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Deficits in effective executive function, including inhibitory control are associated with risk for a number of psychiatric disorders
and significantly impact everyday functioning. These complex traits have been proposed to serve as endophenotypes, however,
their genetic architecture is not yet well understood. To identify the common genetic variation associated with inhibitory control in
the general population we performed the first trans-ancestry genome wide association study (GWAS) combining data across 8 sites
and four ancestries (N= 14,877) using cognitive traits derived from the stop-signal task, namely – go reaction time (GoRT), go
reaction time variability (GoRT SD) and stop signal reaction time (SSRT). Although we did not identify genome wide significant
associations for any of the three traits, GoRT SD and SSRT demonstrated significant and similar SNP heritability of 8.2%, indicative of
an influence of genetic factors. Power analyses demonstrated that the number of common causal variants contributing to the
heritability of these phenotypes is relatively high and larger sample sizes are necessary to robustly identify associations. In
Europeans, the polygenic risk for ADHD was significantly associated with GoRT SD and the polygenic risk for schizophrenia was
associated with GoRT, while in East Asians polygenic risk for schizophrenia was associated with SSRT. These results support the
potential of executive function measures as endophenotypes of neuropsychiatric disorders. Together these findings provide the
first evidence indicating the influence of common genetic variation in the genetic architecture of inhibitory control quantified using
objective behavioural traits derived from the stop-signal task.
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INTRODUCTION
Executive functions (EF) are essential in our everyday lives and critical
for goal-directed behaviour. We need to adjust our actions based on
changes in the environment, direct attention towards particular
tasks, monitor performance and inhibit irrelevant or automatic
impulses. Broadly, these executive functions can be conceptualised
as falling into three main categories – cognitive flexibility, working
memory, and inhibitory control [1]. Whereas EFs are linked to a range
of positive outcomes such as educational attainment [2], quality of
life [3, 4], fewer behavioural problems [5], and general health-related
behaviours [6], impairments in these cognitive processes are
associated with risk for several psychiatric and neurodevelopmental
disorders (NDDs) including attention deficit hyperactivity disorder
(ADHD) [7–9], autism spectrum disorder (ASD) [10], obsessive-
compulsive disorder (OCD) [11–13], and schizophrenia [14, 15].

Inhibitory control presents a particular facet of executive
functioning that is directed at inhibiting inappropriate or
irrelevant responses involving a set of distinct cognitive processes
such as the ability to selectively control attention and behaviour as
well as override the innate predisposition for a prompted action.
Inhibitory control can be assessed in a laboratory setting using the
stop signal paradigm [16, 17], in which participants typically
perform a “go” task but in a minority of the trials are presented
with a stop signal that requires them to withhold an already
initiated response to a go-signal. The performance in a stop-signal
task is therefore modelled as a race between the initiated ‘go
process’ that is triggered by a frequently presented go-stimulus
and a ‘stop process’ which is triggered by the stop-signal, such
that the response is inhibited if the stop process finishes before
the go process [18]. As a result, the performance on the stop signal
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task is characterised by three main measures: mean go reaction
time (Go RT) reflecting the overall processing speed for go-stimuli,
go reaction time variability (Go RT SD) corresponding to the
efficiency with which top-down regulation of attention can be
exerted over behaviour [19], and the stop signal reaction time
(SSRT) which quantifies the efficiency of response inhibition, with
longer SSRTs indicative of poorer response inhibition [16].
Deficits in inhibitory control and associated cognitive measures

are common features in heritable neurodevelopmental disorders
(NDDs) such as ADHD, ASD and schizophrenia [9, 20–22].
Executive functions in general, and measures of inhibitory control
in particular, serve as main candidate endophenotypes for ADHD
[23–25] and have been proposed for ASD and schizophrenia
[26, 27]. Convergent evidence to date suggests that inhibitory
control is also under the genetic influence with moderate
heritability estimates ranging from h2= 0.2–0.6 identified across
a range of inhibitory control measures, including the stroop task
[28, 29], stop signal task [28, 30, 31], go/no-go task [32],
prohibition task [33], and the antisaccade task [28, 34]. Moreover,
a latent variable derived from a combination of inhibitory control
measures was almost entirely genetic in origin [28].
Supplementing these behavioural findings, inhibition-related

event components derived from electroencephalography (EEG)
also demonstrate heritability of 0.5–0.6, further supporting the role
of genetic influences in inhibitory control [35]. Bivariate heritability
analyses indicate shared genetic influences between ADHD traits
and the primary index of the efficiency of response inhibition
derived from the stop-signal task, SSRT, suggesting the potential
for common genetic contributions to these two phenotypes [30].
There is some evidence of co-heritability of executive function and
inhibitory processing measures with schizophrenia [36, 37], as well
as familial presentations in ASD [38]. Further research is needed to
examine the genetic sharing between NDDs and inhibitory control
and its potential as an endophenotype.
The demonstrated role of genetics in inhibitory control supports

further investigations into the specific genes associated with this
executive function that could help to determine contributing
neurobiological mechanisms for these processes and associated
disorders. Determining such genes so far has been a challenge
with suggestive associations identified mainly through candidate
gene studies linking response inhibition to genetic variants in a
number of genes such as the adrenergic receptor genes ADRA2A
[39] and ADRA2B [40], norepinephrine transporter gene SLC6A2
[41, 42], dopamine transporter gene DAT1 [43, 44], dopamine
receptor gene DRD2 [45], serotonin type 2 A receptor gene HTR2A
[46], and neuronal tryptophan hydroxylase-2 gene TPH2 [47].
Candidate gene studies, however, have been extensively criticised
due to high false-positive rates [48] and poor reproducibility
[48, 49]. Indeed, a later study failed to identify any conclusive
associations for any of the seven a priori single nucleotide
polymorphisms (SNPs) previously associated with stop signal task
performance [50]. Therefore, more systematic and agnostic
approaches may be required to establish robust associations.
In contrast to candidate gene studies where genetic variants are

selected a priori, genome-wide association studies (GWAS)
provide a systematic approach to identifying genetic associations
in a data-driven way, as well as allowing quantification of the
extent of genetic influences attributable to common genetic
variation. Several GWASs to date have investigated different
aspects of executive functioning including processing speed
[51–53], and the latent measures of working memory and
inhibitory control [52], however very few genome-wide significant
associations have been identified. The largest and most recent
GWAS of executive function investigated the common executive
function factor score (cEF) derived from multiple tasks in the UK
Biobank dataset and found 129 independent lead variants mainly
associated with fast synaptic transmission [54]. SNP-heritability
studies indicate that common genetic variation explains a

substantial fraction of variance in working memory (h2SNP = 0.3)
[52] and processing speed (h2SNP = 0.11–0.19) [51, 52] suggesting
that with enough power one can expect to identify more genome-
wide significant associations that could inform the genetic
mechanisms of different executive functions, including inhibitory
control.
Here we performed the first trans-ancestry GWAS meta-analysis

of inhibitory control in a general population sample of up to
14,877 participants, focusing on executive control measures
derived from the stop-signal task. Go trial reaction time (GoRT)
quantified processing speed, go reaction time variability (GoRT
SD) quantified the efficiency of top-down regulation of attention,
and stop signal reaction time (SSRT) served as a measure of
response inhibition. Given the stark lack of diversity in GWAS, the
inclusion of participants beyond solely those of European descent
is needed to ensure representativeness, even as sample sizes are
still growing [55]. Although we did not identify significant
genome-wide hits for any of these phenotypes, the significant
SNP heritability estimates for both response variability and
response inhibition indicate that interindividual differences in
both of these measures are influenced by genetic factors. Power
analyses showed that in this study we had excellent power to
detect at least one association at genome-wide significance if the
number of common causal variants was ≤500. Our failure to
identify genome-wide associations suggests that the actual
number of contributing variants is significantly greater and larger
sample sizes are necessary to identify robust associations. We also
showed that in Europeans the polygenic risk for ADHD was
significantly associated with reaction time variability, and the
polygenic risk for schizophrenia was significantly associated with
go reaction time, while in East Asians polygenic risk for
schizophrenia was associated with response inhibition, further
supporting the suggested utility of executive functions as
endophenotypes.

METHODS
Participants
In this study we aggregated data across eight independent samples
from the general population [Spit1, Spit2, Adolescent Brain Cognitive
Development℠ Study (ABCD Study®), MELBOURNE, IMAGEN, COLOR-
ADO, Michigan-ADHD-1000, Oregon-ADHD-1000] and four ancestral
groups [African (AFR), East Asian (EAS), European (EUR), South Asian
(SAS)], totalling to 14,877 participants. Spit For Science (Spit1, Spit2) is
an ongoing study at The Hospital for Sick Children in Toronto (Canada)
aiming to investigate the genetics of cognition, physical health and
well-being in children aged 6–17 years [30, 56]. The ABCD Study is a
publicly available longitudinal dataset from the USA containing
participants aged 9 to 10 years at their baseline assessment, focusing
on cognition, brain development, and mental and physical health
[57, 58]. The Melbourne sample (MELBOURNE) is derived from an
ongoing study at Monash University in Melbourne, Australia that is
designed to systematically assess neurocognition, psychopathological
symptoms, genetics, as well as brain structure and function in a large
sample of healthy young adults aged 18–50 years [59]. The IMAGEN
sample was derived from the longitudinal IMAGEN dataset collected
across eight centres in Europe combining brain imaging, genetics and
psychiatry to understand brain development and behaviour in
adolescents aged 14 years at baseline [42]. The Colorado sample
(COLORADO) includes same sex monozygotic (MZ) and dizygotic (DZ)
twins recruited from the Colorado Longitudinal Twin Sample that was
designed to investigate genetic and environmental influences on
cognitive and emotional development [60, 61]. The Oregon-ADHD-
1000 (OREGON) is a community-recruited, longitudinal, case-control
cohort of children (age 7–11 years at baseline) from northwest Oregon
(USA) that is enriched for psychopathology [62–66]. The Michigan-
ADHD-1000 (MICHIGAN) is a cohort of youth (age 6–21 years) with the
same recruitment and assessment procedures as the OREGON cohort,
but recruited from a different demographic population (central
Michigan, USA) [67, 68]. Only control subjects were selected for analysis
from both of the latter cohorts.
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Phenotypes
To investigate the genetics of executive function we selected three
behavioural traits derived from the stop-signal task (SST) [69], namely,
mean go reaction time (GoRT), go reaction time variability (GoRT SD) and
stop signal reaction time (SSRT) representing overall processing speed,
response variability, and response inhibition, respectively. All stop signal
tasks consisted of two types of trials: “go” trials and “stop” trials. In a “go”
trial participants are asked to respond to a stimulus as quickly and as
accurately as possible by a button press corresponding to a particular
stimulus. In “stop” trials participants are required to suppress their
response to a go stimulus after the stop stimulus is presented therefore
inhibiting an already initiated process. Stop signal tasks were administered
independently between studies according to the site-specific study design
and best practices (for the experimental procedures in each study, see
Supplementary Text S1; for the description of the SSRT integration method,
see Supplementary Text S2).

Genotyping and imputation
Samples were genotyped on a variety of arrays that are listed in
Supplementary Table S1. For Spit 1&2 studies, only participants for which
all 4 grandparents shared the same ancestry (either EUR, EAS or SAS) were
genotyped. For the ABCD Study, we restricted analyses to non-Hispanic
EUR, EAS, SAS and AFR ancestries. Recruitment for all other study cohorts
was restricted to participants of EUR ancestry. Genotyping quality control
(QC) was performed by different study centres according to their own best
practice and pipelines (for genotyping and QC details for each site see
Supplementary Text S3).
Imputation was performed separately for all studies and genotyping

arrays, using data from phase 3, version 5 of the 1000 Genomes project for
reference. Data for Spit 1&2 and ABCD Study[Go] were imputed using
Beagle v4.1 [70]. Data for MELBOURNE, IMAGEN and ABCD Study[SSRT]
were imputed using minimac v4 on the Michigan imputation server [71].
The COLORADO sample was imputed on the Michigan Imputation Server
using minimac v4, Eagle v2.4 for phasing. Dosage data were used for all
these sites. For both OREGON and MICHIGAN, non-genotyped SNPs were
imputed with the same procedure using IMPUTE2 [72]; autosomal
chromosomes were pre-processed and phased using SHAPEIT [73]. Variant
positions and alleles were checked against the reference panel and SNPs
that were missing or mismatches were removed. Genotype probabilities
for these two sites were converted to best-guess genotypes with the
genotype set to missing if the probability was <0.8.

Association analysis
Association analyses were performed within each study and within each
ancestral group, focusing on SNVs with MAF > 1% and imputation quality
r2 > 0.80. Most studies used allele dosage, while data in OREGON and
MICHIGAN samples were based on the best-guess genotype calls (i.e. from
reading vcf files into plink). To account for relatedness between
participants, we used linear mixed models implemented in GEMMA
v0.98.1 [74]. All traits (mean GoRT, GoRT SD, SSRT) were analysed on the
natural log scale. We used sex, age, age2 and age x sex as covariates, as
well as the first 3 principal components constructed from the SNP data. An
example from the Spit1 study demonstrates that 3 principal components
were sufficient to cluster regional ancestries within continental ancestries
(see Supplementary Fig. S1).
Within ancestral groups, the studies were meta-analysed using METAL

release 2011-03-25 [75], with a focus on SNVs covering >70% of the
samples, as was done elsewhere [76]. Summary statistics from each site
and ancestral group were meta-analysed using the methods described in
[77] and originally implemented in MR-MEGA v0.1.5. Briefly, the method
accounts for the possible heterogeneity of the effect sizes of an SNV in
different ancestries by modelling in a regression framework the individual
study effect sizes as a function of axes of genetic variation computed from
multidimensional scaling. We used 3 axes of variation in addition to the
regression intercept to model our 4 ancestral groups. For each SNP in
study s, the observed effect size (βs) was estimated as:

βs ¼ aþ b1x1s þ b2x2s þ b3x3s þ ϵs

where x1s, x2s and x3s are the (pre-computed) values of study s in the 3 axes
of variation (Supplementary Fig. S2). Each study is weighted according to
the inverse of the variance of its effect size. Significance is obtained from
testing a= b1= b2= b3= 0, in which case the observed effect sizes in
each study are no different from random residuals (ϵs). The original

implementation of MR-MEGA can only analyse complete data, so we
implemented our own regression in R to allow for missing results in some
of the studies that arose due to frequency or imputation quality thresholds.
We verified that results from our code and MR-MEGA agree for complete
data. Axes of genetic variation were calculated using MR-MEGA from SNPs
with complete data.
Gene-based analysis was performed using MAGMA version 1.10 [78],

using the auxiliary files available on the software’s website (19,427 genes).
Since the analysis depends on LD patterns, it was performed separately
within each ancestry group, then the results were combined using
Stouffer’s method. Pathway analysis was also performed with MAGMA,
using curated gene sets (collection C2) downloaded from Molecular
Signatures Database (MSigDB), v2023.1.Hs [79] (https://www.gsea-
msigdb.org/gsea/msigdb/), restricting to sets with 10 to 1000 genes
(5637 sets). A Bonferroni correction was used to account for multiple
testing for the gene-based and pathway-based analyses.

SNP heritability, genetic correlations and polygenic scores
We assessed SNP heritability (h2SNP) for each phenotype (mean GoRT, GoRT
SD and SSRT) as well as the genetic correlation between each of those
phenotypes using LD score regression as implemented in LDSC v1.0.0 [80].
We restricted these analyses to SNVs with complete data to ensure that
results were not affected by imbalances in power between studies. We
used the LD scores as provided within LDSC v1.0.0 for EUR and EAS
samples and performed our own calculations of scores for AFR and SAS
samples using the same methods. We investigated trans-ancestry genetic
correlations using POPCORN (installed from git commit #facdfbc) [81].
Polygenic scores (PGS) were constructed from summary statistics

derived from GWAS for ADHD [76], ASD [82], and SCZ [83] using a pruning
and thresholding approach as implemented in PLINK [84] and PRSice v1.25
[85], clumping SNPs for LD (using default r2 < 0.1 in 250 kb windows).
Analysis of the European ancestry cohorts excluded the data from
COLORADO, a twin study. Summary statistics were also available in EAS
samples for SCZ, which were used with the EAS ancestry samples from
Spit1, Spit2 and ABCD Study. PGS were tested for association in our
samples with our traits, evaluated at the p-value thresholds 0.001, 0.05,
0.10, 0.20, 0.30, 0.40, 0.50. We restricted these analyses to SNVs with
imputation quality r2 > 0.8. PGS effect sizes between studies were meta-
analysed using fixed-effect, inverse variance methods. To account for
testing multiple correlated PGS derived from the p-value inclusion
thresholds, we calculated an effective number of independent PGS from
the data and applied a Bonferroni correction with respect to that number
(for a description, see Supplementary Text S5). We chose this approach of
correcting for multiple testing because constraints on sharing individual
level data precluded the use of permutation procedures. Multiple testing
thresholds were calculated separately in EUR and EAS analyses. Although
we would be interested in testing the association of our cognitive traits
with a PGS based on OCD, the largest publicly available GWAS [86] is too
small to provide good estimates.

RESULTS
The total sample for each respective GWAS consisted of 14
844 subjects for GoRT SD, 14 877 for mean GoRT and 14 114 for
SSRT (descriptive characteristics for each study are shown in
Table 1). Samples from the different study centres and ancestries
were generally comparable in terms of age and sex, with a few
exceptions. ABCD Study had slightly younger participants with an
age range that was narrower compared to other studies, whereas
MELBOURNE and COLORADO studies consisted of young adult
participants.

Association analyses
First, we performed trans-ancestry GWASs for each phenotype
and found that no variant reached genome-wide significance
(p < 5 × 10–8) for any of the studied traits (Fig. 1, Supplementary
Figs. S3–5 represent ancestry-specific analyses). A total of 17
regions had lead SNPs meeting suggestive significance
(p < 10–6): 8 for GoRT SD, 4 for GoRT mean, and 6 for SSRT
(see Supplementary Table S2). Regional plots are shown in
Supplementary Fig. S6a–h. Based on the investigation of LD
score regression intercepts in the largest sample (EUR) we found
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that the potential biases caused by insufficiently controlled fine-
scaled ancestry or cryptic relatedness were not significant for
either GoRT SD or SSRT, indicating that association tests were
not inflated (or deflated) (Table 2). Considering this result, the
significant intercept deviation from 1 observed in the case of
mean GoRT can be treated as spurious. Another possibility is
that the genetic architecture of mean GoRT comprises pre-
dominantly rare causal variants, which are known to produce
higher intercepts and negative slopes [80]. In some cases, other
ancestries also demonstrated intercepts exceeding 1 (depend-
ing on the trait), likely owing to admixture in these populations
or small sample sizes (Supplementary Table S3). Similar results
were obtained using 10 PCs as covariates (not shown). Gene-
based and pathway-based analyses also did not identify any
genome-wide significant results, using a Bonferroni correction
based on the number of analysed genes or gene sets, for any of
the three traits (see Supplementary Fig. S7 and Supplementary
Text S4).

Heritability and association with polygenic scores
Next, we evaluated the combined effect of common genetic
variation for each phenotype by calculating SNP heritability (h2SNP)
focusing on the largest available sample (EUR) (Table 2). Both
GoRT SD and SSRT showed significant and similar SNP heritabil-
ities of ~8.2% (p= 0.002 and p= 0.004, respectively, when the
intercept was constrained to reduce the variability). LD score
regression intercept significantly departing from 1 would indicate
a non-negligible impact of confounding factors such as cryptic
relatedness and population stratification [80]. In both cases, the
intercept was not significantly different from 1, motivating the
constraint. When the LD score intercept was free to vary, the point
estimate for the GoRT SD was reasonably robust, albeit not
significant (h2SNP = 0.065, p= 0.096), whereas, for SSRT the effect of
the constraint was critical (h2SNP = 0.008 with unconstrained
intercept, p= 0.44). For completeness, Supplemental Table S3
shows heritability for other ancestries but owing to the relatively
small sample sizes these estimates should be considered with this

limitation in mind. We also investigated trans-ancestry genetic
correlations between phenotypes in the two largest ancestral
groups (EUR and EAS), however, due to small the sample sizes, the
standard error of the trans-ancestry genetic correlation estimate (a
parameter bounded by 1) was above 10, making inference and
interpretation uninformative.
To evaluate the relationships between executive function and

the genetic risk for each of ADHD, ASD, and SCZ we constructed
polygenic scores based on appropriate PGC summary statistics
using samples of EUR ancestry as well as EAS whenever possible.
The associations between the PRS and each of the behavioural
measures were performed in each study centre separately and the
effect sizes of the PGS (standardised to have unit variance) on the
traits were meta-analysed. We found that, in EUR, ADHD PGS were
significantly associated with GoRT SD, but did not show any
associations with GoRT or SSRT (Fig. 2, see Supplementary Table S4
for more detailed results). The largest and most significant effect
of the PGS on GoRT SD (β̂= 0.0079, se=0.0021; p= 0.000123) was
observed using a clumped set of SNPs retaining variants with
p < 0.5 based on the PGC ADHD GWAS, where larger PGS
(representing the increased risk of ADHD) were associated with
larger variability of the Go trial responses. This result was mostly
driven by the ABCD Study cohort (p= 0.000126) and showed
considerable (p= 0.051) heterogeneity between studies (forest
plot shown in Supplemental Fig. S8). We also found that in EUR,
SCZ PGS were significantly associated with GoRT mean across all
p-value thresholds (β̂= 0.0071, se= 0.0015; p= 3.39 × 10−6), but
not GoRT SD (pmin= 0.31) or SSRT (pmin= 0.86). Increased genetic
risk of SCZ was consistently associated with larger GoRT scores
across studies (minimum p-value for heterogeneity= 0.065, forest
plot shown in Supplemental Fig. S9). We calculated that the
correlated PGS for the seven tested p-value thresholds per GWAS
corresponded to an effective number of independent variables
equal to ~3 (Ne= 3.00 in ABCD Study; Ne= 2.96 in Spit1, both for
ADHD), which leads to a Bonferroni corrected threshold of 0.05/(3
tests × 3 traits × 3 GWAS studies)= 0.0019. This means that the
observed associations between ADHD PGS and GoRT SD

Table 1. Descriptive statistics for each ancestry and study sample.

Ancestry Study N GoRT SD N Mean GoRT N SSRT Mean age (SD) Females %

AFR ABCD Study 781 781 706 9.95 (0.61) 52

EAS ABCD Study 97 97 89 9.91 (0.63) 55

Spit1 847 847 847 11.51 (3.00) 52

Spit2 294 294 294 10.26 (3.16) 55

TOTAL 1238 1238 1230

EUR ABCD Study 3844 3844 3577 9.95 (0.62) 48

Spit1 4943 4943 4943 11.03 (2.75) 48

Spit2 727 727 727 10.29 (3.03) 49

MELBOURNE 942 942 668 22.42 (4.89) 57

IMAGEN 1123 1123 1074 13.7 (3.39) 48

COLORADO 524 524 524 22.59 (1.11) 53

OREGEON 159 159 155 9.43 (1.52) 44

MICHIGAN 97 130 47 13.05 (3.21) 48

TOTAL 12359 12392 11715

SAS ABCD Study 32 32 29 10.05 (0.72) 38

Spit1 250 250 250 11.52 (3.07) 50

Spit2 184 184 184 10.51 (3.39) 49

TOTAL 466 466 463

GRAND TOTAL 14844 14877 14114

Sample sizes for each of the analysed phenotypes (GoRT SD, mean GoRT, and SSRT). Also shown are statistics for the covariates age and sex, the latter being
expressed as a percentage of females. AFR – African ancestry, EAS – East Asian ancestry, EUR – European ancestry, SAS – South Asian ancestry.
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(p= 0.00012) and SCZ PRS and GoRT mean (p= 3.39 × 10−6) are
both significant after multiple testing corrections. In the EAS-
specific analysis, the PGS for SCZ was significantly associated with
SSRT (p= 0.0046), compared to a Bonferroni threshold of 0.05/3
tests × 3 traits= 0.0056, with a positive direction of effect
(Supplementary Fig. S10, forest plot shown in Supplemental
Fig. S11).

Power analyses
In order to assess the power for detecting at least one association
with a common (MAF > 1% in EUR as baseline) causal variant (CV –
defined here as the variant that is responsible for the association
signal at a particular locus) at genome-wide significance, we
performed a simulation study. Leveraging the significant and

robust heritability for GoRT SD, we aimed to simulate a varying
number of CVs, together explaining 8.2% of the variance of a
simulated, normal trait. CVs were randomly selected among those
with MAF > 1% in the EUR population of the 1000 Genomes
project and were assigned effect sizes drawn from a normal
distribution and neutral selection. From a larger set of pre-
simulated whole genomes, we randomly selected genotype data
for 12359 EUR, 1238 EAS, 466 SAS and 781 AFR samples,
constructed the polygenic score from the causal ones and
generated a trait by adding an environmental variance appro-
priately scaled (see Supplementary Text S6). For the effect sizes,
we simulated two scenarios: one where the effect sizes are the
same in all ancestries, and one where the effect sizes are
uncorrelated between ancestries. CVs were taken to be the same,

Table 2. Heritability estimates for each phenotype in European ancestry subjects.

Trait h2 (constrained int.) h2 (unconstrained int.) Intercept

Estimate SE P-value Estimate SE P-value Estimate SE P-value

GoRT SD 0.082 0.029 0.002 0.065 0.050 0.096 1.005 0.012 0.675

GoRT Mean 0.040 0.028 0.072 −0.089 0.046 0.974 1.038 0.012 0.001

SSRT 0.081 0.031 0.004 0.008 0.053 0.440 1.020 0.013 0.125

LD score regression estimates, standard error (SE) and significance (P-value) of the proportion of trait variance (h2) and regression intercept explained by
common variants. When the regression intercept is constrained, it is constrained to 1. Tests are one-sided for h2 ( > 0) and two-sided for the intercept ( ≠ 1).
Heritability estimates presented in bold are considered statistically significant.

Fig. 1 Trans-ancestry GWAS. Manhattan plots and corresponding quantile-quantile (QQ) plots for GoRT SD (a); mean GoRT (b); SSRT (c).
Dashed lines on the Manhattan plots indicate p < 5 × 10–8 threshold. Grey lines on the QQ plots represent 95% confidence bands.
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for parsimony. Details of the simulation designs are provided in
Supplementary Text S6.
We show that the simulated whole genomes are: (i) indis-

tinguishable from unrelated samples (Fig. 3a), (ii) that they closely
preserve the LD structure of the original 1000 Genomes samples
they are derived from (Fig. 3b), and that (iii) the simulated trait has
the desired heritability, on average (Fig. 3c). Under a model where
the effect sizes are uncorrelated between ancestries, the trans-
ancestry meta-analysis approach leads to a slightly reduced power
compared to an analysis based only on samples from EUR
ancestry, whereas comparable power is estimated for the model
of correlated effect sizes (Table 3). These results are driven by the
fact that the majority of samples in our study were derived from
the EUR ancestry and are not necessarily the case for more
balanced sample sizes. The loss of power in the trans-ancestry
model in our case arises due to the estimation of three additional
parameters (one per additional ancestry) [77] that due to relatively
small sample sizes of the non-EUR ancestries are estimated with
higher variability.

Our results indicate that if the total number of common CVs
explaining an LD score regression-derived h2SNP of 8.2% was ~500
or less, then the power of our sample to detect at least one
association at genome-wide significance level was excellent and
generally above 80%, irrespective of the model or the method
(Table 3). As a result, our failure to detect any association indicates
that the number of CVs explaining 8.2% of the variance is likely to
be more than ~750–1000. When heritability is fixed, as the
number of CVs increases, the proportion of trait variance
explained by each variant decreases, resulting in decreasing
power to detect any association. In our case, the power to detect
an association with a particular SNV at genome-wide significance
was adequate ( > 80%) as long as that SNV explained approxi-
mately >0.35% of the trait variance, which can be achieved for
various combinations of MAF and effect sizes (Fig. 3d). The fact
that we did not detect any association, therefore, indicates that if a
common causal SNVs was catalogued by the 1000 Genomes
project, or unmeasured but in high LD with one, then this causal
SNV is unlikely to explain more than ~0.3% of a trait variance.

Fig. 3 Validation of simulated replicates and the power to detect association for a single SNV. a Percentage of genome shared identical by
descent between pairs of 503 EUR samples from the 1000 Genomes project (1 kG; black circles) and between pairs of 10000 simulated samples
derived from them (red dots). b Linkage disequilibrium (r2) between pairs of SNPs calculated in 503 EUR samples from 1 kG (x-axis) compared
to (size-matched) 503 simulated samples (y-axis). Red bands indicate differences of +/− 0.05; 7.7% of SNP pairs fall outside the bands.
c Estimated LDSC heritability calculated from 12,359 simulated samples of EUR ancestry, for a trait simulated to have 8% heritability (blue
horizontal line). A number of simulated causal variants are indicated on the horizontal axis. Red lines represent mean estimates, calculated
from 100 simulated replicates. Vertical lines represent 95% confidence intervals for the heritability estimates (black points). d The power to
detect association for a single SNV. The colours in the matrix represent the power (R2) to detect an association at genome-wide significance
between a SNV and a unit-variance trait for varying allele frequency and effect size (beta: increase in trait value per minor allele). Values in
each cell correspond to the percentage of trait variance explained by that SNV. R2 is calculated to be 2*Beta^2*f*(1-f ).

Fig. 2 ADHD, Autism Spectrum Disorder and Schizophrenia polygenic risk score associations in European Ancestry. Associations between
PRS for ADHD, ASD, and schizophrenia and GoRT SD (a), GoRT (b), and SSRT (c) based on the meta-analysis of EUR samples. Each subplot
represents the estimated effect sizes (beta) and standard error (se) across a range of p-value thresholds (PT). Filled circles indicate association
p-values that pass Bonferroni correction for multiple testing for the 3 traits (p < 0.0019).
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DISCUSSION
Most quantifiable cognitive traits are termed complex due to the
fact that they do not follow Mendelian inheritance patterns;
instead, they are influenced by a large number of genetic factors
including multiple risk alleles, each of a small effect size [87, 88].
Understanding the genetics of inhibitory control is critical for
uncovering the genetic architecture of psychiatric and neurode-
velopmental disorders such as ADHD that are characterised by
significant impairments in a range of executive functions and
inhibitory control in particular. Here we performed the first trans-
ancestry GWAS using task-based measures of inhibitory control to
investigate its genetic architecture. Although we did not identify
any genome-wide significant variants, interindividual differences
in measures of response inhibition (SSRT) and top-down regula-
tion of attention (GoRT SD) were influenced by genetic factors.
Critically, power analyses demonstrated that the lack of significant
GWAS associations is due to the number of common causal
variants contributing to the heritability of these phenotypes being
relatively high and thus larger sample sizes are necessary to
robustly identify associations. Linking inhibitory control to the
genetics of ADHD we also identified a significant association
between ADHD PGRS and reaction time variability, supporting its
utility as an endophenotype for ADHD.
Considerable evidence from twin studies indicates moderate

heritability for a range of inhibitory control measures [28–34],
suggesting that in some tasks more than half of the variance in
individual task performance can be explained by genetic factors.
These relatively high values are in contrast to more modest
heritability estimates accounting for the additive influence of
common genetic variation in EFs based on GWASs that commonly
do not exceed 30% [51–54]. The discrepancy between twin and
DNA-based measures is likely to be related to the effects of rarer
genetic variants that are not assessed in GWAS, together with the
nonadditive genetic effects [89], whereas another hypothesis
suggests that the current estimates of twin-based heritability
might be significantly inflated by genetic interactions [90]. Here,
for the first time, we estimated a significant SNP-heritability for the
measures of inhibitory control (GoRT SD and SSRT, h2SNP ~8%),
exceeding previous evaluations in a smaller sample of 4611
adolescents that failed to find common genetic contributions to
stop signal task-based measures [52]. Our study similarly
contained a large proportion of children and adolescents
(~90%), and thus the overall sample composition with regards

to age could also impact heritability estimates as other cognitive
domains tend to demonstrate the increased influence of genetic
factors later in life compared to childhood [91, 92]. Based on our
simulations, we interpret the estimate of h2SNP = 8.2% as the
proportion of variance explained by common (>1%) SNVs
catalogued by the 1000 Genomes project (or in high LD with
these SNVs). Had we used a denser SNV imputation panel, the SNP
heritability might have been higher [93]. At the time the present
project was initiated, the only available ancestry-diverse reference
panel was from the 1000 Genomes project, however, the use of
the larger ancestrally-diverse TOPMed reference panel [94] is
encouraged for future research. Overall, our estimates were in
line with the prior evidence of heritability of executive function
(h2SNP ~10% in largest samples) [51–54] indicating that the extent
of common genetic influences on inhibitory control are compar-
able to more general factors of EF.
Measures of executive function and inhibitory control in

particular have been proposed as endophenotypes for ADHD
and, to a lesser extent, schizophrenia and ASD [23–27]. Our
findings indicating the significant heritability and identifying the
association between ADHD PGS and reaction time variability as
well as schizophrenia PGS and reaction time in a large sample of
Europeans through meta-analysis further support this idea. We
also identified for the first time that PGS for schizophrenia in East
Asians (the only summary stats available for this ancestral group)
was associated with SSRT. Although ADHD, schizophrenia, and
ASD all show deficits in inhibitory control, the polygenic risk for
each disorder was differentially associated (or not associated) with
the various measures from the stop-signal task in a general
population sample. This implies that genetic risk for NDDs may
differentially contribute to risk for aspects of executive function
and this may vary by ancestral group, although more research is
needed to confirm this finding.
The initial search for endophenotypes was based on the

assumption that these quantifiable traits should have less complex
genetic architectures that are more closely related to gene
function [51–54], however, here we demonstrate the inherent
complexity of genetic factors contributing to inhibitory control.
Through power analyses, we investigated the potential reasons
why no genome-wide significant associations were identified,
despite observing significant heritability of ~8%. Our findings
suggest that the number of common genetic variants explaining
the identified heritability is likely to be relatively large exceeding
750–1000, each contributing not more than ~0.3% of the variance.
These estimates further support the contention that complex
genetic architectures underlie behavioural measures of response
inhibition and top-down regulation of attention represented by
SSRT and GoRT SD, respectively.
Currently, the protocols for large-scale studies containing

genomic data, such as UK Biobank, do not include measures of
inhibitory control mainly due to the time required for data
collection. In order to achieve adequate sample sizes for a GWAS,
data need to be aggregated across multiple studies. Challenges
arise due to differences in experimental paradigms of the stop
signal task with varying numbers of trials, individual trial lengths,
mode of the stop stimuli (visual vs auditory), approaches for
defining stop signal delay, as well as the methods used for
measure estimation. Although it is not possible to retrospectively
modify the individual study designs, here we aimed to control
the variability in measure estimation by adhering to the best
practice protocol proposed by Verbruggen et al., (2019), including
the exclusion of subjects that violate the assumptions of the race
model, maintaining stop accuracy between 25%-75%, and use of
the integration method for SSRT calculation where possible. To
minimise variation in the genomic data all study sites used the
same reference panel for imputation and imputation quality filter
(r2 > 0.8). Nevertheless, some variation across study sites remained.

Table 3. Simulation-based power calculations.

N Correlated effect sizes Uncorrelated effect sizes

EUR only Trans-
ancestry

EUR only Trans-
ancestry

100 100% (9) 100% (10) 100%
(9.5)

100% (9)

200 100% (7) 100% (7) 100% (7) 100% (6)

300 100% (5) 100% (5) 100% (5) 99% (3)

400 96% (3) 99% (3) 96% (3) 91% (2)

500 94% (2) 91% (2) 91% (2) 74% (1)

750 69% (1) 67% (1) 66% (1) 43% (0)

1000 42% (0) 41% (0) 46% (0) 24% (0)

2000 14% (0) 11% (0) 13% (0) 9% (0)

Power to detect at least one association and the median number of
discoveries at genome-wide significance p < 5 × 10−8, as a function of the
number (N) of causal variants (CVs). Each estimate is based on 200
simulated replicates. Between ancestries, the effect sizes of the CVs were
either correlated or uncorrelated. The simulated trait has LD-score
heritability of 8%.
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Historically most genomic research focused on genetically
homogeneous cohorts from European ancestry populations limiting
the generalisability of the identified findings and in some cases
leading to biased inferences [95, 96]. Genomic data across different
ancestral groups is valuable and increasingly available and will serve
to increase the total sample sizes and representativeness of genetic
studies. Integrating these data does pose some technical challenges
as not all SNPs are polymorphic across different populations, some
disease-associated SNPs have vastly different allele frequencies or
show marked variability in linkage disequilibrium patterns with the
causal variant between populations [97, 98]. Moreover, causal
variants might interact with environmental risk factors that differ
between ancestral populations additionally generating heterogeneity
in the estimated effects. As a result, adjusting for population
stratification opposes the goal of maximising the study power as
traditional fixed and random effects approaches tend to under-
estimate the effect sizes or overestimate the standard errors reducing
the overall confidence in the identified associations [99, 100]. The
lack of non-European GWAS of complex traits, including in
psychiatry, limits the ability to conduct polygenic risk score analyses
beyond European target samples [101]. Here we demonstrate the
first attempt to incorporate data across different ancestries in
the meta-analysis of inhibitory control using a method that derives
the axes of genetic variation between populations based on
genome-wide metrics of diversity via multi-dimensional scaling
resulting in increased power over standard approaches while
maintaining false positive error rates [77]. Novel approaches for
incorporating data from different ancestries are being continuously
developed [77, 102–104] providing opportunities for future large-
scale trans-ancestry studies to uncover the genetic architecture of
complex traits in a generalisable way. The continued inclusion of
diverse ancestry, increased recruitment of diverse samples, and
GWAS in diverse samples for discovery and polygenic risk score
analyses are much needed.
In summary, in this first trans-ancestry GWAS of inhibitory

control, we demonstrated that task-derived measures of response
inhibition and top-down regulation of attention are influenced by
common genetic factors. Importantly, the number of contributing
common genetic variants is likely to be relatively large suggesting
that larger studies will be required to identify robust genome-wide
associations.
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