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Obsessive-compulsive disorder (OCD) is a prevalent mental disorder affecting ~2–3% of the population. This disorder involves
genetic and, possibly, epigenetic risk factors. The dynamic nature of epigenetics also presents a promising avenue for identifying
biomarkers associated with symptom severity, clinical progression, and treatment response in OCD. We, therefore, conducted a
comprehensive case-control investigation using Illumina MethylationEPIC BeadChip, encompassing 185 OCD patients and 199
controls recruited from two distinct sites in Germany. Rigorous clinical assessments were performed by trained raters employing
the Structured Clinical Interview for DSM-IV (SCID-I). We performed a robust two-step epigenome-wide association study that led to
the identification of 305 differentially methylated CpG positions. Next, we validated these findings by pinpointing the optimal set of
CpGs that could effectively classify individuals into their respective groups. This approach identified a subset comprising 12 CpGs
that overlapped with the 305 CpGs identified in our EWAS. These 12 CpGs are close to or in genes associated with the sweet-
compulsive brain hypothesis which proposes that aberrant dopaminergic transmission in the striatum may impair insulin signaling
sensitivity among OCD patients. We replicated three of the 12 CpGs signals from a recent independent study conducted on the Han
Chinese population, underscoring also the cross-cultural relevance of our findings. In conclusion, our study further supports the
involvement of epigenetic mechanisms in the pathogenesis of OCD. By elucidating the underlying molecular alterations associated
with OCD, our study contributes to advancing our understanding of this complex disorder and may ultimately improve clinical
outcomes for affected individuals.
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INTRODUCTION
Obsessive-compulsive disorder (OCD) is a psychiatric disorder that
affects around 2–3% [1, 2] of the general population and can result
in severe psychosocial impairment if untreated. The disorder is
characterized by excessive, unwanted thoughts (obsessions) and/or
repetitive behaviors (compulsions) [3]. Despite OCD’s large burden
on affected individuals and the health care system, up to date, no
biomarker has been found to classify the disorder in a clinical
setting or to aid clinicians to predict response to pharmacological or
psychological treatment.
OCD is considered a multifactorial disorder in which the risk to

develop the disease is defined by the complex interaction of
genetics, epigenetics, and environmental factors. From a genetic
perspective, twin studies have estimated that the heritability of
OCD is 47–61% [4–7]. Despite this high heritability, genome-wide
association studies in OCD have identified only one genetic locus
reaching genome-wide significance [8]. This might be explained

by the current lack of statistical power to identify genetic variants
of small effects. An alternative explanation is that the missing
heritability is due to gene x environment interactions contributing
to the etiology of OCD [5, 9, 10]. For example, evidence from
retrospective and longitudinal studies has shown that childhood
trauma and other environmental risk factors may predispose to
OCD, presumably in combination with genetics [11, 12]. Although
it is widely accepted that environmental factors play a role in OCD
pathophysiology, evidence is not unequivocal, and specific
mechanisms are largely unclear. Also, many studies lack metho-
dological quality so far [13, 14]. Interestingly, environmental
factors are known to exert their effects on disease susceptibility
through epigenetic modifications leading to the modulation of
expression and co-expression of several genes [15–19]. In humans,
the most studied epigenetic modification is the methylation
of DNA (DNAm). The development of high throughput array
technology enabled genome-wide assessment of DNAm for many
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individuals at a moderate cost [20, 21]. Epigenome-wide associa-
tion studies (EWAS) have shed light on many psychiatric disorders
such as depression [10], anorexia nervosa, Alzheimer’s disease
[22, 23], or schizophrenia [24], complementing genetic research.
Given their dynamic and modifiable nature, DNAm can be
acquired or lost over the lifespan depending on environmental
influences. Thus, epigenetic modifications may serve as biomar-
kers for gene x environment interactions, providing further
insights into the molecular basis of OCD [25].
Exposure and response prevention (ERP) based cognitive-

behavioral therapy (CBT) constitutes a first-line treatment for
OCD with effect sizes being among the largest of all psychological
treatments for mood, anxiety, and related disorders [26]. Still, a
substantial proportion of OCD patients show an insufficient
response to CBT [27], stressing the need to identify predictive
markers of CBT response.
We recruited 384 participants from two German cities, Berlin

and Bonn, to investigate the relationship between blood DNAm
and OCD, which makes it the largest study to date. We first search
for genomic loci showing differentially methylated sites between
cases and healthy controls. We then computed a methylation
profile score (MPS) to assess its classification power to differentiate
cases from controls (Fig. 1), as well as its association with
treatment response and symptom severity (Y-BOCS scale).

MATERIALS AND METHODS
Patients and controls
Biological samples were obtained from 185 patients with OCD and 199
healthy individuals who participated in the Endophenotypes of OCD study
[28, 29]. The two recruitment centers, the Department of Psychology of

Humboldt-University in Berlin and the Department of Psychiatry and
Psychotherapy of the University Hospital in Bonn enrolled and evaluated
all participants according to the same protocols (Table 1). Healthy
individuals from the general population were recruited through public
advertisements. All participants came from European ancestry. Before
recruitment, written informed consent was given by all participants,
and monetary compensation was paid for their time. The study was
performed following the revised Declaration of Helsinki and approved by
the local ethics committees of Humboldt University and the University
Hospital Bonn.

Clinical evaluation
All participants were examined by trained psychologists using the
Structured Clinical Interview for DSM-IV (SCID-I) [30]. The severity of OCD
symptoms was evaluated using the German version of the Yale-Brown
Obsessive-Compulsive Scale (Y-BOCS) [31, 32]. Patients with OCD were
included if they: (a) were free of any psychotic, bipolar, or substance-
related disorder in the past or present (b) had not been treated with any
neuroleptic drug during the past 4 weeks, and (c) had not used
benzodiazepines 2 weeks before the study examination. Moreover, healthy
participants were excluded if they (a) had taken any psychoactive drug in
the past 3 months, (b) reported any Axis I disorder, or (c) had a relative
with OCD.
Current or previous treatments were assessed in the patients’ group, in

which ~50% had received pharmacotherapy, predominantly with SSRI. 79
OCD patients reported treatment with psychotropic medication in the past
4 weeks. A total of 25 patients had their treatments discontinued several
weeks before baseline and did not take any specific medications at the
time of assessment. Another 98 patients were medication-naive, reporting
no priory psychotropic medication. Four patients did not provide a
medication status report. The majority of patients had one or more
comorbid Axis I disorders, with major depressive disorder being the most
common comorbidity (n= 41).

Fig. 1 A schematic representation of our analysis. After the first EWAS only on the Berlin data set (discovery stage), probes are filtered based
on two different approaches and replicated in the Bonn data set. A all probes with p value > 0.05 in the discovery stage were removed and the
remaining CpGs were further explored in the Bonn samples. The probes reaching a q value ≤ 0.01 (BH correction) in the Bonn samples were
considered differentially methylated (DMP). B probes with q values equal or lower to 0.05, 0.01, 10–4, 10–5, 10–10, 10–20, and 10–30 were used to
compute different MPS values. Next, each MPS was used as an independent variable to classify the Bonn samples and to select the
best treshold based on the AU-ROC metric. The set of CpGs used to build the best MPS was selected. The intersection of both methods
(12 CpGs) was then selected as the actual signals.
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Treatment subsample
A subsample of OCD patients completed individual CBT at a university
outpatient unit at the Berlin study site (Hochschulambulanz für
Psychotherapie und Psychodiagnostik der Humboldt-University). The CBT
sessions were administered by licensed psychotherapists and conformed
to the general conditions for psychotherapy in the public German health
care system, typically consisting of 25 or more individual 50-min sessions
per week. Details about the treatment can be found in Bey et al. [33] and
Kathmann et al. [34]. For n= 100 patients (n= 54 female, n= 46 male),
Y-BOCS data were available at pre- and post-treatment [35].

Methylation arrays
Blood aliquots were obtained from all participants. Genomic DNA was
isolated from whole blood and DNA concentration and purity were
determined using the NanoDrop ND1000 spectrophotometer (Thermo
Fisher Scientific, Waltham, MA, USA). All samples were of sufficient quantity
and quality. 500 ng genomic DNA was used as input for the bisulfite
conversion reaction using the EZ-96 DNAm Methylation-Lightning MagPrep
Kit (Zymo Research Europe GmbH, Freiburg, Germany) with an elution
volume of 15 µl. Bisulfite-treated DNA was vacuum concentrated and
resuspended in 10 µl. A total of 4 µl of the resuspension was used as input for
the Infinium Methylation EPIC BeadChip (Illumina Inc, San Diego, CA, USA).
All analysis steps were performed following the manufacturer’s instructions.
The Illumina iScan was used for imaging the array and data were exported in
.idat format.

Data acquisition and quality control
The R (Bioconductor) Meffil [36] package was used throughout our pipeline
to analyze the complete data set. All raw idat files were pooled together to
run the quality control and normalization steps. Samples were removed if
there was a mismatch between the estimated methylation sex and the
gender provided by the participant, deviations from the mean value for
control probes, or the median intensity for the methylated or unmethy-
lated signal deviated more than three standard deviations (s.d.).
Probes were removed for further analysis if they mapped to a sex-

chromosome, had a detection p value below 0.05, beadcount lower than
three, or were aligned to multiple locations in the genome according to
Nordlund et al. [37]. In addition, we removed the 10% of probes with the
lowest variability to reduce the number of probes and multiple tests [38].
In the end, 366 samples (189 controls and 177 cases) and 632,997 probes
passed all our quality control filters and were used to normalize the
methylation intensities.
Functional normalization [36, 39] was applied to remove technical

variation using 15 principal components (PCs) and an assessment center
(Berlin/Bonn) as a fixed effect. Blood cell proportion was imputed using
functionalities from meffil for each individual and used in the linear models
to correct the methylation effect.

Two-step EWAS
To analyze our data set, the two cohorts were initially kept separated
(Berlin and Bonn). While the larger cohort from Berlin served as a discovery
cohort in the EWAS, the Bonn cohort was used for replication.
Meffil uses the Independent Surrogate Variable Analysis (ISVA) method

which allows for estimating confounding factors (CF) in methylation
studies [36, 40, 41]. Briefly, the ISVA uses the independent component
analysis method to model CFs as statistically independent variables in each

probe analysis [41]. Thus, ISVA provides a non-supervised framework for
accounting for any CF.
Methylation status was compared between controls and OCD cases

using a linear regression model. Adjustments were made for age [42], sex
[43], smoking [44], cell composition [45], and surrogate variables calculated
by meffil.
The current strategy for selecting CpGs for further analysis aims first to

remove the maximum number of probes in the discovery step optimizing
the minimum number of false negatives (p value < 0.05). The replication
step follows with a more restrictive adjusted p value (q value) threshold to
select CpGs that are truly associated with the phenotype (Holm-Bonferroni
q value < 0.01). A similar strategy has been applied to genetics [46] and
methylation [10, 23] studies.
We estimated the false discovery rate (FDR) for our approach following

the method suggested by Jiang et al.[47]:

dFDR α1; α2ð Þ ¼ P̂ pi2 � d2jD2 ¼ 0;D1 ¼ 0; pi1 � d1ð Þ
P̂ pi2 � d2jpi1 � d1ð Þ � FDR1

þ P̂ pi2 � d2jD2 ¼ 0;D1 ¼ 1; pi1 � d1ð Þ
P̂ pi2 � d2jpi1 � d1ð Þ � π̂o2

(1)

Briefly, a probe i with pi1 ≤ c1 will pass to the second stage, where pi1 is
the p value in the first stage and c1 is the threshold for the first stage.
Following similar arguments for the second stage, pi2 ≤ c2, then we say
that this probe has a significant difference in methylation values
between cases and controls. At stage j, dj is the smallest p value for the
probes that pij > cj, and the Dj is a binary variable that indicates whether
there are actual differences between the cases and controls; Dj= 0 for
no differences, and Dj= 1 for actual differences. The probability that
a probe is significant after our two-stage approach when there are
no real differences, P̂ pi2 � d2jD2 ¼ 0; D1 ¼ 0; pi1 � d1ð Þ, was estimated
by permutating for 100 times the samples. The proportion of the
true null hypothesis (π̂o2) was estimated following the Storey method
[48] and P̂ pi2 � d2jD2 ¼ 0; D1 ¼ 1; pi1 � d1ð Þ equals d2. Finally,
P̂ pi2 � d2jpi1 � d1ð Þ is the proportion of significant probes in the second
stage. Our calculation for our setup yielded an FDR of 3.26 × 10−5.

Weighted correlation network analysis
Weighted correlation Network Analysis (WCNA) uses the pairwise
correlation between variables to define clusters within the variables and
to associate these clusters with other phenotypes.
The R package WGCNA was used for this purpose [49, 50]. Once the

network was constructed, module detection was achieved by unsuper-
vised clustering. WGCNA uses the dynamic tree-cut method to select the
number of clusters given the hierarchical clustering for the adjacency
matrix.

Case–control classification based on methylation profile score
The MPS is a numerical value computed for each individual using a set of
DMPs. Like polygenic risk scores in genetic studies [51], MPS improves
classification capacity by leveraging methylation information on DNAm
differences between cases and controls. The MPS for an individual i can be
computed as

MPSi ¼
XP

j¼1
βjmji (2)

Table 1. Cohort demographics.

Berlin Bonn

OCD Control OCD Control

N 112 (45.16%) 136 (54.84%) 73 (53.68%) 63 (46.32%)

Age 32.04 ± 9.63 32.88 ± 10.43 34.55 ± 12.3 37.95 ± 15.81

Gender (% males) 51 (45.54%) 57 (41.91%) 28 (38.36%) 17 (26.98%)

Smoking (%) 10.11 11.75 5.19 2.73

Y-BOCS 22.9 ± 5.48 - 21.33 ± 8.28 -

OCD onset (years) 21.77 ± 10.05 - 20.81 ± 12.23 -

OCD obsessive-compulsive disorder, Y-BOCS yale-brown obsessive-compulsive scale.
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where P is the number of CpGs, βj is the coefficient for the association of
the probe j to the phenotype, and mj,i is the methylation status of probe j.
Herein, a set of q values thresholds was used to select the number of
probes: 0.05, 0.01, 1 × 10−4, 1 × 10−5, 1 × 10–10, 1 × 10–20, 1 × 10–30, and
1 × 10–40. For each threshold, an MPS was computed using the selected
CpGse and then its classification capacity was tested using the Bonn
sample as an independent dataset. AU-ROC for each threshold was
computed using the R-package p-ROC.

Clinical correlates and treatment analysis
To assess whether the OCD-related methylation profile is associated with
symptom severity, we correlated our most reliable MPS (i.e., MPScommon, see
Results) with the Y-BOCS scores of all patients. In the treatment subsample,
we also examined whether the MPScommon predicts treatment response by
performing linear regression analysis with Y-BOCS baseline score, and the
Y-BOCS baseline score ×MPScommon interaction as independent variables,
and pre-to-post change in Y-BOCS score as the dependent variable. Age,
gender, and medication were included as covariates.

Dimensionality reduction
A linear transformation algorithm and a non-linear transformation
algorithm were used to reduce dimensionality. Principal component
analysis (PCA) is the most popular linear transformation for dimensionality

reduction. PCA estimates new coordinates that preserve the maximum
variance of the dataset and projects the data points into the new
orthogonal coordinate system. The base function prcomp in R was used to
estimate the new PCs and projections. On the other hand, uniform
manifold approximation and projection (UMAP) has become one of the
most popular non-linear transformation algorithms. By using a framework
that combines geometry and algebraic topology, UMAP can project a data
set into two dimensions and reflect distances between points. The function
umap in R was used to obtain the new coordinates.

RESULTS
Epigenome-wide association study
To identify potential loci associated with OCD, we conducted a two-
step case-control EWAS using samples recruited in Berlin for
discovery and samples originating from Bonn for replication. This
approach rendered in the Berlin sample a total of 188,488 DMPs with
a nominal p value < 0.05. These sites were moved forward to the
replication stage using the Bonn samples. We identified 310 DMPs
discriminating cases and controls with a corrected p value for
multiple testing q < 0.01 (Fig. 2).
We explored the correlation between the coefficients of the

probes analyzed in the discovery and the replication stage (Fig. 2).

Fig. 2 Two-step EWAS results. A Miami Plot for the two-stage analysis. The X-axis is the genome position. Y-axis is the nominal p-value for the
discovery EWAS on a logarithmic scale multiplied by the sign of the coefficient in the same analysis. Horizontal red lines define the threshold 0.05 of
the discovery analysis. Purple dots are the 310 CpGs that were significant at the replication stage, the dot size is equivalent to the adjusted p-value
in the replications stage on a logarithmic scale. B Correlation of the discovery and replication stage. The X-axis shows the discovery coefficient, and
Y-axis shows the replication coefficient. The purple dots represent the 310 CpGs that were significant at the end of the two-step approach; the dot
size is equal to the adjusted p value in the replication stage. The dashed line shows the trend of the linear model based on the purple dots.
C Cluster dendrogram. Branches refer to highly interconnected clusters of CpGs. Modules are represented by the colors in the horizontal bar.
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This analysis showed that while the overall correlation for all
188,488 CpG sites was moderate (r= 0.42, p < 2.2 × 10–16), it was
much stronger for the 310 DMPs in the replication stage (r= 0.88,
p < 2.2 × 10–16). Only five DMPs showed opposite effect directions
between discovery and replication, therefore they were removed
from further analysis (Supplementary Table 1, Supplementary Fig. 1).
Of the 305 probes identified by our analysis, 241 were

annotated to 233 genes based on the Illumina annotation. Gene
Ontology (GO) analysis, using the R package missMethyl [49, 50],
for the same probes did not show any term enriched after
multiple test corrections. Of note, five terms from the GO analysis
showed a nominal p value < 0.05 (Supplementary Table 2).

Network analysis identifies two different submodules
Given the complex nature and many pathways involved in OCD, we
sought to search whether common patterns of methylation emerge
among the 305 DMPs. Thus, we used WCNA which exploits
correlations among probes and groups them into modules using
network topology. After fitting several powers (β), we found that a
power of ten approximated the best scale-free network for our co-
methylation network (Supplementary Fig. 2). The adjacency matrix
was then computed by using the optimal β and the methylation
values. Based on the TOM dissimilarity measure, the hierarchical
clustering yielded two consensus network modules, i.e., gray
(n= 169, Supplementary Table 2) and turquoise (n= 136) (Fig. 2,
Supplementary Tables 2 and 4).

Then we examined whether each module was associated with
other phenotypes. To this end, we looked at the Pearson
correlation coefficient and p value of the association of the
eigenvector of each module with OCD status, age, sex, city,
smoking, and Y-BOCS. While both modules were highly correlated
with OCD phenotype (turquoise: r=−0.88, p= 4 × 10–122; gray:
r=−0.79, p= 3 × 10–78), only the turquoise module was asso-
ciated significantly with the Y-BOCS (r=−0.2, p= 2 × 10–4)
(Supplementary Fig. 3). Interestingly, the gray module better
captured the differences in the origin of the samples (Supple-
mentary Fig. 3, 4, and 5).

The methylation profile score offers predictive performance
for sample classification
Considering that both submodules and the full set showed a
strong correlation with OCD status, we attempted to derive a MPS
by following a similar strategy to developing polygenic risk
scores [52]. To this end, we first constructed an MPS using only
the 305 DMPs, which were confirmed in the replication stage
(MPStwo-step). We also computed an MPS for each module, i.e.,
turquoise (MPSturquoise) and gray (MPSgray).
The MPStwo-step was indeed statistically different between OCD

patients and controls for both, the Berlin (p < 2.2 × 10–16) and the
Bonn samples (p < 2.2 × 10–16), whereas the difference of MPStwo-step
values between both cities for the control group (p= 0.269) and the
OCD patients (p= 0.057) was not significant (Fig. 3).

Fig. 3 Classification power of the resulting CpGs. Projection of the samples into a two-dimensional space using (A) PCA, and (B) UMAP. The
12 CpGs found as result of our analysis were used as input features. Purple data points are OCD patients and green are Controls. C Each facet
represents the deviation from the mean for each MPSs. The number of CpGs that were used to calculate the MPS is shown in parentheses.
Horizontal brackets display the results of the t-test for the set. D MPS correlation matrix. PC: Principal Component; UMAP: Uniform manifold
approximation and projection; ns: not significant; * : p.value < 0.05; ** : p value < 0.01; ***: p value < 0.001; ****: p value < 2 × 10–16.
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The lack of an independent third validation cohort to test the
MPStwo-step independently prompted us to consider an alter-
native strategy for constructing the MPS. Herein, we constructed
several MPSs using DMPs based on an a priori set of 8 corrected
p value (q values) thresholds (PT) obtained from the EWAS
performed in the discovery stage (Berlin samples only). Finally,
classification accuracy for each calculated MPS was examined in
the Bonn data set, which did not contribute to this MPS and
could be used to test out-of-sample classification accuracy.
The best classification accuracy for the Bonn sample is achieved
using probes with q values < 1 × 10–20 (AU-ROCBerlin= 0.991,
AU-ROCBonn= 0.968; Table 2). The MPS obtained for this
threshold (MPSdiscoverey) contains 36 DMPs (Supplementary
Table 5 and Supplentary Fig. 6), from which 12 are shared with
the MPStwo-step and the MPSturquoise (Table 2). For this reason, we
also constructed an MPS containing only the common CpGs
(MPScommon) which also showed a good classification power
(Fig. 3 and Table 2).

Association between MPS, clinical variables, and treatment
response
As indicated by Pearson correlation, the MPScommon was
significantly associated with Y-BOCS scores across all OCD patients
(r= 0.17, p= 0.023), indicating that a more severe symptom
severity goes along with a higher epigenetic profile score. In the
regression model assessing treatment response, we observed
effects at the trend level for the Y-BOCS baseline score
(β=−3.108, t=−1.96, p= 0.053) and the Y-BOCS baseline by
MPScommon interaction (β=−2.78, t=−1.74, p= 0.086). To follow
up on this interaction, we ran separate analyses for patients with
high and low MPScommon (median split: n= 56 low-scorers, n= 44
high-scorers). In MPScommon high-scorers, we found a significant
effect of Y-BOCS baseline (β=−0.44, t=−3.09, p= 0.004) and a
trend level association of the MPScommon (β=−0.28, t= -1.86,
p= 0.070) with treatment response, indicating that patients with a
higher score might show a better treatment response indepen-
dently of baseline symptom severity. In MPScommon low-scorers,
there were significant effects of Y-BOCS baseline (β= -0.32, t= -
2.43, p= 0.019) and medication (β= 0.35, t= 2.67, p= 0.010).
Notably, we did not observe any significant effects of age or
gender in all analyses (p > 0.05). Moreover, there was no
significant association between MPScommon and Y-BOCS baseline
score in the treatment subsample (r= 0.09, p= 0.37), potentially
due to sample size reduction.

Functional Annotation
Since the GO analysis did not reveal clear supporting evidence for
functional terms that may be relevant or previously associated
with OCD, we conducted a focused literature search on the 12
common CpGs identified in both MPS approaches because they
may still represent true signals involved in the disease process
operating in OCD. Consequently, we first mapped each CpG to the
closest gene and gene position (Table 3).
The highest association was found for the CpG cg17232014,

which shows a substantial hypomethylation in OCD patients
compared to controls. This CpG maps to a transcription start site
(TSS) for two genes: Heme Binding Protein 1 (HEBP1) and the
5-Hydroxytryptamine Receptor 7 Pseudogene 1 (HTR7P1), most
commonly known as serotonin receptor pseudogene (Supple-
mentary Fig. 7). Although the functional consequence of the
decreased methylation at this TSS is not fully understood yet, it
likely results in an elevated gene expression of either HEBP1 or
HTR7P1 or both.
Next, we observed that some of the associated CpGs were

located close to genes linked to glucose metabolism. Thus, the
cg01647172 is mapped to the 5′ untranslated region of the gene
Pleckstrin Homology Domain Containing A1 (PLEKHA1) and is
found hypomethylated in OCD patients. Likewise, we observed
that the hypomethylated CpG cg00382572 position is assigned to
the KCNQ1 gene coding for the KCNQ1 potassium channel, which
is located in the pancreas and has been also associated with
diabetes [53–58]. Finally, the cg19069918 is located near the gene
TRPM8, which has been long studied as a cancer biomarker,
particularly in pancreatic cancer [59].
The next set of CpGs was annotated to genes involved in different

processes related to resident cells of the brain. Thus, the probe
cg06215939 is found hypermethylated at the TSS of the Mitogen-
Activated Protein Kinase 3 gene predicting a reduction in gene
expression. For cg21812670, the methylation was found to be
increased in OCD patients. This position is located at the TSS of the
gene coding for the Rab geranylgeranyl transferase which is essential
for synaptic vesicle release [60]. Along these lines, the cg13959110 is
located in the gene coding for the brain myelin expression factor 2.
This gene is a transcriptional repressor of the myelin basic protein
gene that has been involved in myelin homeostasis. Another CpG,
cg25195309 is located in the Enable Homolog gene. The function of
this gene has been linked to actin polymerization in neurons [61].
Herein, neurons lacking these proteins cannot perform neuritogen-
esis in the developing cortex [61].

Table 2. MPS properties.

AU-ROC Y-BOCS
Correlation

nCpGs

Berlin Bonn r p

q values threshold for top-down Analysis 0.05 1 0.911 - - 11,998

0.01 1 0.908 - - 9,430

0.0001 1 0.909 - - 4,902

1 × 10–5 1 0.915 - - 3,568

1 × 10–10 1 0.88 - - 808

1 × 10–20 (Discovery) 0.999 0.974 0.200 0.009 36

1 × 10–30 1 0.944 - - 2

Two-step analysis 0.990 0.984 0.229 0.003 305

Gray 0.963 0.994 0.113 0.142 169

Turquoise 0.993 0.981 0.223 0.003 136

12 common CpGs 0.998 0.986 0.146 0.058 12

AU-ROC area under the receiver operating curve, Y-BOCS yale-brown obsessive-compulsive scale, nCpGs number of CpGs under the threshold selected, q value
Bonferroni adjusted the p value for the discovery study, r Pearson correlation coefficient, p p-value for the test.
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DISCUSSION
In the present study, our primary goal was to identify changes in
DNAm associated with OCD status. Following a discovery and
replication strategy, we identified 305 CpGs that were differentially
methylated between cases and controls. Using these 305 DMPs, or
a subset of them, allowed us to classify cases and controls
accurately. Importantly, similarly, high classification accuracy was
reached when we applied a different analytical strategy using the
strongest disease-related DMP signals of the Berlin sample to
predict caseness in the independent sample from Bonn. Both
analytical strategies converged on 12 common CpGs deserving
further scrutiny. Finally, we found a significant association of a
methylation score based on these common 12 CpGs with OCD
symptom severity, as well as a trend level association with
treatment response to CBT in OCD patients with high MPS,
indicating that patients with larger values show better treatment
response. This latter result might allow MPS to be used as a
biomarker for predicting treatment response in OCD from a
translational perspective.
While EWAS has already led to important advances in other

neurological and psychiatric disorders, it is still early days for OCD
epigenetics [31, 62]. For example, a study on the Chinese Han
population reported 8417 DMPs in the blood of 65 cases and 96
controls [62]. In addition, the comparison of DNA methylation in
the saliva of 59 patients with OCD and 54 controls of European
origin identified nine genes with methylation changes related to
OCD and ADHD which however did not survive multiple testing
correction [31]. In 2022, Shiele et al. reported nine genome-wide
significant DMPs mapping to several microRNAs and pseudogenes
in the saliva of 68 OCD patients and 68 controls of European origin
[63]. Importantly, we could not identify any overlapping signal in
our datasets.
In this regard, a strength of our study is the two-step approach in

which we treated Berlin and Bonn samples as independent cohorts.
As a result, we were able to avoid the “winner’s course” in our
analysis, i.e., overestimation of small effect sizes in underpowered
cohorts. Although our sample size might seem underpowered, we
defined the expected number of false positive signals that will arise
from our study design following the methodology described
by Jiang et al.[47]. Thus, after permuting the samples to estimate
the FP rates, on average, 32,711 probes would be significant
after the discovery step, which is in agreement with the theoretically
expected (0.05 × 632,997 ≈ 31650). In addition, the second step
would not report any significant probe under the threshold
imposed. Consequently, the overall FDR was 0.003%, which

corresponds to approximately 21 false DMPs after the replication
step. Therefore, we assume that genuine signals among the
305 CpGs identified in our study are included. Supporting this
assumption, our analytical strategy converged on 12 common
probes out of the 305 DMPs that may represent true pathophysio-
logical processes involved in OCD.
Pathway search did not lead to the identification of obvious

candidate pathways for OCD, but the disgenet [64, 65] tool and
literature search revealed that genes near the 12 CpGs have been
linked to diseases like diabetes, Parkinson’s disease, ADHD, and
multiple sclerosis. Interestingly, the pathogenic processes involving
these genes are also linked to OCD, including glucose metabolism,
the dopaminergic/serotonin system, and neuronal function. For
glucose metabolism, we found that the PLEKHA1 locus has been
associated with type 1 and type 2 diabetes mellitus and age-related
macular degeneration (AMD) [66, 67]. In AMD, previous research has
shown that TAPP1, a PLEKHA1 protein product, works as an
activator of lymphocytes, indicating that PLEKHA1 plays a role in
inflammation. Interestingly, increasing evidence has shown that
inflammatory pathways are common pathogenetic mediators in the
natural course of both types of diabetes that involve the activity of
PLEKHA1 [68]. For KCNQ1, research has shown that overexpression
of the ion channel in mouse-derived pancreatic β-cells leads to an
impairment in insulin secretion stimulated by glucose and pyruvate
[53]. Lastly, rats with deletion of the TRPM8 gene showed reduced
insulin levels in serum due to enhanced insulin clearance in the liver.
This was caused by afferent fibers innervating the hepatic portal
vein, which is critical for metabolic homeostasis [69]. Importantly,
this latter mechanism also seems to be the intersection connecting
the nervous system with the metabolism of glucose and insulin.
Hence, our data suggest that an underlying dysregulation in insulin/
glucose metabolism may drive, at least in part, the symptoms and
the disease processes occurring in OCD patients. Unfortunately, we
did not have serum samples from patients before and after therapy
to analyze whether glucose and insulin homeostasis changed after
treatment.
Besides insulin and glucose metabolism, we also identified

several genes involved in brain function. For example, both genes
near cg17232014 on chromosome 12 HEBP1 and HTR7P1 have
been associated with brain phenotypes. Thus, increased expres-
sion of HEBP1 in the brain has been linked to neurotoxicity [70]
and neuroinflammation [71]. HTR7P1, although this is a pseudo-
gene that does not translate into protein, genetic variants in
HTR7P1 have been associated with neurological and growth
phenotypes in children [72].

Table 3. Biological annotation and summary statistics for the 12 common CpGs.

Position Gene q value
discovery

Coefficient
discovery

q value
replication

Coefficient
replication

cg17232014 chr12:13153193 HEBP1; HTR7P1 7.38 × 10–51 −0.1 7.47 × 10–24 −0.09

cg01647172 chr10:124146007 PLEKHA1 1.45 × 10−30 −0.04 1.68 × 10–6 −0.02

cg13959110 chr15:48466199 MYEF2 2.78 × 10–35 −0.07 5.65 × 10–6 −0.03

cg00382572 chr11:2574042 KCNQ1 1.32 × 10–24 −0.04 1.08 × 10–5 −0.02

cg06215939 chr16:1755402 MAPK8IP3 6.45 × 10–21 0.09 1.55 × 10–5 0.04

cg20469575 chr4:169122189 1.26 × 10–23 −0.07 3.63 × 10–5 −0.05

cg19069918 chr2:234921635 TRPM8 2.53 × 10–23 −0.03 5.43 × 10–5 −0.02

cg25195309 chr1:225766155 ENAH 4.12 × 10–21 −0.08 8.89 × 10–5 −0.05

cg07397958 chr15:49476141 GALK2 8.86 × 10–21 −0.08 9.63 × 10–5 −0.05

cg16449667 chr18:13024185 CEP192 6.44 × 10–27 −0.02 1.14 × 10–4 −0.01

cg21812670 chr1:76251636 SNORD45C; RABGGTB 3.66 × 10–26 0.11 6.43 × 10–4 0.06

cg19755108 chr5:176434079 UIMC1 2.30 × 10–22 0.13 7.54 × 10–4 0.06

q value, bonferroni adjusted the p value.
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In our study, we identified several signals that support the sweet-
compulsive brain hypothesis [73]. This hypothesis states that
abnormal dopaminergic transmission in the striatum may perturb
insulin signaling sensitivity in OCD patients. Deep brain stimulation
in patients with OCD supports the hypothesis that dopamine
transmission affects glucose and insulin metabolism in the brain.
Interestingly, non-diabetic OCD patients seem to have an increased
hepatic and peripheral insulin sensitivity [74], supporting our
findings on PLEKHA1, KCNQ1, and TRPM8. Further reinforcing our
brain-related genes and their connection with glucose and insulin
homeostasis, research on insulin receptor signaling in the central
nervous system showed that insulin receptor signaling regulates the
maintenance of synapses. In addition, insulin receptor signaling
contributes to the processing of sensory information, as well as
structural plasticity triggered by external experience [75].
From a molecular perspective, our findings on insulin signaling

receive further support from previous genetic studies using gene
enrichment tools on published OCD GWASs. Herein, gene enrich-
ment analysis using suggestive genetic signals from these GWASs
showed that 40 out of 89 of the GWAS suggestive signals clustered
in insulin and insulin-related signaling cascades [76]. Furthermore,
using polygenic risk score-based analysis, Bralten et al. reported
shared genetic etiology between OCD or Obsessive-compulsive
symptoms (OCS) and type 2 Diabetes Mellitus and fasting insulin
levels. Noteworthy, a significant association with OCS was found for
a gene set containing central nervous system insulin signaling
genes. It is interesting to note that a CpG site in our study mapped
to KCNQ1, one of the genes contained in this gene set analyzed by
Bralten et al. [77]. KCNQ1 is an obesity susceptibility gene that shows
differentially methylated CpG sites between obese and lean women
[78]. KCNQ1 is also an imprinted gene (a parental-specific epigenetic
modification) expressed exclusively from the maternal allele during
fetal development [79]. These combined findings emphasize the
significance of investigating the intricate interplay between
genetics and environmental factors in the etiology of OCD and
how epigenetic modifications may serve as a bridge connecting
both. Although there is still a long road ahead, exploring the
relationship between OCD and themethylation status of KCNQ1 and
other insulin-related genes might open new avenues for potential
therapeutic or prevention strategies involving non-pharmacological
dietary intervention.
In supporting our findings, three of our twelve most significant

DMPs were found in a recent study comparing people with
generalized anxiety disorder (GAD), or OCD, with healthy controls
of Chinese Han origin [80]. These probes map to RABGGTB,
MPK8IP3, and ENAH genes. To our knowledge, this is the first time
that two different studies on methylation in OCD replicated each
other’s results using populations of different ethnic backgrounds.
Of note, Guo et al. used a similar approach and methodologies to
analyze their data as in our study. Herein, DNAm is highly sensitive
to batch effect and other factors that might increase the
variability. Therefore, it is crucial to account for confounding
factors when analyzing this kind of data set.
The correlation between MPS and OCD symptom severity

highlights the potential clinical utility of epigenetic measures. Future
studies should examine whether changes in symptom severity also
go along with epigenetic modifications. Interestingly, we observed a
trend-level association between MPS and treatment response in
OCD patients, indicating that patients with the highest MPS showed
better treatment response independent of baseline symptom
severity. Among MPS-low scorers, there was no association with
treatment response. Although we interpret this preliminary finding
with caution, it may show that patients with high MPS exhibit
features that make them benefit more from CBT than others, e.g., a
larger environmental component contributing to their OCD.
Our results should be interpreted considering some important

limitations. First, DNA extraction was done in Bonn for all samples
including those derived from the Berlin sample. Consequently,

Berlin blood samples were transported uncooled before DNA
extraction, which may contribute to variation in the methylation
analysis. However, our study considered this source of bias
including the fact that we initially analyzed both samples
independently. To avoid this source of technical bias, future
studies should include cool transport of blood samples to the
processing center or proceed locally with the DNA extraction
before frozen transport to the analyzing center.
In summary, we identified 12 epigenome-wide significant CpGs

for OCD using a robust statistical analysis of two German samples.
The clinical validity of these CpGs is supported by the significant
associations of our methylation profile score with OCD diagnosis,
symptoms severity, and—at trend level—treatment response to
CBT. Furthermore, genetic annotation contemplates a strong
interaction of insulin and the dopaminergic system with OCD. Our
findings thus support the role of epigenetic mechanisms in OCD
and may help pave the way for biologically-informed individua-
lized treatment options.
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