com.
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available on the specific role of the nasal microbiota in patients
with psychiatric disorders.

Neurodegenerative disorders
Age significantly influences olfactory dysfunction, making it a
potential early indicator of neurodegenerative disorders [119].
Anosmia (complete loss of olfactory function) and hyposmia
(decreased olfactory function) are commonly observed in patients
with neurodegenerative disorders. Although there is currently no
direct evidence supporting the association between the inflam-
matory response of the nasal microbiota and neurodegenerative
disorders, several reports explore the role of the nasal microbiota
in AD and PD [119]. These studies suggest a potential link
between microbial communities in the nasal cavity and the
development or progression of these neurological disorders.
Additionally, a potential association between PD and nasal
microbiota has been proposed. Dysbiosis of the nasopharyngeal
microbiota could trigger inflammatory responses to α-synuclein,
contributing to the pathological changes seen in PD [119].

Nasal microbiota in the olfactory function
Accumulating evidence suggests the involvement of olfactory
dysfunction in neuropsychiatric disorders (Fig. 2). Specific altera-
tions in various components of the sense of smell have been
observed in patients with neuropsychiatric disorders such as
schizophrenia [120–126]. However, there are currently no reports
available on the relationship between the nasal microbiota and
olfactory functions in patients with neuropsychiatric disorders.
Notably, patients with substance use disorder often use inhalation
of drugs of abuse. It is known that the respiratory system,
including the nasal cavity and lungs, can be exposed to various
drugs through inhalation, resulting in dysbiosis of nasal and lung
microbiota. Given the crucial role of the nasal microbiota in
olfactory functions, it is of great interest to investigate whether the
nasal microbiota is altered in patients with neuropsychiatric
disorders.

LUNG MICROBIOTA
The human respiratory tract was traditionally believed to be a
sterile environment; however, emerging research using advanced
techniques has revealed the presence of a diverse community of
microorganisms known as the lung microbiota. Major phyla
observed in the lung microbiota include Bacteroidetes, Firmicutes,
and Proteobacteria (Table 1) [34, 35]. Various factors, including
environmental exposers, host genetics, immune function, and
lifestyle, influence the composition of the lung microbiota,
highlighting its potential role in maintaining lung health and
immune function [127–129]. Notably, alterations in the lung
microbiota have been associated with respiratory diseases such as
asthma, chronic obstructive pulmonary disease, pneumonia, cystic
fibrosis, and lung cancer (Fig. 2) [127–131]. Interestingly, a
gut–lung axis has been described, indicating crosstalk between
the microbiomes of the gut and lungs (Fig. 2) [132, 133].
Currently, there is a limited body of research specifically

focusing on the role of the lung microbiota in neuropsychiatric
disorders. The lung–brain axis remains underexplored, although
three potential mechanisms have been proposed [133]. First,
microorganisms or their by-products might directly translocate
across the capillary barrier into the bloodstream, eventually
reaching the brain. Second, the lung microbiome could influence
systemic humoral factors, given its role in local pulmonary
immune homeostasis. Third, the lung microbiome may affect
systemic cell-mediated immunity, which could subsequently
impact brain function [133]. A recent prospective randomized
study demonstrated that traumatic brain injury patients who
developed ventilator-associated pneumonia during their ICU stay
exhibited distinct structures of bronchoalveolar lavage microbiota

both at admission and at seven days post-ICU admission [134].
This finding suggests the potential utility of lung microbiota
management as a strategy for preventing infections in critically ill
patients [134].
Additionally, a recent preclinical study demonstrated that

antibiotic-induced disruption of the lung microbiome significantly
increased the susceptibility of rats to developing autoimmune
diseases in the CNS, suggesting the potential role of the lung
microbiome on brain immune responses via the lung–brain axis
[135]. Furthermore, antibiotic-induced microbiome depletion
could reduce acute lung injury after lipopolysaccharide adminis-
tration [136]. Another recent study demonstrated that small
intestinal γδ T-cell migration into the lung and brain plays a role in
stroke-associated pneumonia in mice [56]. Given the emerging
recognition of the lung–brain axis [135, 137, 138], it becomes
increasingly compelling to explore whether the lung microbiota
plays a role in the development and progression of neuropsy-
chiatric disorders.

SKIN MICROBIOTA
Human skin is home to millions of bacteria, fungi and viruses that
compose the skin microbiota. As the largest organ of the human
body, the skin microbiota plays essential roles in the protection
against the invasion of pathogens (Fig. 1) [139, 140]. The
composition of the skin microbiota varies across different body
regions (e.g., glabella, sebaceous, antecubital fossa, volar forearm,
toe web space) and among individuals, influenced by the factors
such as age, genetics, hygiene practices, and environmental
exposures [139–142]. Major phyla of the skin microbiota include
Actionobacteria, Bacteroidetes, Firmicutes, and Proteobacteria
(Table 1) [34, 35]. Given the important role of the skin microbiota
in maintaining skin health and function, it is likely that the skin
microbiota contributes to the regulation of the skin’s immune
response, influencing inflammation and defense mechanisms.
Disruptions in the skin microbiota can lead to various skin
conditions and diseases. For example, an overgrowth of certain
bacteria, such as Staphylococcus aures, has been associated with
skin disorders such as acne, atopic dermatitis, and wound
infections (Fig. 2) [139, 140].
The skin microbiota primarily influences the skin health;

however, emerging research suggests a potential role of the skin
microbiota in neuropsychiatric disorders due to its potential to
influence the gut microbiota (Fig. 2) [34, 143, 144]. Therefore, it is
possible that the skin microbiota may indirectly impact the
gut–brain axis, leading to the development of neuropsychiatric
disorders. Currently, there is limited research reporting alterations
in the skin microbiota in patients with neuropsychiatric disorders.
To the best of our knowledge, there is only one report that has
reported alterations in the skin microbiota in patients with
anorexia nervosa. Hermes et al. [145] identified significant
correlations between Shannon diversity, the highly abundant skin
antimicrobial peptide psoriasin, and bacterial load. Additionally,
psoriasin was associated with Abiotrophia, an indicator for the
healthy-weight control group. A significant correlation was
observed between an individual’s body mass index and Lactoba-
cillus, which serves as a microbial indicator of health. Further
investigations examining the relationship between caloric and
nutritional intake and the skin microbiota in patients with eating
disorders are required to clarify the association between dietary
factors and skin physiology [145]. In a recent study, Arikan et al.
[146] demonstrated an association between axillary microbiota
and cognitive impairment in PD patients (n= 103), suggesting a
possible role of skin microbiota in cognitive impairments. None-
theless, further studies with larger sample sizes are necessary to
validate these findings.
Depression is a common psychiatric symptom in patients with

skin diseases, such as psoriasis [147, 148]. Various studies have
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proposed the existence of a skin–microbiota–brain axis in the
comorbidity of depression in patients with chronic wound
[149–151]. Furthermore, alterations in both the skin and gut
microbiota are believed to contribute to the pathogenesis of
psoriasis through inflammatory and immune mechanisms [152]. A
preclinical study using imiquimod-treated mice (a model of
psoriasis) demonstrated correlations between the skin microbiota
and the gut microbiota, suggesting bidirectional communication
between the two [153]. Given the interaction between the skin
microbiota and the gut microbiota in the immune system, it is
intriguing to investigate whether skin microbiota is altered in
patients of neuropsychiatric disorders.

BLADDER MICROBIOTA
Bladder (or urinary) microbiota has been identified in the human
urinary tract. The abundance and diversity of the urinary
microbiota are distinct from the microbiota of other body sites
such as the gut or the skin. Major phylum of the bladder
microbiota is Firmicutes (Table 1) [34, 35]. Traditionally, the urinary
environment was considered sterile; however, recent research has
demonstrated the presence of a diverse microbial population in
both healthy and diseases [154, 155]. In 2011, Siddiqui et al. [156]
reported that the urinary microbiota in healthy women was
predominantly composed to Lactobacillus species, similar to the
vaginal microbiota, while women with urinary incontinence had a
more diverse and less stable microbial community. Furthermore,
Lewis et al. [157] identified a distinct microbial signature in men
with symptomatic urinary tract infection. Additionally, Thomas-
White et al. [158] reported that women with recurrent urinary tract
infections had a higher prevalence of certain bacteria, such as
Escherichia coli, compared to healthy controls, and that the
bladder microbiota of women with recurrent urinary tract
infections was less diverse and less stable over time. A recent
cross-sectional study demonstrated that alterations in the urinary
microbiota are correlated with the severity of overactive bladder
symptom in patients with overactive bladder, suggesting that
urinary dysbiosis may play a role in the deteriorations of functional
bladder diseases [159]. Collectively, it is worth noting that the
urinary microbiota may play a role in various urinary tract
conditions, including urinary tract infections, intestinal cystitis,
urinary incontinence, and kidney stones (Fig. 2) [160, 161].
To the best of our knowledge, there are currently no articles

reporting alterations in bladder microbiota in patients with
neuropsychiatric disorders. However, a study by Wu et al. [162]
demonstrated negative correlations between the severity of
depression and both richness (Chao1) and diversity (Shannon
index) of urinary microbiota in patients with overactive bladder.
Furthermore, Ren et al. [163] found that compared with healthy
group, patients with BD exhibited significantly higher levels of
betaine, glycerol, hippuric acid, indole sulfate, trimethylamine
oxide, and urea in their urine samples, while the level of inositol
was significantly lower. Given the role of microbiota in the
production of these compounds [164–166], it is possible that
alternations in bladder microbiota may contribute to the observed
changes in the urine sample composition [167–169]. It is
important to note that further research is needed to investigate
the potential link between the bladder microbiota, neuropsychia-
tric disorders, and urine sample composition. Understanding these
relationships could provide valuable insights into the role of the
bladder microbiota in the context of neuropsychiatric disorders
and urinary metabolites.
Notably, there is evidence suggesting a link between overactive

bladder and psychiatric disorders such as depression and anxiety
[170, 171]. A national cohort study conducted in Taiwan demon-
strated significantly higher risk of depression and anxiety in patients
with overactive bladder compared to those without overactive
bladder [172]. Additionally, a study involving older Korean women

(n= 3000) revealed a higher prevalence of depression, stress, and
low self-esteem in women with urinary incontinence [173]. More-
over, a recent prospective UK cohort study found associations
between mental health problems, stressful life evens, and new-
onset urinary incontinence in primary school-age children [174].
These findings collectively suggest that disturbances in bladder
function may contribute to mental health problems across different
age groups, from children to elderly individuals. Given the emerging
understanding of the role of bladder microbiota in bladder function
[154, 155, 175], it is of great interest to investigate whether the
bladder microbiota plays a role in both bladder function and
psychiatric symptoms in patients with neuropsychiatric disorders.
Further research in this area may provide valuable insights into the
complex relationship between bladder function, neuropsychiatric
disorders, and bladder microbiota.

VAGINA MICROBIOTA
The vaginal microbiota is a dynamic ecosystem that plays a role in
women’s health [176–178]. The dominant bacteria in the vaginal
microbiota are species of Lactobacillus (Table 1) [34, 35]. Lactoba-
cillus species play several important roles in vaginal health,
including the production of lactic acid, which helps maintain an
acidic pH in the vagina (typically around 3.5–4.5), creating
an inhospitable environment for pathogens [179, 180]. In women
with a dominant microbiota Lactobacillus spp., the concentration of
lactic acid is approximately 110mM, acidifying the vagina to a pH of
~3.5 [178–180]. Two enantiomers of lactic acid exist. L-lactic acid is a
common compound of human metabolism; however, both D- and
L-lactic acid can be produced by certain strains of the microbiota or
through unknown metabolic pathways (Fig. 5). D-lactate dehydro-
genase is an enzyme that converts D-lactic acid to pyruvate
[178, 181]. Currently, it remains unclear how Lactobacillus species in
the vagina produce both enantiomers of lactic acid. Further studies
on the quantification of two enantiomers of lactic acid in the vagina
are needed.
The composition of the vaginal microbiota can be influenced by

various factors, including different stages of a woman’s life (e.g.,
puberty, menstruation, pregnancy, menopause), hormonal status,
sexual activity, hygiene practices, and underlying health conditions
[176, 178]. There is a reported link between the profile of the vaginal
microbiota and the incidence and prevalence of human papillo-
mavirus [182]. It’s well established that women can encounter a
variety of mental health issues, including depression, anxiety,
postpartum depression, eating disorders, premenstrual dysphoric
disorder, and perimenopausal depression. Although the direct
relationship between the vaginal microbiota and neuropsychiatric
disorders is not yet well understood, there are several potential
ways in which the vaginal microbiota could influence these
disorders. The vaginal microbiota plays a crucial role in maintaining
a healthy immune system in the female reproductive tract. An
imbalance in the vaginal microbiota can lead to inflammation and
immune dysfunction, as well as changes in hormones and
microbiota-derived metabolites, contributing to the development
and progression of neuropsychiatric disorders (Fig. 5) [176, 178].
The successful application of fecal microbiota transplantation

(FMT) has opened new avenues for the development of vaginal
microbiota transplantation (VMT) [183–187]. VMT is an emerging
clinical procedure designed to reestablish a balanced vaginal
microbiota by transferring it from a healthy donor to a patient
with vaginal microbiota dysbiosis [188, 189]. In 2019, Lev-Sagie
et al. [190] reported the therapeutic effectiveness of VMT in
women suffering from persistent and recurrent bacterial vaginosis,
following pretreatment with antibiotics to eliminate pathogens. A
recent case study demonstrated a successful VMT procedure,
where donor strain engraftment was verified. This was followed by
a successful pregnancy and childbirth after a series of previous
late pregnancy losses or stillbirths [191]. If an imbalanced vaginal
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microbiota is found to be associated with mental health issues in
women, VMT could emerge as a potential therapeutic option.
Emerging evidence suggests that maternal immune activation

can increase the risk of neuropsychiatric disorders in offspring,
including ASD, schizophrenia, and other neurodevelopmental and
neuropsychiatric disorders [192, 193]. Various factors, such as
infections, immune challenges, stress, and environmental exposures
during pregnancy, can trigger an immune response in the mother
(Fig. 5). There are significant concerns regarding the potential
impact of maternal infection of COVID-19 on the development of
neuropsychiatric disorders in offspring [194–197]. It remains unclear
whether maternal immune activation can affect the vaginal
microbiota in pregnant women. However, there is plausible that
maternal immune activation could impact the vaginal microbiota,
potentially leading to the development of neuropsychiatric
disorders in offspring (Fig. 5). A recent meta-analysis using rodent
studies showed that perinatal maternal microbiota disturbance is
transmitted to the offspring, negatively impacting behavioral
parameters related to neuropsychiatric disorders [198]. Under-
standing the relationship between maternal immune activation and
the vaginal microbiota in the context of neuropsychiatric disorders
in offspring is crucial for early detection, prevention, and interven-
tion strategies. Further research is needed to uncover the under-
lying biological mechanisms, identify potential biomarkers (e.g.,
vaginal bacteria, and metabolites), and develop effective interven-
tions (e.g., VMT) [189] to mitigate the impact of maternal immune
activation on neurodevelopment and reduce the risk of neuropsy-
chiatric disorders in the offspring of mothers who experience
immune activation during pregnancy.

CONCLUSION REMARKS AND FUTURE DIRECTIONS
As outlined earlier, multiple lines of evidence indicate that
dysbiosis in the gut microbiota could contribute to the onset

and progression of various psychiatric and neurodegenerative
disorders. However, research on the host microbiota in other
organs, such as mouth, nose, lung, skin, bladder, and vagina,
remains limited. Investigating the microbiota in these other
organs is essential, as they can interact with the gut microbiota
in the GI tract through inflammatory and immune system
pathways (Fig. 2) [31, 34, 41, 42]. Future comprehensive studies
aim to uncover the biological mechanisms by which alterations in
host-microbiota contribute to the development and progression
of neuropsychiatric disorders. Another key goal is to identify
reliable biomarkers linked to host microbiota that could facilitate
early detection, diagnosis, and monitoring of these conditions.
Moreover, there is significant potential for microbiota-targeted

interventions (e.g., plant-based diet, probiotics, prebiotics, sym-
biotics, microbiome-derived metabolites, and microbiota trans-
plantation) in the treatment and prevention of neuropsychiatric
disorders. A recent double-blind, placebo-controlled study
demonstrated that adjunctive treatment of multiple probiotics
significantly reduced depression scores in MDD patients, without
causing serious adverse effects [199]. While the use of FMT in
treating neuropsychiatric disorders is on the rise [185–187],
microbiota transplantation in other organs, such as VMT, could
also offer therapeutic possibilities. Longitudinal studies that
monitor changes in host microbiota and their correlation with
neuropsychiatric disorders will be essential. Ultimately, translating
microbiota-based interventions into clinical practice will be a
critical advancement in the field [200].
The human microbiota, consisting of trillions of microorganisms

residing both within and on our bodies, interacts intricately with
approximately 20,000–25,000 genes in each individual. This
complex interplay between the host microbiota and human
genes plays a crucial role in our health and disease susceptibility.
In conclusion, the future research focusing on the role of the host
microbiota in neuropsychiatric disorders offers significant promise

Maternal Immune activation

� Infections 
� Immune challenges 
� Stress 
� Environmental exposures

Offspring with 
neuropsychiatric disorder

Dysbiosis of vaginal microbiota

OH

O

OH

O

OHOH

D-Lactic acid L-Lactic acid

Fig. 5 Potential role of vaginal microbiota in the development of neuropsychiatric disorders in offspring following maternal immune
activation. The vaginal microbiota, particularly, the Lactobacillus species, plays several significant roles in maintaining vaginal health. There is
an association between the composition of the vaginal microbiota and reproductive health, including the risk for spontaneous preterm birth.
Maternal immune activation (MIA), which can result from a range of factors such as infections, immune challenges, stress, environmental
exposures, has been linked with an increased risk of neuropsychiatric disorders in offspring. Dysbiosis of the vaginal microbiota due to MIA,
along with subsequent disrupted immune responses, may foster the development of neuropsychiatric disorders in offspring. This imbalance
in the vaginal microbiota might impact the synthesis of D- and L-lactic acid and other metabolites, leading to changes in pH and the immune
system in the vagina. Furthermore, an imbalance in the vaginal microbiota may influence mental health issues in women throughout their
lives. Part of the figure was designed using resources from Biorender.com.

K. Hashimoto

3632

Molecular Psychiatry (2023) 28:3625 – 3637



for elucidating the complex relationships between the microbiota
in various tissues and the brain. This research has the potential to
open new avenues for diagnostic methodologies and innovative
therapeutic strategies for these disorders.
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