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Novel epigenetic molecular therapies for imprinting disorders
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Genomic imprinting disorders are caused by the disruption of genomic imprinting processes leading to a deficit or increase of an
active allele. Their unique molecular mechanisms underlying imprinted genes offer an opportunity to investigate epigenetic-based
therapy for reactivation of an inactive allele or reduction of an active allele. Current treatments are based on managing symptoms,
not targeting the molecular mechanisms underlying imprinting disorders. Here, we highlight molecular approaches of therapeutic
candidates in preclinical and clinical studies for individual imprinting disorders. These include the significant progress of discovery
and testing of small molecules, antisense oligonucleotides, and CRISPR mediated genome editing approaches as new therapeutic
strategies. We discuss the significant challenges of translating these promising therapies from the preclinical stage to the clinic,
especially for genome editing based approaches.
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INTRODUCTION
Genomic imprinting is a special form of epigenetic regulation,
resulting in monoallelic gene expression depending on parent-of-
origin. Genomic imprinting was first described in the early 1980s
in mice from the elegant pronuclear transfer experiments by
Surani and Solter [1, 2]. They showed that the contribution of the
parental genomes to offspring genomic transcriptions were
nonequivalent. Insulin-like growth factor 2 receptor (Igf2r) was
the first imprinted gene discovered in mice in 1991 [3]. In humans,
~130 genes have been reported as imprinted genes and
additional ~120 genes are predicted or provisioned (geneim-
print.com). A number of imprinted genes are essential for normal
embryonic development and neurodevelopment [4–6]. Several
distinct features are associated with imprinted gene regulation
[7–10]. First, the imprinted genes are frequently clustered and
under a coordinated epigenetic regulation. Two major clusters of
imprinted genes are in the chromosome 11p15.5 and 15q11-q13
regions. Second, the imprinted genes are frequently associated
with allelic specific epigenetic modifications of DNA methylation,
post-translational histone modifications, and chromatin structure
[11–14]. Third, a significant number of imprinted genes are
noncoding RNAs [15, 16]. Fourth, the antisense and long
noncoding RNAs (lncRNAs) are often implicated in regulating
imprinted expression [16–20]. These features play a significant role
in establishing and regulating imprinting mechanisms and also
present as targets for the development of molecular based
therapies [21, 22].
The disruption of imprinting processes during gametogenesis

and the expression of imprinted genes causes significant
developmental defects and diseases in humans referred to as
genomic imprinting disorders [6, 9, 23]. Epigenome wide
association studies and genome wide differentially methylated
region analyses have found aberrant epigenetic changes in

imprinted and non-imprinted loci. These changes are either
germline or somatic origin that could be associated with genetic
variants or environmental insults such as nutritional factors and
endocrine-disrupting chemicals etc [9]. Somatic origin changes are
frequently cell, tissue type, and developmental stage specific
[14, 24–26]. These changes are referred to as “Epimutations”
collectively [9, 27]. The causal role of epimutations in cancer
susceptibility has been better characterized over the last two
decades but remain to be established whether these changes are
implicated in non-cancer related diseases [28–30].
Prader–Willi (PWS) and Angelman syndrome (AS) are the first

examples of genomic imprinting disorders described in the late
1980s [31–34]. Currently, there are 15 genomic imprinting
disorders described in humans (Table 1). The clinical features
reported in imprinting disorders span many organ systems and
functional domains and are usually debilitating and lifelong
conditions. Neurodevelopmental and neuropsychiatric presenta-
tions such as intellectual disability (ID), autism spectrum disorder
(ASD), and other psychiatric presentations are notable features
associated with the majority of imprinting disorders [35]. For
example, psychosis is reported in 10–20% of adult PWS patients
and more common in cases resulting from maternal uniparental
disomy (UPD) [36].
Recent large scale genomic studies have uncovered a list of

genes that encode proteins of epigenetic machinery implicated in
neurodevelopmental disorders (NDD) specifically for ASD [37–40].
For example, allelic specific modifications such as DNA methyla-
tion and histones are frequently associated with imprinted genes
[41, 42]. Mutations in genes encoding DNA methyltransferase
(DNMT3A), DNA demethyltransferase (TET3), H1 linker histone,
histone modifying enzymes, and chromatin remodelers (KDM5B,
EZH2, EHMT1, CTCF, etc.) have been implicated in ASD and NDD
[40, 43–45]. It remains to be investigated whether deficiencies of
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these proteins indirectly affect the genomic imprinting process
and their involvement in imprinting disorders.
Like most other genetic disorders, there are no effective

molecular treatments for imprinting disorders. Current treatments
for imprinting disorders are symptom-based interventions and
often ineffective. The molecular mechanism underlying imprinting
disorders is primarily due to loss of active alleles or duplication of
repressed or inactive alleles via different genetic mechanisms
[9, 12, 46]. In rare cases, duplication of an active allele can also
cause an imprinting disorder [11, 47, 48]. Common genetic defects
include a copy number variant (CNV) resulting in loss (e.g.
chromosome deletion), DNA sequence variants in an active allele
resulting in loss of function of an imprinted gene, and uniparental
disomy (UPD) of the repressed allele for an imprinted gene. More
rare genetic etiologies include microdeletions or epimutations in
the imprinting center/control region (ICR), a regulatory element
that controls allele-specific expression of genes in an imprinting
domain. Allele-specific epigenetic markers such as DNA methyla-
tion and histone modifications are frequently reported in the ICR
region [9]. Repressed epigenetic markers are usually associated
with repressed alleles and vice versa. These unique molecular
features render an exciting opportunity to explore epigenetic-
based therapy for imprinting disorders (Fig. 1).
Epigenetic-based therapy has been investigated extensively in

cancers and mostly used the pharmacological approach [49–51].
The knowledge learned from cancer studies provides valuable
insights for the mechanism and paves a convenient pathway for
preclinical imprinting disorder studies in terms of the requirement
of regulatory processes for US Food and Drug Administration
(FDA) approval. This review describes the exciting development of
potential epigenetic therapies targeting imprinting disorders by
manipulating chromatin remodeling factors at the level of histone,
DNA, and RNA by different molecular approaches. We will
highlight CRISPR/Cas9, Cas13 or dCas9 mediated epigenome
editing as potential therapies for imprinting disorders using AS
and PWS as prime examples.

SCIENTIFIC PREMISE FOR EPIGENETIC-BASED THERAPY
The molecular basis of epigenetic based therapy for imprinting
disorders is to unsilence/reactivate the expression of disease-causing
genes from the repressed allele in imprinted loci via pharmacolo-
gical or molecular genetic manipulation. The basic concept of
epigenetic-based therapy has been intensely studied in cancers for
more than two decades mostly by pharmacological approach
[49–51]. Many drugs have been developed or tested that could
affect epigenetic modifications at DNA and histone components.
Recently, molecular approaches such as antisense oligonucleotide
(ASO) [52], shRNA, and CRISPR/Cas9 mediated gene editing have
emerged as major interests. The difference between cancers and
imprinting disorders is that epigenetic-based therapy for imprinting
disorders is allele-specific which is not the case in cancers. Cancer
treatments are typically organ or cell-type specific given the nature
of somatic mutations but imprinting disorders are mostly of
germline origin. In recent years, studies exploring epigenetic-based
therapy for imprinting disorders have gained interest and momen-
tum because of the FDA approval of launching several clinical trials
using epigenetic-based approach. The basic scientific premise and
approach for epigenetic based therapy is diagrammed in Fig. 1 and
discussed in detail below. Conceptually, the design of epigenetic-
based therapy may target the individual imprinted gene or the
imprinting center region that is expected to change the expression
of a cluster of imprinted genes within the imprinting domain.

SMALL MOLECULES FOR EPIGENETIC MODIFICATIONS
Epigenetic modifications can be achieved by small molecules or
other pharmacological interventions altering the function of

epigenetic machinery directly associated with transcriptional
regulation of imprinted genes. Histone modifying enzymes are
common targets for development of novel therapies for human
diseases, primarily for cancers. Many small molecules targeting
histone deacetylases (HDACs) have been approved by the FDA
and are in clinical trials and or used as therapies for cancers and
other diseases [53]. These include vorinostat, belinostat, romi-
depsin, tucidinostat and panobinostat. Significant side effects are
reported in previous studies associated with these drugs [54].
Vorinostat is currently in trials for Alzheimer’s disease
(NCT03056495) as well as epilepsy (NCT03894826). Valproic acid
(VPA, Depakene) is a widely prescribed drug to treat epilepsy in
children and used as a mood stabilizer in adults. It has been
shown experimentally that VPA possesses HDAC activity,
although it is unknown whether this is the mechanism under-
lying its clinical efficacy. Recent evidence suggests that
epigenetic aberrations do play a role in epileptogenesis and
that HDAC inhibition may be an attractive mechanism to target
for treatment and prevention of epilepsy [55, 56]. Similar to VPA,
preclinical studies of Phenylbutyrate (PBA) suggest a possible
role as a HDAC inhibitor, and is currently FDA approved for
treatment of urea cycle disorders in the form of sodium
(Buphenyl) and glycerol (Ravicti) salts. Recently, PBA has been
explored in phase 1 and 2 clinical trials for treatment of a range
of neurodegenerative diseases, including Alzheimer’s disease,
amyotrophic lateral sclerosis [57, 58], and Parkinson’s disease
(NCT02046434).
To systemically identify new epigenetic drugs, high content

small molecule screenings have been carried out to examine the
feasibility of reactivating the repressed imprinted genes using
proper markers in cell-based assays [22]. Screenings of small
molecule libraries have been performed to investigate potential
therapeutic targets for imprinting disorders using mouse models.
Using the primary neurons from a reporter mouse model that
carries YFP fused to AS Ube3a gene, Philpot and Roth groups have
screened >3000 small molecules [59]. This screen identifiies a
class of topoisomerase inhibitor that unsilences the expression of
AS Ube3a gene from the repressed paternal chromosome in
neurons both in vitro and in vivo. One of these topoisomerase
inhibitors is topotecan, a FDA approved drug for treatment of
metastatic cancers. Intervention with topotecan in the AS Ube3a
maternal deficiency mouse model rescues the neurobehavioral
phenotypes. The significant toxicity associated with topotecan
has precluded it from being considered further in human AS. In a
mouse model for PWS, EHMT2/G9a inhibitors are found as
effective small molecules to unsilence the expression of normal
repressed PWS candidate genes from the maternal chromosome
15q11-q13 region in both human PWS derived cells and PWS
mouse model [60]. The biological effect of EHMT2/G9a inhibitors
is to reduce the H3K9me2 level. Interestingly, treatment with an
EHMT2/G9a inhibitor reduces the level of H3K9me2 in the PWS-
ICR without changing its DNA methylation. While the treatment of
EHMT2/G9a inhibitor is well tolerated in rodents at different ages,
it remains to be investigated whether these EHMT2/G9a inhibitors
are safe in humans. In a mouse model for Birk–Barel syndrome,
HDAC inhibitor reactivates the paternal silenced Kcnk9 allele with
an increase of H3K27 acetylation in Kcnk9 promoter and intronic
regions [61]. This inhibitor does not change the allele-specific
DNA methylation of Peg13, a differentially methylated region
located upstream of Kcnk9 gene [61]. These similar approaches
are applicable for identification of effective small molecules to
modulate the expression of repressed genes in other imprinting
disorders. The biggest challenge of translating these molecules
into treatment of human imprinting disorders is the specificity
and toxicity of these small molecules. In contrast to drugs
targeting terminal cancers using small molecules, the safety
threshold of targeting patients with imprinting disorders should
be higher.
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ANTISENSE OLIGONUCLEOTIDE (ASO) MEDIATED
REACTIVATION OF IMPRINTED GENES
ASOs are short, synthetic, single-stranded oligodeoxynucleotides
that bind to target pre-mRNAs [62]. Chemically modified ASOs are
internalized by active transport or passive diffusion for nucleus
entry [63]. Depending on their design and chemical modification,
ASOs regulate mRNA levels or alternative splicing through
different mechanisms, resulting in changes of mRNA and protein
expression [62].
As a therapeutic strategy, ASOs have been introduced and

extensively tested for over two decades to improve their activity in
clinical trials [64]. With technical advances in their efficacy, about
10 ASO-mediated therapies have been approved by the FDA for
genetic and non-genetic disorders [65–67]. The most notable
success is the ASO treatment of spinal muscular atrophy [68].
These FDA approved ASO based treatments for genetic disorders
have paved the way to obtain FDA approval for imprinting
disorders. ASO based treatment has emerged as a promising
molecular treatment for AS. The AS UBE3A gene is subject to brain
specific imprinting [69, 70]. The UBE3A gene is exclusively
expressed from the maternal chromosome in neurons [71]. The
exact mechanism underlying the brain and neuron specific
imprinting for the AS UBE3A gene remains fully characterized. It
has been demonstrated in rodent models that the maternal and
neuron specific expression of Ube3a is mediated by the expression
of a paternally expressed long non-coding antisense RNA to Ube3a
(Ube3a-ATS) [18, 72]. Inhibition or inactivation of Ube3a-ATS by
ASO and CRISPR based gene editing at the DNA and RNA levels
unsilence the expression of sense Ube3a in brains [73–76]. The
reactivation of Ube3a by ASO is capable of rescuing the
neurobehavioral and neurophysiological impairments in AS
maternal Ube3a deficiency mouse model [73, 77–79]. These
findings led to a successful approval of investigational new device
(IND) for using ASO in treating human AS. In 2020, the FDA
approved the first ever phase 1 trial for using ASO via intrathecal
injection in AS. Currently, there are 4 active phase 1/2a clinical
trials using different ASO designs sponsored by IONIS
(NCT05127226), Hoffmann-La Roche (NCT04428281), and Ultra-
genyx (NCT04259281) in the US and other countries. While the
phase 1/2a trials are not primarily designed to assess clinical
efficacy, the assessments from these trials revealed encouraging
positive signals in multiple behavioral domains [52].

CRISPR/CAS9 GENOME EDITING
The studies of ASOs provide a proof of concept to support
molecular therapy by manipulating UBE3A-ATS. However, due to
the transient nature of ASO treatment after entry into cells,
repeated intrathecal injections are necessary to maintain clinical
efficacy if it eventually becomes a standard therapy. The
requirement of sedation for intrathecal administration of ASOs
poses significant medical and psychosocial stress to AS children
and families. CRISPR/Cas9 gene editing offers an attractive
alternative to ASO. Two recent studies have demonstrated that
Cas9 mediated gene editing can inactivate the expression of
Ube3a-ATS and reactivate the expression of Ube3a from the

paternal chromosome in vitro and in vivo using an adeno-
associated virus (AAV) or lentivirus delivery method [74, 75]. A
single intrathecal delivery could achieve long term and probably
permanent molecular efficacy. Similar to ASOs, the Cas9 editing of
Ube3a-ATS rescues the neurobehavioral phenotypes in the AS
Ube3a maternal deficiency mouse model. These studies provide
initial evidence supporting the feasibility of using Cas9 editing to
treat AS. Like CRISPR/Cas9 mediated gene editing in other genetic
diseases, safety concerns related to virus delivery methods and
potential off-target effects due to Cas9 editing remain to be
evaluated thoroughly before moving to human trials. Concep-
tually, an unbiased CRISPR based screening could be designed to
screen for a genetic locus that could unsilence imprinted genes
and lead to the development of a new treatment. This has not
been reported in literature so far.

CRISPR MEDIATED RNA EDITING
Non-coding RNAs are frequently associated with imprinted gene
clusters and strongly implicated in the regulation of imprinted
clusters [16, 80–82]. The CRISPR/Cas13 system is an effective tool
for RNA editing [83], where Cas13 controls RNA without
permanent change of DNA sequence in gene bodies. In contrast,
Cas9 has technical limitations including low editing efficiency,
higher probability of inducing off-target events and oversized AAV
packaging [84]. Cas13 modulates RNA readout through various
modifications such as methylation, demethylation, and A-I/C-U
editing. Cas13a with gRNA has proven RNA-guided RNA knock-
down [85–87]. Conceptually, this tool can be used to target
specific lncRNAs controlling imprinted domains or reactivate
imprinted genes. dCas13b-ADAR2 has a function of A to I RNA
base editing [83, 84], which has the important role of correcting
pathogenic mutations at the RNA level. dCas13-METTL3/14 as a
N6-adenosine-methyltransferase (A to m6A), increases RNA
stability and translation efficiency, leading to enhancement of
gene expression [84]. CRISPR-Cas13d variants such as dCasRx is
the smallest form targeting RNA, and is able to be packaged into
lentivirus for improved delivery efficiency to primary cells [88]. As
a m6A demethylase, dCasRx-ALKBH5 shows bidirectional modula-
tion depending on targeting mRNA [89]. The technical challenge
for the translational potential of Cas13 may be related to targeting
deliverance of the editing tool to specified organs and cell types.
Recently, the use of Cas13 based editing of UBE3A-ATS has been
reported to reactivate the expression of UBE3A from the paternal
chromosome and rescue some neurobehaviors in mice [76].
However, like ASOs, the transient effect of Cas13 RNA editing is
expected to require repeated interventions to maintain efficacy.

CRISPR/DCAS9 MEDIATED EPIGENOME EDITING
CRISPR-based epigenome editing technologies have been devel-
oped to enable manipulation of the epigenome and regulate
expression of targeted genes [90–94]. For the design of
epigenome editing, a catalytically inactive mutant form of Cas9
(dCas9) without endonuclease activity still binds to target DNA
sequence that matches guide RNA. dCas9 fused with an effector

Fig. 1 Epigenetic-based treatment strategies for imprinting disorders. Schematic diagram describes epigenetic-based therapeutic targets
including DNA methyltransferase and histone modifying enzymes for imprinting disorders. a Normal genomic imprinting pattern shows
parental origin specific allele silencing. b Uniparental disomy (UPD), deletion or mutation of active allele/imprinting control region (ICR) causes
deficiency of normal gene expression. CRISPR/dCas9 or small molecule-mediated reactivation of silenced (imprinted) genes is applicable to
recover normal gene expression. c Allele specific CRISPR/Cas9-mediated genome editing can be a tool for correction of ICR mutation resulting
in an imprinting defect or epimutation. Designing allele specific gRNA is required to do single nucleotide polymorphism (SNP) analysis to
distinguish mat/pat chromosome. d Two copies of imprinted gene in active allele can be repressed by CRISPRi (ex. dCas9-KRAB, DNMT1),
CRISPR/Cas13 and ASO mediated mRNA depletion (ASO antisense oligonucleotides, ATS antisense transcripts, DNMT1 DNA methyltransferase
1, HMT histone methyltransferase, HDAC Histone deacetylase). Created with BioRender.com.
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domain has emerged as a popular approach to target a specific
locus with specific modifications. The fusion constructs of dCas9
include various catalytic domains of epigenetic modifying
enzymes and chromatin remodelers that have been demonstrated
to result in transcriptional activation or repression for a targeted
gene. Recently, Cas13 has been shown to improve the dCas9
platform targeting DNA and histones or recruiting other
transcriptional factors [83, 86]. Chemically modified guide RNA
could also improve the transcript knockdown efficiency with
CRISPR/Cas13 as a form of ribonucleoprotein (RNP) complex
[76, 95]. Conceptually, epigenome editing is applicable to target
allele-specific DNA and histone modifications associated with
repressed alleles and reactivate the expression of imprinted
genes [96].

DNA METHYLATION AND DEMETHYLATION MODIFICATION
AND EDITING FOR IMPRINTED GENES
5-methylcytosine (5mC) in CG dinucleotides (CpG) plays a critical
role in imprinting establishment during development [97–99]. CpG
islands are mainly located in transcriptional regulatory elements
such as promoter, inhibitor, and enhancer regions [100]. In the
imprinting domain, allelic methylation of CpG dinucleotides is
frequently identified in the imprinting center. DNA methyltransfer-
ase (DNMT), an epigenetic writer, has a primary role in establishing
and maintaining DNA methylation, resulting in subsequent
recruitment of repressor complex for gene silencing in general.
dCas9 fused with mammalian DNA methyltransferase of DNMT1,

DNMT3A, DNMT3B, and DNMT3L and prokaryotic DNA methyl-
transferase MQ1 displayed de novo methylation with inhibition of
transcription in preclinical studies [101–105]. This tool can be
applied to imprinting disorders caused by duplication of active
allele, such as transient neonatal diabetes mellitus type 1 (paternal
duplication of 6q24) and Beckwith–Wiedemann syndrome (paternal
duplication of 11q15.5) [106].
As an enzymatic eraser, the ten-eleven translocation dioxygen-

ase family of genes (TET1-3) encodes enzymes that oxidize 5mC to
5-hydroxymethylcytosine (5hmC) leading to active DNA demethy-
lation and increase of gene transcription in general. dCas9-TET1/
TET3 targeting to methylated CpG island contributes to specific
gene activation in various disease models [92, 107–109]. The
dCas9-TET1 fusion construct can demethylate the methylated
5mC associated CGG repeat expansion of FMR1 (Fragile X
Syndrome) in cells and in vivo [102], the CpG island of the
maternally imprinted Snrpn gene in a rodent model [92], and the
MECP2 promoter for its reactivation from inactivated Xi chromo-
some in Rett syndrome human embryonic stem cells and derived
neurons [110]. With the same principle, the dCas9-TET fusion
protein can be used to reactivate imprinted genes that have been
shown to be associated with methylated CpG islands in regulatory
regions.

HISTONE MODIFICATION EDITING
Manipulating posttranslational modifications of histones in in vitro
and in vivo experimental systems using CRISPR/dCas9-mediate

Table 2. Application of CRISPR-mediated epigenome editing.

Type Function Application Reference

Chromatin remodeling

dCas9-DNMT1
dCas9-DNMT3A
dCas9-DNMT3B
dCas9-DNMT3L
dCas9-MQ1

DNA methyltransferase Transcriptional repression [92, 101–105]

dCas9-TET1CD
dCas9-TET3CD

5-methylcytosine dioxygenase (DNA
demethylation)

Transcriptional activation [92, 107–109]

dCas9-VP64
dCas9-VPR
(VP64-p65-Rta)
dCas9-SunTag

Recruiting active transcription machinery
Transcriptional activator/
Recruiting active transcription machinery
Transcriptional activator

Transcriptional activation [124, 125, 144]

dCas9-KRAB
dCas9-KRAB-MeCP2

Transcriptional repressor Transcriptional repression [115, 128]

dCas9-HP1α Heterochromatin binding protein Chromatin compaction [129]

dCas9-Ezh2
dCas9-G9a
dCas9-SUV39H1

H3K27 methyltransferases
H3K9 mono-, dimethyltransferase
H3K9 trimethyltransferase

Transcriptional repression [103, 115, 145]

dCas9-LSD1
dCas9-JMJD2A

H3K4me1/2, H3K9me1/2 demethylase
H3K9me2/3, H3K36me2/3 demethylase

Transcriptional activation [116, 146]

dCas9 SunTag-JARID1A H3K4me3 demethylase Transcriptional repression [147]

dCas9-p300 Histone acetyltransferase Transcriptional activation [111]

dCas9-HDAC1
dCas9-HDAC3

Histone deacetylase Transcriptional repression [113, 114]

dCas9-dMSK1 H3S28 phosphorylase Transcriptional activation [112]

RNA modification

dCas13-METTL3, /-METTL3METTL14,
dCasRx-METTL3

N6-adenosine-methyltransferase RNA stabilization, Translation
efficiency

[89, 148, 149]

dCasRx-ALKBH5 m6A demethylase RNA metabolism [89]

RNA interference

dCas13b-ADAR2 Adenosine deaminase acting on RNA RNA editing for A to I [83]

Cas13 RNA-guided RNA targeting RNA knockdown [76, 85]
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editing have shown a strong effect on gene regulation
bidirectionally as well as specificity. For example, dCas9-p300
and dCas9-dMSK1 induce an increase of target gene transcription
through acetylation and phosphorylation to specific residues on
histones, respectively [111, 112] (Table 2). Conversely, dCas9-
HDAC1/3 silences gene expression by deacetylation of histone
residues to induce compact chromatin status [113, 114]. Activity of
dCas9 fused with histone methyltransferase or demethylase is
dependent on cell type and developmental stages [115, 116]. As
summarized in Table 2, dCas9-histone methyltransferase usually
leads to gene silencing with other repressor components. A few of
those enzymes show bi-directional regulations that depend on
gene loci and associated molecular context [117, 118]. Thus, it is
necessary to understand specific mechanisms in tissues or cell
lines that are associated with imprinted impression when
designing translational applications.
To minimize off-target events and enhance precision, an

inducible transient expression system has been introduced for
epigenome editing [119–121]. Inducible dCas9 expression or
activation allows tracking of its spatiotemporal control and
potentially minimize off-target events because of the transient
expression of dCas9. Technically, dCas9 fusion proteins are limited
by their sizes over the maximal cargo size of AAV, a common and
popular delivery tool. Novel delivery tools are necessary for in vivo
application and clinical trials in humans. Alternative non-viral tools
such as RNP or nanoparticle mediated delivery have emerged as
better platforms, which have no limitations of package size
[122, 123]. However, the molecular weight of current RNP or
nanoparticle designs are too big to penetrate the brain efficiently.
The cell type specificity of RNP and nanoparticle mediated
delivery is poorly understood and this may limit clinical
applications.

MULTIPLEXED CRISPRI AND CRISPRA SYSTEM
CRISPR/dCas9 mediated transcriptional interference (CRISPRi) or
transcriptional activation (CRISPRa) systems have been actively
developed due to eagerness for efficacy improvement. Various
advanced versions of these systems can recruit multiple
transcription factors to control gene transcription. More than
two kinds of catalytic domains are fused with dCas9 for synergetic
effects on target gene regulation [91, 96]. Beyond the introduction
of four copies of herpes simplex viral protein 16 (VP64) as an
activator, fusion or recruitment of multiple transcriptional factors
have shown improved efficiency when manipulating target gene
loci [124, 125] (Table 2). With dCas9 development, there have
been trials for using combined or multiple gRNAs for more
dramatic potency in target gene expression [126].
For epigenetic gene silencing, dCas9 is fused with Krüppel

associated box (KRAB), derived from zinc finger domain, leading to
decrease of chromatin accessibility and high H3K9me3 levels on
target regulatory regions with recruitment of other repressors
[127]. An advanced version of CRISPRi, dCas9-KRAB-MeCP2, has
been shown to be highly effective as a transcriptional repressor
[128]. While most dCas9 fusion proteins have cis-regulatory
features, dCas9-HP1α acts in cis and trans by tethering to reach
distal regulatory elements [129]. This tool also reduces chromatin
accessibility by transcription machineries maintaining compact
chromatin status.

ILLUSTRATED EXAMPLES OF EPIGENETIC THERAPY
STRATEGIES FOR AS AND PWS
AS and PWS are caused by deficiency of maternally and paternally
expressed genes on chromosome 15q11-q13, respectively. De
novo ~6Mb paternal deletion of the 15q11-q13 region is found in
~70% of PWS patients, followed by maternal UPD (~27%), and rare
imprinting center mutations (Table 3) [130]. There are a dozen Ta
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paternally expressed genes within the 15q11-q13 region (Fig. 2).
SNORD116 is considered to be the critical gene, where a deficiency
is responsible for key PWS clinical features [21, 131]. The allele-
specific expression of paternally expressed genes in the 15q11-
q13 region is controlled by an imprinting center (PWS-IC) located
upstream of the SNURF-SNRPN gene [132, 133]. The CpG islands
located in the PWS-IC are unmethylated in the paternal
chromosome but methylated in the maternal chromosome.
Allele-specific histone modifications such as H3K9me2 are also
associated with PWS-IC [60, 134]. These unique epigenetic defects
render an opportunity to explore chromatin remodeling enzymes
as therapeutic targets [21, 22]. Treatment with a DNA methylation
inhibitor can reactivate the expression of SNRPN from the
maternal chromosome in cells derived from a patient with PWS
due to a paternal deletion of 15q11-q13 [135, 136]. In preclinical
studies, treatment of EHMT2/G9a inhibitors have shown promise
as potential pharmacological small molecules by reducing
H3K9me2 levels, leading to reactivation of the imprinted gene

without change of DNA methylation in a PWS mouse model [60].
Similarly, a fusion construct of dCas9 with H3K9me2/3 demethy-
lase may be able to reduce the histone H3K9 methylation level at
PWS-IC, resulting in reactivation of imprinted genes on the
maternal chromosome. dCas9-TET1 could demethylate the Snrpn
promoter region including CpG islands, suggesting a potent
alternative tool [92]. Further preclinical studies are warranted to
explore the therapeutic potential in human PWS.
In the case of AS, most patients (70%) have a de novo ~6Mb

maternal deletion including the UBE3A gene. About 10% have
mutations within the UBE3A gene, followed by paternal unipar-
ental disomy of chromosome 15 and imprinting center mutations
[137–139]. UBE3A is the only maternally expressed gene within the
chromosome 15q11-q13 region [69]. The expression of the
maternal UBE3A allele is brain or neuron specific (Table 3)
[70, 71, 140]. Intriguingly, there is no allele-specific epigenetic
modification associated with AS-IC. The repressed expression of
Ube3a in the paternal chromosome is mediated by a paternally

Fig. 2 Therapeutic strategies for AS and PWS. Schematic shows the imprinting domain in human chromosome 15q11-q13 with potential
epigenetic therapeutic candidates for (a) AS and (b) PWS. Genes in dark blue are exclusively expressed from the paternal chromosome while
genes in purple are expressed from the maternal chromosome in neuronal cell type specific manner (gray bar, imprinted gene; biallelic
expressed gene, black bar). In the case of AS, the loss of UBE3A expression in the maternal allele by different mechanisms is the cause. The
principle of epigenetics-based therapy is to reactivate the paternal allele’s expression of UBE3A in neurons. The current approach is to inhibit
the expression of antisense of UBE3A via small molecule, ASO, CRISPR/Cas9, or Cas13. In the case of PWS, where more than one paternally
expressed gene is in the candidate region, the optimal approach is to manipulate the imprinting center region to reactivate the expression of
silenced genes from the maternal chromosome. Current approaches include DNA methylation inhibitor, small molecule for histone
modifications and others, CRISPR/dCas9 gene editing. Created with BioRender.com.
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expressed long non-coding RNA from the upstream region of
Snrpn [18, 72]. The development of epigenetic and molecular
therapy for AS has significantly advanced over the last decade
[141]. Topotecan was the first drug showing a robust reactivation
of Ube3a in a preclinical study in AS mouse model [59]. However,
its translational potential is limited because of significant toxicity.
The development of a safer new class of topoisomerase inhibitors
remains a promising molecular therapy for AS. Treatment with
topotecan can reduce the expression of UBE3A-ATS and reactivate
the expression of UBE3A in human derived neurons and mouse
neurons [59, 142]. Both ASO and Cas9 editing of Ube3a-ATS
unsilence the paternal Ube3a allele by reducing Ube3a-ATS in AS
mouse model [73–75, 143]. The success of ongoing ASO clinical
trials will certainly promote translational studies exploring the use
of Cas9 editing in human AS. The application of CRISPR/Cas13
mediated gRNA targeting UBE3A-ATS has been shown to be
effective in AS mouse model [76]. Additional studies are warranted
before advancing to IND studies.

CONCLUDING REMARK: THE PROMISES AND CHALLENGES
With the FDA approved ASO in phase 1/2a trial for AS, the
prospect of developing epigenetic molecular therapies for other
genomic imprinting disorders is encouraging. The number of
genomic imprinting disorders and the populations affected are
relatively small. However, because of the unique molecular
defects associated with genomic imprinting disorders and
molecular mechanisms underlying imprinting regulations, geno-
mic imprinting disorders remain the best opportunity for a proof
of principle study of developing epigenetic therapy for genetic
diseases. The lessons learned and tools developed are immedi-
ately applicable to other non-imprinting genetic disorders. For
example, genetic defects that lead to haploinsufficiency of single
genes are found in 10–15% of cases with ASD and even higher in
other NDD. The approach of upregulating the expression of
normal alleles by epigenome editing is an attractive avenue for
developing molecular treatments. Despite these promises,
challenges remain significant. For pharmacological based epige-
netic therapy, the broad effects of epigenetic modulating drugs
remain a potential concern for clinical applications particularly for
mild or moderate presentation of the disease. It is possible that
side effects are dose dependent and likely cell and tissue type
specific. The careful assessment of these issues may ease the
concern from FDA regulatory concerns. For ASO and gene editing
based therapies, the efficiency of delivery platforms remains to be
improved especially for the brain as a target organ. For example,
the repeat dosing for ASO intrathecal delivery used in AS clinical
trials is not optimal for patient care. The virus delivery platform
for Cas9 editing has its own inherited and well recognized
limitations. New non-viral delivery platforms have been devel-
oped in recent years but they are suboptimal for brain disorders.
Lastly, for any gene editing approach, the genome wide off-target
events of Cas9/gRNA remain a concern conceptually. The
challenge is to assess the impact of off-target events technically
and physiologically, and how to define an acceptable threshold of
genome wide off-target events from a regulatory and safety
perspective. Nevertheless, it is reasonable to predict that more
promising breakthroughs utilizing CRISPR based genome and
epigenome editing will emerge as an effective treatment
modality in the near future.
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