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Alcohol misuse (AM) is highly prevalent and harmful, with theorized subgroups differing on internalizing and externalizing
dimensions. Despite known heterogeneity, genome-wide association studies (GWAS) are usually conducted on unidimensional
phenotypes. These approaches have identified important genes related to AM but fail to capture a large part of the heritability,
even with recent increases in sample sizes. This study aimed to address phenotypic heterogeneity in GWAS to aid gene finding and
to uncover the etiology of different types of AM. Genetic and phenotypic data from 410,414 unrelated individuals of multiple
ancestry groups (primarily European) in the UK Biobank were obtained. Mixture modeling was applied to measures of alcohol
misuse and internalizing/externalizing psychopathology to uncover phenotypically homogenous subclasses, which were carried
forward to GWAS and functional annotation. A four-class model emerged with “low risk”, “internalizing—light/non-drinkers”, “heavy
alcohol use—low impairment”, and “broad high risk” classes. SNP heritability ranged from 3 to 18% and both known AM signals and
novel signals were captured by genomic risk loci. Class comparisons showed distinct patterns of regional brain tissue enrichment
and genetic correlations with internalizing and externalizing phenotypes. Despite some limitations, this study demonstrated the
utility of genetic research on homogenous subclasses. Not only were novel genetic signals identified that might be used for follow-
up studies, but addressing phenotypic heterogeneity allows for the discovery and investigation of differential genetic vulnerabilities
in the development of AM, which is an important step towards the goal of personalized medicine.
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INTRODUCTION
Alcohol misuse (AM) comprises heavy alcohol consumption, binge
drinking, and alcohol use disorder (AUD), which together cause
significant financial and psychological burdens on individuals
and on society [1]. The effectiveness of existing treatment and
prevention programs is highly variable among individuals and
predictions as to which participants will benefit from them are
unreliable [2]. There is thus a critical need to discern the causes of
individual differences in the development of AM and response to
treatment.
Individuals likely differ in their neurobiological predispositions

for developing an addiction, as is theorized by several long-
standing typologies of alcohol misuse [3, 4]. Specifically, these
typologies indicate different developmental etiologies of addic-
tion for individuals with internalizing (mood/anxiety) versus
externalizing (impulsivity/antisocial behavior) predispositions.
Such typologies have also been demonstrated empirically [5–7]
with mixture modeling approaches like latent class analysis (LCA).
Mixture modeling reveals more homogenous “latent” subgroups
based on similarity in patterns of response among observed
variables. These subgroups are, in turn, more likely to have a
homogenous etiology, making it easier for investigators to identify
underlying causal connections. This technique could therefore be

of great value for areas of research, like genetics, where etiology is
particularly difficult to disentangle.
Despite the strong heritability (~50%) of both alcohol con-

sumption [8] and AUD [9], identification of the underlying causal
genes remains incomplete. Because complex phenotypes like AM
are influenced by many genetic variants of small effect, the
widespread assumption has been that the “missing heritability”
problem would be solved by amassing larger sample sizes with
enough power to detect variants of small effect. However, in
the largest sample to date investigating alcohol consumption
(N= 921 280), only 4.2% of the phenotypic variation was
accounted for by genetic influences [10], a plateau in comparison
to substantially smaller sample sizes (e.g., [11]). Insufficient sample
sizes appear not to be the sole cause of the “missing heritability”.
A promising alternative strategy is to consider the presence of

genetic heterogeneity [12], whereby distinct genetic pathways are
involved for different subgroups of individuals or dimensions of AM.
Accounting for genetic heterogeneity between AM phenotypes has
already been shown to improve gene identification and interpret-
ability of genetic results [13]. Considering heterogeneity between
meaningfully distinct groups of individuals, such as the empirical
subtypes identified by mixture models, could similarly improve our
understanding of the genetic etiology of AM while having an even
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greater potential for direct application to personalized medicine.
Further, the causal relationships between internalizing/externalizing
psychopathology and AM subtypes are challenging to disentangle
in observational research, but incorporating genetic tools like
genetic correlation [14] and Mendelian randomization [15] could aid
in resolving these etiological questions.
Several studies have already employed LCA to investigate

phenotypic differences within AUD [5–7, 16], but few molecular
genetic studies have followed suit. Studies investigating AM
typically use a binary AUD diagnosis or a unidimensional alcohol-
related measure (e.g., drinking quantity). These are straightforward
approaches that can be easily implemented to gather large
samples, but they fail to address phenotypic heterogeneity. The
resulting sample will likely consist of many sub-phenotypes,
making it challenging to detect genetic associations even in very
large samples. Addressing the phenotypic heterogeneity of AM
might therefore aid in uncovering more genetic signal, but, to
date, only one study of AM has combined LCA with a genetic
analysis [17]. This study identified three distinct classes based on
patterns of AUD symptoms but was not able to detect replicable
genetic variants associated with latent class membership, most
likely because of the small sample size (N= 2 322).
In the current study, we investigated the genetic underpinnings

of AM by taking into account the phenotypic heterogeneity of AM.
We use mixture modeling to uncover different phenotypic classes
in the large UK Biobank sample [18], and apply GWAS and in silico
annotation tools to investigate the genetic etiology of these
classes and their relationships to internalizing/externalizing
phenotypes. This approach can improve understanding of the
differential etiology of developing AM, thereby taking a step
towards personalized medicine applications.

MATERIALS AND METHODS
Sample
Participants were volunteers of the UK Biobank (UKB), a population-based
sample of ~500,000 adults in the UK aged 40–65 [18]. After providing
informed consent, participants completed a self-report survey, and a
subset (n= 157,366) later completed an online mental health question-
naire. Medical records of participants were linked via national health
registries, and additional diagnoses were obtained through interviews and
the online survey (self-reports of clinically diagnosed conditions). The
National Research Ethics Service Committee North West–Haydock ethically
approved this initiative (reference 11/NW/0382) and data were accessed
under application #16406.

Measures
Alcohol phenotypes. During the primary study visit, participants were
surveyed about their drinking habits, including drinking status (current,
former, lifetime abstainer), drinking patterns over the past 10 years
(increase, decrease, stayed the same), typical drinking frequency (days per
month), and typical drinking quantity (grams of ethanol per day, log
transformed). Former drinkers and lifelong abstainers were excluded from
frequency and quantity measures. The online assessment contained the
AUDIT questionnaire [19], which includes questions about binge drinking
and seven problems related to drinking, (e.g., guilt, concern from loved
ones). ICD-10 diagnoses of AUD (code F10) or alcoholic cirrhosis (code K70)
were derived from medical records/interviews. Lifelong abstainers were
excluded from AUDIT and AUD measures. A full description of the
measures can be found in Table ST1.

Internalizing phenotypes. Participants completed a neuroticism scale
during the study visit and scales for recent anxiety and depression
symptoms during the online mental health questionnaire. Lifetime
diagnoses of major depressive disorder (MDD) and anxiety disorders
(e.g., panic disorder [PD], specific phobias [SP], generalized anxiety disorder
[GAD]) were derived from medical records and self-report (Table ST1).

Externalizing phenotypes. The follow-up questionnaire asked participants
to self-report whether they had ever been addicted to any substance/

behavior and about lifetime use of cannabis. ICD-10 diagnoses of tobacco
or other substance use disorder (TUD, code F17; and SUD, codes F11–F16,
F18, or F19) were obtained from medical records (Table ST1). Although
drug use is only one facet of the externalizing spectrum, other measures
such as impulsive personality traits were not collected in this sample.

Data analysis
Mixture modeling. Mixture modeling was performed in Mplus version 8
[20] using a maximum likelihood estimation method with two through
eight class models. All 24 items described above were included, and
modeling was conducted on a subset of n= 410 961 unrelated individuals.
Model selection was based on model entropy, posterior probabilities, and
goodness-of-fit indices: Akaike’s information criterion (AIC) [21], Bayesian
information criterion (BIC) [22], and sample-size–adjusted BIC (SSBIC) [23].

GWAS. Ancestry clustering and exclusions for relatedness and quality
control (Supplementary Methods) resulted in a sample of 410,414 individuals
from 5 ancestry groups: 387,013 European (EUR), 7831 African (AFR), 3511
from the Americas (AMR), 2411 East Asian (EAS), and 9648 South Asian (SAS).
GWAS was performed separately for each ancestry group. Up to
16,977,415 single nucleotide polymorphisms (SNPs) were analyzed with
PLINK [24], using a logistic regression model to predict membership between
pairs of latent classes with age, sex, assessment center (EUR only), genotyping
array, and 20 within-ancestry principal components (PCs) as covariates. Cross-
ancestry results were meta-analyzed using METAL [25], weighted by sample
size. However, since the non-EUR groups were very small (combined, ~5% of
the total sample), we use the EUR-only results for follow-up analyses as these
depend on ancestry-specific linkage disequilibrium (LD) and the other groups
were underpowered to analyze individually. Two secondary EUR-only
analyses were carried out, one including BMI as an extra covariate and one
including SES as an extra covariate, given their known confounding effects
on alcohol use [13, 26]. The genome-wide significance (GWS) threshold was
P< 5 × 10−8. Follow-up in silico analyses were performed in FUMA [27] to
determine genomic risk loci based on LD patterns of significant variants,
ascertain the functional consequences of implicated variants, and test for
enrichment of the GWAS association signal in genes/gene-sets (see
Supplementary Methods for details).

Polygenic scores. To validate the GWAS results, we calculated polygenic
scores (PGS) from the UKB latent class GWAS summary statistics in an
independent sample in which a similar LCA was previously carried out [16].
Data came from “Spit for Science” (S4S; n= 7 666) [28, 29], a longitudinal
study of genetic and environmental influences on mental health in
students at a large, urban, public university in the U.S. Self-report measures
were collected via the web-based REDCap system of electronic data
capture tools [30] and used for LCA, resulting in three classes (“Low Risk”,
“Internalizing”, and “Externalizing”). PRSice2 [31] was used to calculate PGS
for S4S participants, then S4S class membership was predicted from their
genetic liability for membership in the corresponding UKB latent class
(Supplementary Methods).

Heritability and genetic correlation. Genome-wide SNP heritability and
genetic correlations were computed using LD score regression (LDSC) [14] for
the latent class GWAS summary statistics and nineteen publicly available
GWAS summary statistics (Table ST12). GWASs were selected based on high
quality and a phenotype related to either alcohol use (AUD diagnoses [32],
AUDIT total score [33], typical [10] and maximum consumption [34],
problematic alcohol use [32]), internalizing behavior/symptoms (anxiety
[35], depressive symptoms [36], major depressive disorder [MDD] [37],
neuroticism [38], subjective wellbeing [36]) or externalizing behavior/
symptoms (age of smoking initiation [10], cannabis use disorder [CUD]
[39], lifetime cannabis use [40], antisocial behavior [41], externalizing
behavior [42, 43], risk tolerance [44], smoking initiation [10]). In addition,
summary statistics for BMI and educational attainment were included
because of their relationship with alcohol use [26] and socioeconomic status
[45], respectively. See Supplementary Methods for additional details.
LAVA [46] was used to determine the local genetic overlap between AM

phenotypes and latent class, beyond the global genome-wide genetic
correlations estimated by LDSC. With this method we sought to determine
whether specific regions of the genome previously linked to unidimensional
measures of AM are also implicated in latent class membership. First, GWS
alcohol-related risk loci were selected from previous large-scale GWAS
[10, 32, 33, 47, 48] and 98 distinct alcohol-associated loci were defined
(Supplementary Methods). Then, for each of these loci, the local genetic
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correlation was calculated between latent class membership and 3
genetically distinct alcohol-related dimensions: consumption [10], AUDIT
total scores [33], and AUD diagnoses [32].

Mendelian randomization. We applied Generalized Summary-data based
Mendelian Randomization (GSMR) [15] to infer plausible causal relation-
ships between internalizing/externalizing psychopathology and subtypes
of AM. This method utilizes summary-level GWAS data to indicate causal
associations between a putative risk factor (exposure) and an outcome by
using independent genome-wide significant SNPs as instrumental
variables to index the (phenotypic) effect of the exposure on the outcome.
HEIDI-outlier detection (P value threshold of 0.01) was used to filter genetic
instruments that show clear pleiotropic effects on both the exposure
phenotype and the outcome phenotype.
For this analysis we selected unique internalizing/externalizing pheno-

types that showed significant genetic correlations (rg) with class member-
ship, and used independent (r2= <0.1), GWS lead SNPs associated with
these phenotypes to estimate their likely causal effect on being a “case” in
each latent class comparison. The analyses were also run in the opposite
direction, with latent class membership predicting internalizing/externaliz-
ing phenotypes, to test for bidirectional or reverse causality. When fewer
than 10 lead SNPs were GWS, we lowered the threshold for SNP selection
to 5 × 10−5 to ensure sufficient instruments for analysis.
This method estimates a putative causal effect of the exposure on the

outcome (bxy) as a function of the relationship between the SNPs’ effects on
the exposure (bzx) and the SNPs’ effects on the outcome (bzy), given the
assumption that the effect of non-pleiotropic SNPs on an exposure (x) should
be related to their effect on the outcome (y) in an independent sample only
via mediation through the phenotypic causal pathway (bxy). When there is a
significant (Bonferroni corrected p< 0.05/80= 6.25 × 10−4) effect after
filtering out pleiotropic SNPs, there is evidence of a plausible causal effect
of the exposure on the outcome, with the effect size (bxy) interpretable as the
expected change in SDs of a quantitative outcome or log odds ratio of a
case-control outcome. In the absence of a bidirectional effect, or when the
effect size of one direction is much stronger than the other, this points to a
plausible directional causal effect between exposure and outcome.

Cross-ancestry analyses and locus replication. Cross-ancestry analyses were
performed for each class comparison to test for replication of SNP effects.
GWS SNPs in the EUR GWAS were compared for sign concordance to the
corresponding SNPs in the other ancestry GWASs. Significance was
determined using a one-tailed exact binomial test of the proportion of
concordant SNPs. Locus replication was tested using the risk loci determined
by FUMA (see Supplementary Methods). For each genomic risk locus in the
EUR data all SNPs were compared for sign concordance to the corresponding
SNPs in the other ancestry groups. A locus was considered replicated if at
least one SNP in the region was sign concordant and had a one-tailed P value
smaller than 0.05 divided by the total number of lead SNPs, which represent
the number of independent association signals.

RESULTS
Mixture model
The prevalence of the variables in the model for the full sample
are presented in Table ST1. The fit of two through eight class

solutions were estimated (Table 1), and the four-class solution was
chosen for its high entropy and because additional classes
resulted in a plateauing of the improvement in model fit
(Fig. SF1). Item endorsement probabilities of the classes are
represented in Fig. 1 and demographic characteristics are shown
in Table S2.
Class 1 (“low risk”, “Low”, n= 105,142, 25.6%) was characterized

by relatively low levels of alcohol consumption or problems and
other disorders. Class 2 (“internalizing—light/non-drinkers”, “Int”
n= 125,318, 30.5%) showed the lowest amount of consumption
and alcohol problems (but many former drinkers and abstainers)
as well as high scores on variables related to internalizing
psychopathology. Class 3 (“heavy alcohol use—low impairment”,
“Heavy”, n= 94,731, 23.1%) showed a relatively high endorsement
of consumption and binge drinking, but without correspondingly
high levels of AUDs or self-reports of addiction, and without
elevated levels of most internalizing or externalizing problems.
Class 4 (“broad high risk”, “Broad”, n= 85 770, 21.9%) had the
highest levels of all alcohol items, AUDs, and of most internalizing
and externalizing disorders.

GWAS
Each class was compared pairwise to each other class, resulting in
six GWASs per ancestry. Across all analyses, the lighter-drinking
class served as the reference group for effect size estimation (i.e.,
for Int/Heavy/Broad vs. Low class comparisons, Low is always the
reference group). As results did not differ substantively between
the largest (~95% of the sample) EUR ancestry subgroup and the
trans-ancestral meta-analysis (described later), follow-up analyses
are based on the EUR-only GWAS.
For the EUR GWASs, SNP-based heritability (on the liability scale)

for the comparisons between classes ranged from 0.033 (s.e.
0.004) for Broad vs. Heavy to 0.183 (s.e. 0.008) for Broad vs. Int
(Table ST3). Figure 2 shows the Manhattan plots and Fig. SF2
shows the QQ plots. Across analyses, a total of 96 genetic risk loci
were found (Table ST4), of which 33 have not previously been
associated with alcohol-related phenotypes [10, 11, 32, 33, 44, 47]
and 6 were not associated with any phenotype in the NHGRI
GWAS catalog (Table ST4, ST5, Figs. SF3–SF5). The loci also
contained 22 novel exonic nonsynonymous (ExNS) SNPs not
previously linked to alcohol-related phenotypes (Table ST6), which
may have direct functional relevance. A total of 2214 candidate
genes (Table ST7) were mapped to the risk loci, with the strongest
associations found in the ADH and KLB gene regions that have
been identified in numerous previous alcohol-related GWASs. The
genetic signal was partially shared between classes, with 31/96
overlapping loci, 972/2214 overlapping implicated genes, and
robust genetic correlations between nearly all class comparisons
(Table ST3).
Genetic risk loci with GWS SNPs were found for all comparisons

except Broad vs. Heavy classes (Table ST4). There were 2, 3, 16, 25,

Table 1. Fit statistics from the mixture model.

Model AIC BIC sBIC Entropy Post. Prob.

2-class 8704028.27 8704661.99 8704477.67 0.957 0.986

3-class 8587074.65 8588003.38 8587733.25 0.921 0.869

4-class 7567653.29 7568877.03 7568521.09 0.980 0.989

5-class 7519572.55 7521091.30 7520649.55 0.940 0.895

6-class 7478289.65 7480103.41 7479575.85 0.983 0.939

7-class 7437821.89 7439930.65 7439317.29 0.952 0.885

8-class 7268011.70 7270415.47 7269716.30 0.908 0.826

The bolded row represents the chosen solution.
AIC Akaike’s information criteria, BIC Bayesian information criteria, sBIC sample-size-adjusted Bayesian information criteria, Post. Prob. Average posterior
probabilities of membership in assigned class.
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and 50 associated loci for the comparisons of Int-Low, Heavy-Low,
Broad-Low, Heavy-Int, and Broad-Int, respectively. The number of
identified loci increased in step with the degree of difference in
alcohol consumption and problems between classes, with the
strongest signal in the Broad-Int comparison. Significant SNPs in
the Int-Low and Heavy-Low comparisons were linked to known
genes related to alcohol consumption (ADH1B, KLB, GCKR), but
novel alcohol-related loci and functional variants were identified
for the other three comparisons (Supplementary Results). Some
were significant across multiple class comparisons, such as a locus
on 18q11 which contained the gene NPC1 and multiple significant
ExNSs. On the other hand, class-specific candidate genes from
these novel loci included MPHOSPH9 (Broad-Int), which is
associated with expression differences from selective breeding
of mice for alcohol preference [49] and PTSD symptoms [50], and
FAF1 (Heavy-Int), which mediates apoptosis. Of particular interest
for follow-up were 15 novel loci that remained significant after
controlling for potential confounding from BMI and SES and which
have also not been linked to other psychiatric disorders/traits that
might be indexed by the latent class structure (Table 2). The
GWASs furthermore identified several novel ExNS SNPs (Table ST6)
in known alcohol-associated genes, including the sulfation catalyst
SULT1A2 (Broad-Low, Broad-Int) and the taste receptor TAS2R38
(Broad-Int). The strongest candidate genes from the GWASs were
enriched for expression in several tissues, particularly brain, heart,
muscle, and liver (Table ST8), and during late childhood (Broad-
Low only; Table ST9). Candidate genes for all classes were
overrepresented in gene-sets with known associations to body
size and cognitive measures, while the Broad-Low and Broad-Int
genes showed enrichment in gene-sets related to neuropsychia-
tric phenotypes like autism, schizophrenia, and neuroticism (Table
ST10). More detailed descriptions of the associated loci and their
implicated genes/gene-sets are provided in the Supplementary
Results.

Cross-ancestry analyses and locus replication results
For the GWASs of the other ancestry groups, Manhattan plots can
be found in Figs. SF6–9 and heritability estimates can be found in

Table ST3. Almost all of the identified risk loci were either also
found in the EUR GWAS or were likely spurious because they were
rare and had P values close to the GWS threshold. A notable
exception was a locus on chromosome 12 which was found in all
EAS comparisons involving class 2 (Int) and tags a functional
variant in the ALDH2 gene. This variant results in an inability to
break down the toxic byproducts of ethanol and has been shown
to have a major impact on the use of alcohol in East Asian
populations [51]. Meta-analysis of the ancestry-specific GWAS
summary statistics did not substantially change the results (Fig.
SF10; Table ST15). See the Supplementary Results for a more
comprehensive overview of the ancestry specific results and the
meta-analysis.
To compare consistency of the results (in aggregate) across

ancestry groups, we tested for sign concordance between GWS
SNPs from the EUR GWAS and the same SNPs in the other
ancestry-specific GWASs. We observed highly significant concor-
dance for four out of five AFR, five of five AMR, two of five EAS,
and four of five SAS comparisons (Table S16). The Broad-Heavy
EUR GWAS did not have any GWS SNPs, therefore no cross-
ancestry analyses were done for that class comparison. For the Int-
Low class comparison replications there were only 23 GWS SNPs,
so the interpretation of these results may not be very meaningful.
Of the 96 EUR loci, 21 were replicated in AFR, 10 in AMR, 8 in EAS,
and 13 in SAS (Table S16). Three loci were consistently replicated,
namely locus 2 from the Int-Low class comparison, locus 3 from
the Heavy-Low comparison, and locus 11 from the Heavy-Int
comparison, which in all three cases is the locus containing
ADH1B.

Polygenic scores
PGS were used to predict latent class membership in the
independent S4S sample (Table ST11). Specifically, GWAS of the
heavy alcohol use classes (Heavy and Broad) compared to the Low
risk class in UKB were used to predict membership of the
Internalizing and Externalizing classes of S4S as compared to the
Low Risk reference class. The UKB comparison of heavy alcohol
use classes (Broad vs. Heavy) was also used to predict Internalizing

Fig. 1 Patterns of endorsement of alcohol, internalizing, and externalizing items across the four latent classes. Probabilities and
standardized mean differences are presented in separate panels. MDD Major depressive disorder. PD Panic disorder. GAD Generalized anxiety
disorder. SP Specific Phobia. TUD Tobacco use disorder. SUD Substance use disorder. AUD Alcohol use disorder. Additional item descriptions
can be found in Table ST1.
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versus Externalizing class in S4S. In EUR participants, the UKB
Broad-Low PGS significantly predicted a higher likelihood of
membership in the Internalizing (R2= 0.6%, P= 0.00025), but not
Externalizing class (R2= 0.2%, P= 0.055). In EAS participants, the
UKB Heavy-Low PGS significantly predicted a lower likelihood of
membership in the Externalizing (R2= 5.6%, P= 0.0005), but not
Internalizing class (R2= 0.8%, P= 0.063). No other predictions
were significant after multiple testing correction.

Genetic correlation
Genetic correlations between UKB latent classes and psychiatric
traits/disorders can be found in Table ST12. Membership in the
Heavy or Broad drinking classes was significantly correlated with
higher typical alcohol consumption (rg= 0.70–0.82), maximum
consumption (rg= 0.15–0.28), AUDIT score (rg= 0.65–0.84), AUD
risk (rg= 0.27–0.44), and educational attainment (rg= 0.39–0.49)
and lower BMI (rg=−0.26 to −0.32). Compared to other classes,
membership in the Int class was correlated with higher depression
and neuroticism (rg= 0.10–0.43). Membership in the Broad class
relative to the Heavy class was correlated with higher alcohol
consumption/problems, alongside higher risk tolerance (rg= 0.29),
externalizing behavior (rg= 0.27), cannabis use (rg= 0.34) and
likelihood of smoking (rg= 0.24). Local genetic correlation analysis
(Table ST13) indicated that the heritability of latent class
membership was enriched in 35 out of 98 known alcohol-
related loci. There were significant genetic correlations between
membership in heavier alcohol-use classes and higher alcohol

consumption/AUDIT/AUD at many of these loci, most strongly the
ADH locus.

Mendelian randomization
Using SNPs as instrumental variables in Mendelian randomization
analysis, there was evidence of unidirectional and bidirectional
causality between internalizing/externalizing phenotypes and
latent class membership (Table ST14). Of particular interest, higher
risk tolerance appeared to be a strong driver of membership in the
Broad class as compared to Low (bxy= 0.509, P= 4.0E-4), Int
(bxy= 0.674, P= 3.0E-6), and Heavy (bxy= 0.588, P= 6.2E-5)
classes, and being a smoker further distinguished the Broad from
the Heavy class (bxy= 0.092, P= 1.5E-4). Risk tolerance and
externalizing behavior had a stronger effect on membership in
the Broad versus Heavy class than vice versa, although there was
evidence of bidirectionality.

DISCUSSION
In this study, we reduced the phenotypic heterogeneity of AM by
using mixture modeling to derive phenotypically similar sub-
groups and investigated the genetic differences between these
subgroups through GWASs and in silico analysis. This strategy not
only replicated known AM loci, but also led to identification of
novel genetic loci associated with AM subgroups, demonstrating
the utility of this approach. There was substantial genetic overlap
between the classes, and the strongest contributor to power to

Fig. 2 Manhattan plots for GWAS of latent class comparisons. Each GWAS illustrates a pairwise comparison between membership in the
latent classes shown in Fig. 1: a Int vs. Low; b Heavy vs. Low; c Broad vs. Low; d Heavy vs. Int; e Broad vs. Int; f Broad vs. Heavy.
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detect associated variants appeared to stem from the quantitative
degree of difference in alcohol consumption/problems between
classes. However, comparison of the classes revealed differences
in heritability, genomic risk loci, involved genes, and genetic
correlations, providing evidence that genetic differences between
the classes contribute to the identified phenotypic differences.
Contrary to our expectation, the mixture model did not result in

two groups of clearly delineated “internalizing” and “externalizing”
drinkers, but rather two groups of heavy drinkers (class 3, “Heavy”
and class 4, “Broad”) who differed on whether or not they
experienced an array of clinically significant problems across the
internalizing, externalizing, and alcohol misuse spectra. The null
results of the GWAS comparing these two groups indicate that
these classes were genetically different from the other classes but
not from each other, suggesting that environmental factors might
moderate the experience of psychiatric problems in the presence
of similar individual genetic risk. The presence of an additional
“internalizing” class with a high proportion of former (problem)
drinkers may also indicate that the relevant internalizing/externa-
lizing group comparisons are actually between the Int and Broad
classes. This would be consistent with prior theories [3, 4] in which
the internalizing subtype (here, class 2) often experiences more
transient problems with alcohol. This is also consistent with the
Mendelian randomization results which show putative causal
effects of internalizing/externalizing problems on membership in
the Broad vs. Int class. However, this point remains speculative as
more detailed longitudinal data about lifelong patterns of alcohol
use is needed to be able to draw such a conclusion.
The GWAS results largely captured differences in consumption,

which were partially confounded by many of the same factors
(BMI, SES) which complicate the interpretation of GWASs of
unidimensional alcohol measures. Item-level analyses or factor
mixture models may be better suited to deal with these persistent
confounders. However, our analyses uncovered several interesting
novel associations, including the NPC1 gene, which codes for an
intracellular cholesterol transporter and emerged though multiple
class comparisons. A recent study found that genes involved in
cholesterol homeostasis are downregulated upon alcohol expo-
sure to iPSC derived neural cell cultures [52]. As these authors
argued, cholesterol is a precursor for neuroactive steroids that act
on GABA receptors and inhibiting synthesis of these steroids
results in reduced sedation in response to alcohol [53], providing a
possible link between cholesterol homeostasis and alcohol use.
Another interesting finding is the SULT1A2 gene, which is involved
in the sulfation of alcohol and plays a smaller role in alcohol
metabolism alongside the better-known ADH and ALDH gene
products [54].
This study comes with a few limitations. The available data from

the UKB is narrow with regards to externalizing traits and
represents a limited time window. Alcohol misuse is a putative
cause of other psychiatric problems [55], complicating the
etiological investigation of AM in the context of a vulnerability
for internalizing or externalizing behaviors. Furthermore, within
this dataset, absence of a particular diagnosis does not necessarily
mean absence of the disorder, since it is very well possible that
participants suffer from a disorder but do not seek help or have
not come into contact with medical professionals in a way that
might have elicited a diagnosis. Another important limitation is
that the UKB respondents differ from the general population on
key characteristics related to health and lifestyle, including the
consumption of alcohol [56], which limits generalizability. The
non-EUR ancestry groups and the replication sample were also
small, and novel results require additional validation. However,
there are currently few large-scale studies that collect individual
data at such a fine-grained resolution. Deep phenotyping needs to
become a standard component of biobanks and genetic studies
before we can conclusively determine the utility of this type of
research.Ta
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By incorporating information from neurobiology into the
diagnosis of addiction, efforts are underway to make the move
towards treating patients within a personalized medicine frame-
work. This study highlights the potential of using genetic
information as a further step towards understanding the etiology
of AM, by highlighting the genetic heterogeneity between
subclasses of individuals with different patterns of AM. Investiga-
tion of these genetic differences can lead to a better under-
standing of the particular biological vulnerabilities of subgroups to
develop AM, insights that might ultimately be used to advance
personalized medicine.
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