Abstract
After decades of research in the neurobiology of IGF-I, its role as a prototypical neurotrophic factor is undisputed. However, many of its actions in the adult brain indicate that this growth factor is not only involved in brain development or in the response to injury. Following a three-layer assessment of its role in the central nervous system, we consider that at the cellular level, IGF-I is indeed a bona fide neurotrophic factor, modulating along ontogeny the generation and function of all the major types of brain cells, contributing to sculpt brain architecture and adaptive responses to damage. At the circuit level, IGF-I modulates neuronal excitability and synaptic plasticity at multiple sites, whereas at the system level, IGF-I intervenes in energy allocation, proteostasis, circadian cycles, mood, and cognition. Local and peripheral sources of brain IGF-I input contribute to a spatially restricted, compartmentalized, and timed modulation of brain activity. To better define these variety of actions, we consider IGF-I a modulator of brain states. This definition aims to reconcile all aspects of IGF-I neurobiology, and may provide a new conceptual framework in the design of future research on the actions of this multitasking neuromodulator in the brain.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Daughaday WH, Rotwein P. Insulin-like growth factors I and II. Peptide, messenger ribonucleic acid and gene structures, serum, and tissue concentrations. Endocr Rev. 1989;10:68–91.
Rinderknecht E, Humbel RE. The amino acid sequence of human insulin-like growth factor I and its structural homology with proinsulin. J Biol Chem. 1978;253:2769–76.
LeRoith D, Holly JMP, Forbes BE. Insulin-like growth factors: Ligands, binding proteins, and receptors. Mol Metab. 2021;52:101245.
Lau HE, Chalasani SH. Divergent and convergent roles for insulin-like peptides in the worm, fly and mammalian nervous systems. Invert Neurosci. 2014;14:71–8.
Wexler LR, Miller RM, Portman DS C. elegans males integrate food signals and biological sex to modulate state-dependent chemosensation and behavioral prioritization. Curr Biol. 2020;30:2695–706.
Semaniuk UV, Gospodaryov DV, Feden’ko KM, Yurkevych IS, Vaiserman AM, Storey KB, et al. Insulin-like peptides regulate feeding preference and metabolism in drosophila. Front Physiol. 2018;9:1083.
Fernandez AM, Hernandez E, Guerrero-Gomez D, Miranda-Vizuete A, Torres, Aleman I. A network of insulin peptides regulate glucose uptake by astrocytes: Potential new druggable targets for brain hypometabolism. Neuropharmacology. 2018;136:216–22.
Chen Z, Hendricks M, Cornils A, Maier W, Alcedo J, Zhang Y. Two Insulin-like Peptides Antagonistically Regulate Aversive Olfactory Learning in C. elegans. Neuron. 2013;77:572–85.
Fernandes de Abreu DA, Caballero A, Fardel P, Stroustrup N, Chen Z, Lee K, et al. An insulin-to-insulin regulatory network orchestrates phenotypic specificity in development and physiology. PLoS Genet. 2014;10:e1004225.
Zheng S, Chiu H, Boudreau J, Papanicolaou T, Bendena W, Chin-Sang I. A functional study of all 40 C. elegans insulin-like peptides. J Biol Chem. 2018.
McGaugh SE, Bronikowski AM, Kuo CH, Reding DM, Addis EA, Flagel LE, et al. Rapid molecular evolution across amniotes of the IIS/TOR network. Proc Natl Acad Sci USA. 2015;112:7055–60.
Macqueen DJ, de la Serrana DG, Johnston IA. Evolution of ancient functions in the vertebrate insulin-like growth factor system uncovered by study of duplicated salmonid fish genomes. Mol Biol Evol. 2013;30:1060–76.
Baker J, Liu JP, Robertson EJ, Efstratiadis A. Role of insulin-like growth factors in embryonic and postnatal growth. Cell. 1993;75:73–82.
Holzenberger M, Hamard G, Zaoui R, Leneuve P, Ducos B, Beccavin C, et al. Experimental IGF-I receptor deficiency generates a sexually dimorphic pattern of organ-specific growth deficits in mice, affecting fat tissue in particular. Endocrinology. 2001;142:4469–78.
Anisimov VN. Insulin/IGF-1 signaling pathway driving aging and cancer as a target for pharmacological intervention. Exp Gerontol. 2003;38:1041–9.
Torres Aleman I. Insulin-like growth factor-1 and central neurodegenerative diseases. Endocrinol Metab Clin North Am. 2012;41:395–408.
Dudek H, Datta SR, Franke TF, Birnbaum MJ, Yao R, Cooper GM, et al. Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science. 1997;275:661–5.
Torres-Aleman I. Serum growth factors and neuroprotective surveillance. Mol Neurobiol. 2000;21:153–60.
Habas A, Hahn J, Wang X, Margeta M. Neuronal activity regulates astrocytic Nrf2 signaling. Proc Natl Acad Sci USA. 2013;110:18291–6.
Nishijima T, Piriz J, Duflot S, Fernandez AM, Gaitan G, Gomez-Pinedo U, et al. Neuronal activity drives localized blood-brain-barrier transport of serum insulin-like growth factor-I into the CNS. Neuron. 2010;67:834–46.
Chen MJ, Russo-Neustadt AA. Running exercise- and antidepressant-induced increases in growth and survival-associated signaling molecules are IGF-dependent. Growth Factors. 2007;25:118–31.
Trejo JL, Carro E, Torres-Aleman I. Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. J Neurosci. 2001;21:1628–34.
Carro E, Torres-Aleman I. The role of insulin and insulin-like growth factor I in the molecular and cellular mechanisms underlying the pathology of Alzheimer’s disease. Eur J Pharm. 2004;490:127–33.
Fernandez AM, Carro EM, Lopez-Lopez C, Torres-Aleman I. Insulin-like growth factor I treatment for cerebellar ataxia: Addressing a common pathway in the pathological cascade? Brain Res Brain Res Rev. 2005;50:134–41.
Carro E, Torres-Aleman I. Serum insulin-like growth factor I in brain function. Keio J Med. 2006;55:59–63.
Aleman A, Torres-Aleman I. Circulating insulin-like growth factor I and cognitive function: neuromodulation throughout the lifespan. Prog Neurobiol. 2009;89:256–65.
Torres-Aleman I. Toward a comprehensive neurobiology of IGF-I. Dev Neurobiol. 2010;70:384–96.
Zegarra-Valdivia JA, Fernandes J, Esparza J, Suda K, de Sevilla MEF, Díaz-Pacheco S, et al. Interoceptive Information Of Physical Vigor: Orexin Neurons Gauge Circulating IGF-I For Motivational Motor Output. bioRxiv. 2021:05.25.445442.
Bondy CA. Transient IGF-I gene expression during the maturation of functionally related central projection neurons. J Neurosci. 1991;11:3442–55.
Adem A, Jossan SS, d’Argy R, Gillberg PG, Nordberg A, Winblad B, et al. Insulin-like growth factor 1 (IGF-1) receptors in the human brain: quantitative autoradiographic localization. Brain Res. 1989;503:299–303.
Baron-Van EA, Olichon-Berthe C, Kowalski A, Visciano G, Van OE. Expression of IGF-I and insulin receptor genes in the rat central nervous system: a developmental, regional, and cellular analysis. J Neurosci Res. 1991;28:244–53.
Marks JL, Porte D Jr, Baskin DG. Localization of type I insulin-like growth factor receptor messenger RNA in the adult rat brain by in situ hybridization. Mol Endocrinol. 1991;5:1158–68.
Ocrant I, Valentino KL, Eng LF, Hintz RL, Wilson DM, Rosenfeld RG. Structural and immunohistochemical characterization of insulin-like growth factor I and II receptors in the murine central nervous system. Endocrinology. 1988;123:1023–34.
Castro-Alamancos MA, Torres-Aleman I. Long-term depression of glutamate-induced gamma-aminobutyric acid release in cerebellum by insulin-like growth factor I. Proc Natl Acad Sci USA. 1993;90:7386–90.
Torres-Aleman I, Pons S, Arevalo MA. The insulin-like growth factor I system in the rat cerebellum: developmental regulation and role in neuronal survival and differentiation. J Neurosci Res. 1994;39:117–26.
Carro E, Nunez A, Busiguina S, Torres-Aleman I. Circulating insulin-like growth factor I mediates effects of exercise on the brain. J Neurosci. 2000;20:2926–33.
Allard JB, Duan C. IGF-Binding Proteins: Why Do They Exist And Why Are There So Many? Front Endocrinol. 2018;9:117.
Arnold PM, Ma JY, Citron BA, Festoff BW. Insulin-like growth factor binding proteins in cerebrospinal fluid during human development and aging. Biochem Biophys Res Commun. 1999;264:652–6.
Ayer-le Lievre C, Stahlbom PA, Sara VR. Expression of IGF-I and -II mRNA in the brain and craniofacial region of the rat fetus. Development. 1991;111:105–15.
Mardinly AR, Spiegel I, Patrizi A, Centofante E, Bazinet JE, Tzeng CP, et al. Sensory experience regulates cortical inhibition by inducing IGF1 in VIP neurons. Nature. 2016;531:371–5.
Hawkes C, Kar S. The insulin-like growth factor-II/mannose-6-phosphate receptor: structure, distribution and function in the central nervous system. Brain Res Brain Res Rev. 2004;44:117–40.
Veenstra JA. Ambulacrarian insulin-related peptides and their putative receptors suggest how insulin and similar peptides may have evolved from insulin-like growth factor. PeerJ. 2021;9:e11799.
Frasca F, Pandini G, Scalia P, Sciacca L, Mineo R, Costantino A, et al. Insulin receptor isoform A, a newly recognized, high-affinity insulin-like growth factor II receptor in fetal and cancer cells. Mol Cell Biol. 1999;19:3278–88.
Alberini CM. IGF2 in memory, neurodevelopmental disorders, and neurodegenerative diseases. Trends Neurosci. 2023;46:488–502.
Agis-Balboa RC, Arcos-Diaz D, Wittnam J, Govindarajan N, Blom K, Burkhardt S, et al. A hippocampal insulin-growth factor 2 pathway regulates the extinction of fear memories. EMBO J. 2011;30:4071–83.
Maglio LE, Noriega-Prieto JA, Maroto IB, Martin-Cortecero J, Muñoz-Callejas A, Callejo-Móstoles M, et al. IGF-1 facilitates extinction of conditioned fear. Elife. 2021;10:e67267.
Yu XW, Pandey K, Katzman AC, Alberini CM. A role for CIM6P/IGF2 receptor in memory consolidation and enhancement. Elife. 2020;9:e54781.
Chen DY, Stern SA, Garcia-Osta A, Saunier-Rebori B, Pollonini G, Bambah-Mukku D, et al. A critical role for IGF-II in memory consolidation and enhancement. Nature. 2011;469:491–7.
Trejo JL, Piriz J, Llorens-Martin MV, Fernandez AM, Bolos M, LeRoith D, et al. Central actions of liver-derived insulin-like growth factor I underlying its pro-cognitive effects. Mol Psychiatry. 2007;12:1118–28.
Korsching S. The neurotrophic factor concept: a reexamination. J Neurosci. 1993;13:2739–48.
Arevalo MA, Azcoitia I, Garcia-Segura LM. The neuroprotective actions of oestradiol and oestrogen receptors. Nat Rev Neurosci. 2015;16:17–29.
Santi A, Genis L, Torres, Aleman I. A Coordinated Action of Blood-Borne and Brain Insulin-Like Growth Factor I in the Response to Traumatic Brain Injury. Cereb Cortex. 2018;28:2007–14.
Noriega-Prieto JA, Maglio LE, Zegarra-Valdivia JA, Pignatelli J, Fernandez AM, Martinez-Rachadell L, et al. Astrocytic IGF-IRs Induce Adenosine-Mediated Inhibitory Downregulation and Improve Sensory Discrimination. J Neurosci. 2021;41:4768–81.
Gazit N, Vertkin I, Shapira I, Helm M, Slomowitz E, Sheiba M, et al. IGF-1 Receptor Differentially Regulates Spontaneous and Evoked Transmission via Mitochondria at Hippocampal Synapses. Neuron. 2016;89:1–15. https://doi.org/10.1016/j.neuron.2015.12.034.
Trueba-Saiz A, Fernandez AM, Nishijima T, Mecha M, Santi A, Munive V, et al. Circulating Insulin-Like Growth Factor I Regulates Its Receptor in the Brain of Male Mice. Endocrinology. 2017;158:349–55.
De Magalhaes Filho CD, Kappeler L, Dupont J, Solinc J, Villapol S, Denis C, et al. Deleting IGF-1 receptor from forebrain neurons confers neuroprotection during stroke and upregulates endocrine somatotropin. J Cereb Blood Flow Metab. 2016;37:396–12.
Cao P, Maximov A, Südhof TC. Activity-Dependent IGF-1 Exocytosis Is Controlled by the Ca2+-Sensor Synaptotagmin-10. Cell. 2011;145:300–11.
Brar AK, Chernausek SD. Localization of insulin-like growth factor binding protein-4 expression in the developing and adult rat brain: analysis by in situ hybridization. J Neurosci Res. 1993;35:103–14.
Holmin S, Mathiesen T, Langmoen IA, Sandberg Nordqvist AC. Depolarization induces insulin-like growth factor binding protein-2 expression in vivo via NMDA receptor stimulation. Growth Horm IGF Res. 2001;11:399–406.
Honda M, Eriksson KS, Zhang S, Tanaka S, Lin L, Salehi A, et al. IGFBP3 colocalizes with and regulates hypocretin (orexin). PLoS ONE. 2009;4:e4254.
Naeve GS, Vana AM, Eggold JR, Verge G, Ling N, Foster AC. Expression of rat insulin-like growth factor binding protein-6 in the brain, spinal cord, and sensory ganglia. Brain Res Mol Brain Res. 2000;75:185–97.
Firth SM, Baxter RC. Cellular actions of the insulin-like growth factor binding proteins. Endocr Rev. 2002;23:824–54.
Bunn RC, Fowlkes JL. Insulin-like growth factor binding protein proteolysis. Trends Endocrinol Metab. 2003;14:176–81.
Fernandez AM, Torres-Aleman I. The many faces of insulin-like peptide signalling in the brain. Nat Rev Neurosci. 2012;13:225–39.
Liu Z, Chen Z, Shang C, Yan F, Shi Y, Zhang J, et al. IGF1-dependent synaptic plasticity of mitral cells in olfactory memory during social learning. Neuron. 2017;95:106–22.e105.
Ueha R, Kondo K, Ueha S, Yamasoba T. Dose-dependent effects of insulin-like growth factor 1 in the aged olfactory epithelium. Front Aging Neurosci. 2018;10:385.
Martinez-Rachadell L, Aguilera A, Perez-Domper P, Pignatelli J, Fernandez AM, Torres-Aleman I. Cell-specific expression of insulin/insulin-like growth factor-I receptor hybrids in the mouse brain. Growth Horm IGF Res. 2019;45:25–30.
Oliveira JF, Araque A. Astrocyte regulation of neural circuit activity and network states. Glia. 2022;70:1455–66.
Bonni A, Brunet A, West AE, Datta SR, Takasu MA, Greenberg ME. Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science. 1999;286:1358–62.
Garwood CJ, Ratcliffe LE, Morgan SV, Simpson JE, Owens H, Vazquez-Villasenor I, et al. Insulin and IGF1 signalling pathways in human astrocytes in vitro and in vivo; characterisation, subcellular localisation and modulation of the receptors. Mol Brain. 2015;8:51.
Pang Y, Zheng B, Fan LW, Rhodes PG, Cai Z. IGF-1 protects oligodendrocyte progenitors against TNFalpha-induced damage by activation of PI3K/Akt and interruption of the mitochondrial apoptotic pathway. Glia. 2007;55:1099–1107.
Sun LY, D’Ercole AJ. Insulin-like growth factor-I (IGF-I) stimulates histone H3 and H4 acetylation in the brain in vivo. Endocrinology. 2006;147:5480–90.
Mir S, Cai W, Carlson SW, Saatman KE, Andres DA. IGF-1 mediated Neurogenesis Involves a Novel RIT1/Akt/Sox2 Cascade. Sci Rep. 2017;7:3283.
Pons S, Torres-Aleman I. Insulin-like growth factor-i stimulates dephosphorylation of ikappa b through the serine phosphatase calcineurin (Protein Phosphatase 2B). J Biol Chem. 2000;275:38620–5.
Torres-Aleman I, Villalba M, Nieto-Bona MP. Insulin-like growth factor-I modulation of cerebellar cell populations is developmentally stage-dependent and mediated by specific intracellular pathways. Neuroscience. 1998;83:321–34.
Tranque PA, Calle R, Naftolin F, Robbins R. Involvement of protein kinase-C in the mitogenic effect of insulin-like growth factor-I on rat astrocytes. Endocrinology. 1992;131:1948–54.
Ster J, Colomer C, Monzo C, Duvoid-Guillou A, Moos F, Alonso G, et al. Insulin-like growth factor-1 inhibits adult supraoptic neurons via complementary modulation of mechanoreceptors and glycine receptors. J Neurosci. 2005;25:2267–76.
Kleinridders A. Deciphering Brain Insulin Receptor and Insulin-Like Growth Factor 1 Receptor Signalling. J Neuroendocrinol. 2016;28:10.1111/jne.12433.
Lopez-Lopez C, Dietrich MO, Metzger F, Loetscher H, Torres-Aleman I. Disturbed cross talk between insulin-like growth factor I and AMP-activated protein kinase as a possible cause of vascular dysfunction in the amyloid precursor protein/presenilin 2 mouse model of Alzheimer’s disease. J Neurosci. 2007;27:824–31.
Quiroga S, Garofalo RS, Pfenninger KH. Insulin-like growth factor I receptors of fetal brain are enriched in nerve growth cones and contain a beta-subunit variant. Proc Natl Acad Sci USA. 1995;92:4309–12.
Burgess SK, Jacobs S, Cuatrecasas P, Sahyoun N. Characterization of a neuronal subtype of insulin-like growth factor I receptor. J Biol Chem. 1987;262:1618–22.
Carlberg M, Dricu A, Blegen H, Wang M, Hjertman M, Zickert P, et al. Mevalonic acid is limiting for N-linked glycosylation and translocation of the insulin-like growth factor-1 receptor to the cell surface. Evidence for a new link between 3-hydroxy-3-methylglutaryl-coenzyme a reductase and cell growth. J Biol Chem. 1996;271:17453–62.
Vagin O, Kraut JA, Sachs G. Role of N-glycosylation in trafficking of apical membrane proteins in epithelia. Am J Physiol Ren Physiol. 2009;296:F459–69.
Hurtado-Chong A, Yusta-Boyo MJ, Vergano-Vera E, Bulfone A, de PF, Vicario-Abejon C. IGF-I promotes neuronal migration and positioning in the olfactory bulb and the exit of neuroblasts from the subventricular zone. Eur J Neurosci. 2009;30:742–55.
Pera EM, Wessely O, Li SY, De Robertis EM. Neural and head induction by insulin-like growth factor signals. Developmental Cell. 2001;1:655–65.
Onuma TA, Ding Y, Abraham E, Zohar Y, Ando H, Duan C. Regulation of temporal and spatial organization of newborn GnRH neurons by IGF signaling in zebrafish. J Neurosci. 2011;31:11814–24.
Cicco-Bloom E, Black IB. Insulin growth factors regulate the mitotic cycle in cultured rat sympathetic neuroblasts. Proc Natl Acad Sci USA. 1988;85:4066–70.
Drago J, Murphy M, Carroll SM, Harvey RP, Bartlett PF. Fibroblast growth factor-mediated proliferation of central nervous system precursors depends on endogenous production of insulin-like growth factor I. Proc Natl Acad Sci USA. 1991;88:2199–203.
Hodge RD, D’Ercole AJ, O’Kusky JR. Insulin-like growth factor-I accelerates the cell cycle by decreasing g1 phase length and increases cell cycle reentry in the embryonic cerebral cortex. J Neurosci. 2004;24:10201–10.
Yeh C, Li A, Chuang JZ, Saito M, Caceres A, Sung CH. IGF-1 Activates a Cilium-Localized Noncanonical Gbetagamma Signaling Pathway that Regulates Cell-Cycle Progression. Dev Cell. 2013;26:358–68.
Barres BA, Hart IK, Coles HS, Burne JF, Voyvodic JT, Richardson WD, et al. Cell death and control of cell survival in the oligodendrocyte lineage. Cell. 1992;70:31–46.
Cheng CM, Cohen M, Tseng V, Bondy CA. Endogenous IGF1 enhances cell survival in the postnatal dentate gyrus. J Neurosci Res. 2001;64:341–7.
Schlueter PJ, Peng G, Westerfield M, Duan C. Insulin-like growth factor signaling regulates zebrafish embryonic growth and development by promoting cell survival and cell cycle progression. Cell Death Differ. 2007;14:1095–105.
Ueno M, Fujita Y, Tanaka T, Nakamura Y, Kikuta J, Ishii M, et al. Layer V cortical neurons require microglial support for survival during postnatal development. Nat Neurosci. 2013;16:543–51.
Decourtye L, Mire E, Clemessy M, Heurtier V, Ledent T, Robinson IC, et al. IGF-1 induces GHRH Neuronal axon elongation during early postnatal life in Mice. PLoS One. 2017;12:e0170083.
Guil AFN, Oksdath M, Weiss LA, Grassi DJ, Sosa LJ, Nieto M, et al. IGF-1 receptor regulates dynamic changes in neuronal polarity during cerebral cortical migration. Sci Rep. 2017;7:7703.
Jin J, Ravindran P, Di Meo D, Puschel AW. Igf1R/InsR function is required for axon extension and corpus callosum formation. PLoS One. 2019;14:e0219362.
O’Kusky JR, Ye P, D’Ercole AJ. Insulin-like growth factor-I promotes neurogenesis and synaptogenesis in the hippocampal dentate gyrus during postnatal development. J Neurosci. 2000;20:8435–42.
Okano T, Xuan S, Kelley MW. Insulin-like growth factor signaling regulates the timing of sensory cell differentiation in the mouse cochlea. J Neurosci. 2011;31:18104–18.
Ozdinler PH, Macklis JD. IGF-I specifically enhances axon outgrowth of corticospinal motor neurons. Nat Neurosci. 2006;9:1371–81.
Sosa L, Dupraz S, Laurino L, Bollati F, Bisbal M, Caceres A, et al. IGF-1 receptor is essential for the establishment of hippocampal neuronal polarity. Nat Neurosci. 2006;9:993–5.
Ye P, Li L, Richards RG, DiAugustine RP, D’Ercole AJ. Myelination is altered in insulin-like growth factor-I null mutant mice. J Neurosci. 2002;22:6041–51.
Beck KD, Powell-Braxton L, Widmer HR, Valverde J, Hefti F. Igf1 gene disruption results in reduced brain size, CNS hypomyelination, and loss of hippocampal granule and striatal parvalbumin-containing neurons. Neuron. 1995;14:717–30.
Caldwell ALM, Sancho L, Deng J, Bosworth A, Miglietta A, Diedrich JK, et al. Aberrant astrocyte protein secretion contributes to altered neuronal development in multiple models of neurodevelopmental disorders. Nat Neurosci. 2022;25:1163–78.
Anderson MF, Aberg MA, Nilsson M, Eriksson PS. Insulin-like growth factor-I and neurogenesis in the adult mammalian brain. Brain Res Dev Brain Res. 2002;134:115–22.
Prabhu D, Khan SM, Blackburn K, Marshall JP, Ashpole NM. Loss of insulin-like growth factor-1 signaling in astrocytes disrupts glutamate handling. J neurochemistry. 2019;151:689–702.
Tarantini S, Balasubramanian P, Yabluchanskiy A, Ashpole NM, Logan S, Kiss T, et al. IGF1R signaling regulates astrocyte-mediated neurovascular coupling in mice: implications for brain aging. GeroScience. 2021;43:901–11.
Fernandez AM, Fernandez S, Carrero P, Garcia-Garcia M, Torres-Aleman I. Calcineurin in reactive astrocytes plays a key role in the interplay between proinflammatory and anti-inflammatory signals. J Neurosci. 2007;27:8745–56.
Genis L, Davila D, Fernandez S, Pozo-Rodrigalvarez A, Martinez-Murillo R, Torres-Aleman I. Astrocytes require insulin-like growth factor I to protect neurons against oxidative injury. F1000Res. 2014;3:28.
Logan S, Pharaoh GA, Marlin MC, Masser DR, Matsuzaki S, Wronowski B, et al. Insulin-like growth factor receptor signaling regulates working memory, mitochondrial metabolism, and amyloid-beta uptake in astrocytes. Mol Metab. 2018;9:141–155.
Aberg ND, Blomstrand F, Aberg MA, Bjorklund U, Carlsson B, Carlsson-Skwirut C, et al. Insulin-like growth factor-I increases astrocyte intercellular gap junctional communication and connexin43 expression in vitro. J Neurosci Res. 2003;74:12–22.
Musashe DT, Purice MD, Speese SD, Doherty J, Logan MA. Insulin-like Signaling Promotes Glial Phagocytic Clearance of Degenerating Axons through Regulation of Draper. Cell Rep. 2016;16:1838–50.
Hernandez-Garzon E, Fernandez AM, Perez-Alvarez A, Genis L, Bascunana P, Fernandez de la Rosa R, et al. The insulin-like growth factor I receptor regulates glucose transport by astrocytes. Glia. 2016;64:962–1971.
Fernandez AM, Hernandez-Garzon E, Perez-Domper P, Perez-Alvarez A, Mederos S, Matsui T, et al. Insulin Regulates Astrocytic Glucose Handling Through Cooperation With IGF-I. Diabetes. 2017;66:64–74.
Quipildor GF, Mao K, Beltran PJ, Barzilai N, Huffman DM. Modulation of Glucose Production by Central Insulin Requires IGF-1 Receptors in AgRP Neurons. Diabetes. 2021;70:2237–249.
Sanchez-Alavez M, Osborn O, Tabarean IV, Holmberg KH, Eberwine J, Kahn CR, et al. Insulin-like growth factor 1-mediated hyperthermia involves anterior hypothalamic insulin receptors. J Biol Chem. 2011;286:14983–90.
Gutierrez-Ospina G, Saum L, Calikoglu AS, az-Cintra S, Barrios FA, D’Ercole AJ. Increased neural activity in transgenic mice with brain IGF-I overexpression: a [3H]2DG study. Neuroreport. 1997;8:2907–11.
Molina DP, Ariwodola OJ, Weiner JL, Brunso-Bechtold JK, Adams MM. Growth hormone and insulin-like growth factor-I alter hippocampal excitatory synaptic transmission in young and old rats. Age (Dordr). 2013;35:1575–87.
Noriega-Prieto JA, Maglio LE, Ibáñez-Santana S, de Sevilla DF. Endocannabinoid and Nitric Oxide-Dependent IGF-I-Mediated Synaptic Plasticity at Mice Barrel Cortex. Cells. 2022;11:1641.
Burgdorf J, Zhang XL, Colechio EM, Ghoreishi-Haack N, Gross A, Kroes RA, et al. Insulin-Like Growth Factor I Produces an Antidepressant-Like Effect and Elicits N-Methyl-D-Aspartate Receptor Independent Long-Term Potentiation of Synaptic Transmission in Medial Prefrontal Cortex and Hippocampus. Int J Neuropsychopharmacol. 2015;19:pyv101.
Cohen E, Bieschke J, Perciavalle RM, Kelly JW, Dillin A. Opposing Activities Protect Against Age Onset Proteotoxicity. Science. 2006;313:1604–10.
Carro E, Trejo JL, Gomez-Isla T, LeRoith D, Torres-Aleman I. Serum insulin-like growth factor I regulates brain amyloid-beta levels. Nat Med. 2002;8:1390–7.
Herrero-Labrador R, Trueba-Saiz A, Martinez-Rachadell L, Fernandez de Sevilla ME, Zegarra-Valdivia JA, Pignatelli J, et al. Circulating Insulin-Like Growth Factor I is Involved in the Effect of High Fat Diet on Peripheral Amyloid β Clearance. Int J Mol Sci. 2020;21:9675.
Adlerz L, Holback S, Multhaup G, Iverfeldt K. IGF-1-induced processing of the amyloid precursor protein family is mediated by different signaling pathways. J Biol Chem. 2007;282:10203–9.
Kao SY. Rescue of alpha-synuclein cytotoxicity by insulin-like growth factors. Biochem Biophys Res Commun. 2009;385:434–8.
Jacobsen KT, Adlerz L, Multhaup G, Iverfeldt K. Insulin-like growth factor-1 (IGF-1)-induced processing of amyloid-{beta} precursor protein (APP) and APP-like protein 2 is mediated by different metalloproteinases. J Biol Chem. 2010;285:10223–31.
Breit A, Miek L, Schredelseker J, Geibel M, Merrow M, Gudermann T. Insulin-like growth factor-1 acts as a zeitgeber on hypothalamic circadian clock gene expression via glycogen synthase kinase-3beta signalling. J Biol Chem. 2018;293:7278–17290.
Ashlin TG, Blunsom NJ, Ghosh M, Cockcroft S, Rihel J. Pitpnc1a regulates zebrafish sleep and wake behavior through modulation of insulin-like growth factor signaling. Cell Rep. 2018;24:1389–96.
Zegarra-Valdivia JA, Pignatelli J, Fernandez de Sevilla ME, Fernandez AM, Munive V, Martinez-Rachadell L, et al. Insulin-like growth factor I modulates sleep through hypothalamic orexin neurons. FASEB J. 2020;34:15975–90.
Crosby P, Hamnett R, Putker M, Hoyle NP, Reed M, Karam CJ, et al. Insulin/IGF-1 drives PERIOD synthesis to entrain circadian rhythms with feeding time. Cell. 2019;177:896–909.e820
Cheng CM, Reinhardt RR, Lee WH, Joncas G, Patel SC, Bondy CA. Insulin-like growth factor 1 regulates developing brain glucose metabolism. Proc Natl Acad Sci USA. 2000;97:10236–41.
Huffman DM, Farias Quipildor G, Mao K, Zhang X, Wan J, Apontes P, et al. Central insulin-like growth factor-1 (IGF-1) restores whole-body insulin action in a model of age-related insulin resistance and IGF-1 decline. Aging Cell. 2016;15:181–6.
Lupien SB, Bluhm EJ, Ishii DN. Systemic insulin-like growth factor-I administration prevents cognitive impairment in diabetic rats, and brain IGF regulates learning/memory in normal adult rats. J Neurosci Res. 2003;74:512–23.
Hu A, Yuan H, Wu L, Chen R, Chen Q, Zhang T, et al. The effect of constitutive over-expression of insulin-like growth factor 1 on the cognitive function in aged mice. Brain Res. 2016;1631:204–13.
Baldini S, Restani L, Baroncelli L, Coltelli M, Franco R, Cenni MC, et al. Enriched early life experiences reduce adult anxiety-like behavior in rats: a role for insulin-like growth factor 1. J Neurosci. 2013;33:11715–23.
Hoshaw BA, Hill TI, Crowley JJ, Malberg JE, Khawaja X, Rosenzweig-Lipson S, et al. Antidepressant-like behavioral effects of IGF-I produced by enhanced serotonin transmission. Eur J Pharm. 2008;594:109–16.
Fernandez de Sevilla ME, Pignatelli J, Zegarra-Valdivia JA, Mendez P, Nunez A, Torres Aleman I. Insulin-like growth factor I mitigates post-traumatic stress by inhibiting AMP-kinase in orexin neurons. Mol Psychiatry. 2022;27:212–2196.
Okereke OI, Kang JH, Ma J, Gaziano JM, Grodstein F. Midlife plasma insulin-like growth factor I and cognitive function in older men. J Clin Endocrinol Metab. 2006;91:4306–12.
Okereke O, Kang JH, Ma J, Hankinson SE, Pollak MN, Grodstein F. Plasma IGF-I levels and cognitive performance in older women. Neurobiol Aging. 2007;28:35–142.
Lin F, Suhr J, Diebold S, Heffner KL. Associations between depressive symptoms and memory deficits vary as a function of insulin-like growth factor (IGF-1) levels in healthy older adults. Psychoneuroendocrinology. 2014;42:118–23.
Santi A, Bot M, Aleman A, Penninx BWJH, Aleman IT. Circulating insulin-like growth factor I modulates mood and is a biomarker of vulnerability to stress: from mouse to man. Transl Psychiatry. 2018;8:142.
Munive V, Santi A, Torres-Aleman I. A concerted action of estradiol and insulin like growth factor i underlies sex differences in mood regulation by exercise. Sci Rep. 2016;6:259–69.
Haghir H, Rezaee AA, Nomani H, Sankian M, Kheradmand H, Hami J. Sexual dimorphism in expression of insulin and insulin-like growth factor-I receptors in developing rat cerebellum. Cell Mol Neurobiol. 2013;33:369–77.
Pinto-Benito D, Paradela-Leal C, Ganchala D, de Castro-Molina P, Arevalo M-A. IGF-1 regulates astrocytic phagocytosis and inflammation through the p110α isoform of PI3K in a sex-specific manner. Glia. 2022;70:1153–69.
Freude S, Schilbach K, Hettich MM, Bronneke HS, Zemva J, Krone W, et al. Neuron-specific deletion of a single copy of the insulin-like growth factor-1 receptor gene reduces fat accumulation during aging. Horm Metab Res. 2012;44:99–104.
Ren S, Wang Y, Yue F, Cheng X, Dang R, Qiao Q, et al. The paraventricular thalamus is a critical thalamic area for wakefulness. Science. 2018;362:429–34.
Zhang YS, Takahashi DY, El Hady A, Liao DA, Ghazanfar AA. Active neural coordination of motor behaviors with internal states. Proc Natl Acad Sci USA. 2022;119:e2201194119.
Flavell SW, Gogolla N, Lovett-Barron M, Zelikowsky M. The emergence and influence of internal states. Neuron. 2022;110:2545–70.
Mederos S, Sánchez-Puelles C, Esparza J, Valero M, Ponomarenko A, Perea G. GABAergic signaling to astrocytes in the prefrontal cortex sustains goal-directed behaviors. Nature Neuroscience. 2020;24:82–92.
Redhead D, Power EA. Social hierarchies and social networks in humans. Philos Trans R Soc Lond B Biol Sci. 2022;377:20200440.
Vera Cruz EM, Brown CL. The influence of social status on the rate of growth, eye color pattern and insulin-like growth factor-I gene expression in Nile tilapia, Oreochromis niloticus. Horm Behav. 2007;51:611–9.
Kumari M, Tabassum F, Clark C, Strachan D, Stansfeld S, Power C. Social differences in insulin-like growth factor-1: findings from a British birth cohort. Ann Epidemiol. 2008;18:664–70.
Sapolsky RM. The influence of social hierarchy on primate health. Science. 2005;308:648–52.
Burgdorf J, Kroes RA, Beinfeld MC, Panksepp J, Moskal JR. Uncovering the Molecular Basis of Positive Affect Using Rough-and-Tumble Play in Rats: A Role for Insulin-Like Growth Factor I. Neuroscience. 2010;126:769–77.
Frere S, Slutsky I. Alzheimer’s Disease: From Firing Instability to Homeostasis Network Collapse. Neuron. 2018;97:32–58.
Katsenelson M, Shapira I, Abbas E, Jevdokimenko K, Styr B, Ruggiero A, et al. IGF-1 receptor regulates upward firing rate homeostasis via the mitochondrial calcium uniporter. Proc Natl Acad Sci USA. 2022;119:e2121040119.
Yue S, Wang Y, Wang ZJ. Insulin-like growth factor 1 regulates excitatory synaptic transmission in pyramidal neurons from adult prefrontal cortex. Neuropharmacology. 2022;217:109204.
Nunez A, Carro E, Torres-Aleman I. Insulin-like growth factor I modifies electrophysiological properties of rat brain stem neurons. J Neurophysiol. 2003;89:3008–17.
Blair LA, Marshall J. IGF-1 modulates N and L calcium channels in a PI 3-kinase-dependent manner. Neuron. 1997;19:421–9.
Kleppisch T, Klinz FJ, Hescheler J. Insulin-like growth factor I modulates voltage-dependent Ca2+ channels in neuronal cells. Brain Res. 1992;591:283–8.
Gao L, Blair LAC, Salinas GD, Needleman LA, Marshall J. Insulin-Like Growth Factor-1 Modulation of CaV1.3 Calcium Channels Depends on Ca2+ Release from IP3-Sensitive Stores and Calcium/Calmodulin Kinase II Phosphorylation of the {alpha}1 Subunit EF Hand. J Neurosci. 2006;26:6259–68.
O’Malley D, Harvey J. Insulin Activates Native and Recombinant Large Conductance Ca2+-Activated Potassium Channels via a Mitogen-Activated Protein Kinase-Dependent Process. Mol Pharm. 2004;65:1352–63.
Shan H, Delbono L, Zheng Z, Wang ZM, Delbono O. Preservation of Motor Neuron Ca2+ Channels Sensitivity to Insulin-like growth factor-1 in Brain Motor Cortex from Senescent Rat. J Physiol. 2003;553:49–63.
Wang H, Qin J, Gong S, Feng B, Zhang Y, Tao J. Insulin-like growth factor-1 receptor-mediated inhibition of A-type K(+) current induces sensory neuronal hyperexcitability through the phosphatidylinositol 3-kinase and extracellular signal-regulated kinase 1/2 pathways, independently of Akt. Endocrinology. 2014;155:168–79.
Zhang Y, Qin W, Qian Z, Liu X, Wang H, Gong S, et al. Peripheral pain is enhanced by insulin-like growth factor 1 through a G protein-mediated stimulation of T-type calcium channels. Sci Signal. 2014;7:ra94.
Stemkowski PL, Zamponi GW. The tao of IGF-1: insulin-like growth factor receptor activation increases pain by enhancing T-type calcium channel activity. Sci Signal. 2014;7:pe23.
Yanagita T, Satoh S, Uezono Y, Matsuo K, Nemoto T, Maruta T, et al. Transcriptional up-regulation of cell surface Na(V)1.7 sodium channels by insulin-like growth factor-1 via inhibition of glycogen synthase kinase-3beta in adrenal chromaffin cells: enhancement of (22)Na(+) influx, (45)Ca(2+) influx and catecholamine secretion. Neuropharmacology. 2011;61:1265–74.
Savchenko A, Kraft TW, Molokanova E, Kramer RH. Growth factors regulate phototransduction in retinal rods by modulating cyclic nucleotide-gated channels through dephosphorylation of a specific tyrosine residue. Proc Natl Acad Sci USA. 2001;98:5880–5.
Ding Q, Vaynman S, Akhavan M, Ying Z, Gomez-Pinilla F. Insulin-like growth factor I interfaces with brain-derived neurotrophic factor-mediated synaptic plasticity to modulate aspects of exercise-induced cognitive function. Neuroscience. 2006;140:823–33.
Ahluwalia A, Jones MK, Hoa N, Tarnawski AS. NGF protects endothelial cells from indomethacin-induced injury through activation of mitochondria and upregulation of IGF-1. Cell Signal. 2017;40:22–29.
Martin B, Brenneman R, Golden E, Walent T, Becker KG, Prabhu VV, et al. Growth factor signals in neural cells: Coherent patterns of interaction control multiple levels of molecular and phenotypic responses. J Biol Chem. 2008;284:2493–511.
Lang CH, Nystrom GJ, Frost RA. Tissue-specific regulation of IGF-I and IGF-binding proteins in response to TNFalpha. Growth Horm IGF Res. 2001;11:250–60.
Tu H, Xu C, Zhang W, Liu Q, Rondard P, Pin JP, et al. GABAB receptor activation protects neurons from apoptosis via IGF-1 receptor transactivation. J Neurosci. 2010;30:749–59.
Derakhshanian H, Javanbakht MH, Zarei M, Djalali E, Djalali M. Vitamin D increases IGF-I and insulin levels in experimental diabetic rats. Growth Horm IGF Res. 2017;36:57–59.
Clemmons DR, Underwood LE. Nutritional regulation of IGF-I and IGF binding proteins. Annu Rev Nutr. 1991;11:393–412.
Della TS, Rando G, Meda C, Stell A, Chambon P, Krust A, et al. Amino Acid-Dependent Activation of Liver Estrogen Receptor Alpha Integrates Metabolic and Reproductive Functions via IGF-1. Cell Metab. 2011;13:205–14.
Taguchi A, White MF. Insulin-Like Signaling, Nutrient Homeostasis, and Life Span. Annu Rev Physiol. 2007;70:191–212.
Gomez-Pinilla F. Brain foods: the effects of nutrients on brain function. Nat Rev Neurosci. 2008;9:568–78.
Moloney AM, Griffin RJ, Timmons S, O’Connor R, Ravid R, O’Neill C. Defects in IGF-1 receptor, insulin receptor and IRS-1/2 in Alzheimer’s disease indicate possible resistance to IGF-1 and insulin signalling. Neurobiol Aging. 2010;31:224–43.
Talbot K, Wang HY, Kazi H, Han LY, Bakshi KP, Stucky A, et al. Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J Clin Invest. 2012;122:1316–38.
Tong M, Dong M, de la Monte SM. Brain insulin-like growth factor and neurotrophin resistance in Parkinson’s disease and dementia with lewy bodies: potential role of manganese neurotoxicity. J Alzheimers Dis. 2009;16:585–99.
Bassil F, Delamarre A, Canron MH, Dutheil N, Vital A, Négrier-Leibreich ML, et al. Impaired brain insulin signalling in Parkinson’s disease. Neuropathol Appl Neurobiol. 2022;48:e12760.
Humbert S, Bryson EA, Cordelieres FP, Connors NC, Datta SR, Finkbeiner S, et al. The IGF-1/Akt pathway is neuroprotective in Huntington’s disease and involves Huntingtin phosphorylation by Akt. Dev Cell. 2002;2:831–7.
Liou CJ, Tong M, Vonsattel JP, de la Monte SM. Altered Brain Expression of Insulin and Insulin-Like Growth Factors in Frontotemporal Lobar Degeneration: Another Degenerative Disease Linked to Dysregulation of Insulin Metabolic Pathways. ASN Neuro. 2019;11:1759091419839515.
Chesik D, De KJ, Glazenburg L, Wilczak N. Insulin-like growth factor binding proteins: regulation in chronic active plaques in multiple sclerosis and functional analysis of glial cells. Eur J Neurosci. 2006;24:1645–52.
Wilczak N, de Vos RA, De Keyser J. Free insulin-like growth factor (IGF)-I and IGF binding proteins 2, 5, and 6 in spinal motor neurons in amyotrophic lateral sclerosis. Lancet. 2003;361:1007–11.
Cioana M, Michalski B, Fahnestock M. Insulin-Like Growth Factor and Insulin-Like Growth Factor Receptor Expression in Human Idiopathic Autism Fusiform Gyrus Tissue. Autism Res. 2020;13:897–907.
Ostrowski PP, Barszczyk A, Forstenpointner J, Zheng W, Feng ZP. Meta-Analysis of Serum Insulin-Like Growth Factor 1 in Alzheimer’s Disease. PLoS One. 2016;11:e0155733.
Carro E, Trejo JL, Gerber A, Loetscher H, Torrado J, Metzger F, et al. Therapeutic actions of insulin-like growth factor I on APP/PS2 mice with severe brain amyloidosis. Neurobiol Aging. 2006;27:1250–7.
Zappa Villar MF, López Hanotte J, Crespo R, Pardo J, Reggiani PC. Insulin-like growth factor 1 gene transfer for sporadic Alzheimer’s disease: New evidence for trophic factor mediated hippocampal neuronal and synaptic recovery-based behavior improvement. Hippocampus. 2021;31:1137–53.
Shin EJ, Chae JS, Park SJ, Kim SC, Koo KH, Yamada K, et al. Growth Hormone-Releaser Diet Attenuates beta-Amyloid(1-42)-Induced Cognitive Impairment via Stimulation of the Insulin-Like Growth Factor (IGF)-1 Receptor in Mice. J Pharm Sci. 2009;109:139–43.
Song F, Liu T, Meng S, Li F, Zhang Y, Jiang L. Insulin-Like Growth Factor-1 Alleviates Expression of Abeta1-40 and alpha-, beta-, and gamma-Secretases in the Cortex and Hippocampus of APP/PS1 Double Transgenic Mice. J Mol Neurosci. 2018;66:595–603.
Lanz TA, Salatto CT, Semproni AR, Marconi M, Brown TM, Richter KE, et al. Peripheral elevation of IGF-1 fails to alter Abeta clearance in multiple in vivo models. Biochem Pharm. 2008;75:1093–103.
Ebert AD, Beres AJ, Barber AE, Svendsen CN. Human neural progenitor cells over-expressing IGF-1 protect dopamine neurons and restore function in a rat model of Parkinson’s disease. Exp Neurol. 2008;209:213–23.
Lopes C, Ribeiro M, Duarte AI, Humbert S, Saudou F, Pereira de AL, et al. IGF-1 Intranasal Administration Rescues Huntington’s Disease Phenotypes in YAC128 Mice. Mol Neurobiol. 2013;49:1126–42.
Bozdagi O, Tavassoli T, Buxbaum JD. Insulin-like growth factor-1 rescues synaptic and motor deficits in a mouse model of autism and developmental delay. Mol Autism. 2013;4:9.
Dobrowolny G, Giacinti C, Pelosi L, Nicoletti C, Winn N, Barberi L, et al. Muscle expression of a local Igf-1 isoform protects motor neurons in an ALS mouse model. J Cell Biol. 2005;168:193–9.
Kaspar BK, Llado J, Sherkat N, Rothstein JD, Gage FH. Retrograde viral delivery of IGF-1 prolongs survival in a mouse ALS model. Science. 2003;301:839–42.
Fernandez AM, de la Vega AG, Torres-Aleman I. Insulin-like growth factor I restores motor coordination in a rat model of cerebellar ataxia. Proc Natl Acad Sci USA. 1998;95:1253–8.
Lin YS, Cheng WL, Chang JC, Lin TT, Chao YC, Liu CS. IGF-1 as a Potential Therapy for Spinocerebellar Ataxia Type 3. Biomedicines. 2022;10:505.
Montivero AJ, Ghersi MS, Silvero CM, Artur de la Villarmois E, Catalan-Figueroa J, Herrera M, et al. Early IGF-1 Gene Therapy Prevented Oxidative Stress and Cognitive Deficits Induced by Traumatic Brain Injury. Front Pharm. 2021;12:672392.
Hung KS, Tsai SH, Lee TC, Lin JW, Chang CK, Chiu WT. Gene transfer of insulin-like growth factor-I providing neuroprotection after spinal cord injury in rats. J Neurosurg Spine. 2007;6:35–46.
Frank JA, Richert N, Lewis B, Bash C, Howard T, Civil R, et al. A pilot study of recombinant insulin-like growth factor-1 in seven multiple sderosis patients. Mult Scler. 2002;8:24–29.
Lai EC, Felice KJ, Festoff BW, Gawel MJ, Gelinas DF, Kratz R, et al. Effect of recombinant human insulin-like growth factor-I on progression of ALS. A placebo-controlled study. The North America ALS/IGF-I Study Group. Neurology. 1997;49:1621–30.
Pini G, Congiu L, Benincasa A, DiMarco P, Bigoni S, Dyer AH, et al. Illness Severity, Social and Cognitive Ability, and EEG Analysis of Ten Patients with Rett Syndrome Treated with Mecasermin (Recombinant Human IGF-1). Autism Res Treat. 2016;2016:5073078.
Kolevzon A, Breen MS, Siper PM, Halpern D, Frank Y, Rieger H, et al. Clinical trial of insulin-like growth factor-1 in Phelan-McDermid syndrome. Mol Autism. 2022;13:17.
Sanz-Gallego I, Rodriguez-de-Rivera FJ, Pulido I, Torres-Aleman I, Arpa J. IGF-1 in autosomal dominant cerebellar ataxia - open-label trial. Cerebellum Ataxias. 2014;1:13.
Sanz-Gallego I, Torres-Aleman I, Arpa J. IGF-1 in Friedreich’s Ataxia - proof-of-concept trial. Cerebellum Ataxias. 2014;1:10.
Freude S, Hettich MM, Schumann C, Stohr O, Koch L, Kohler C, et al. Neuronal IGF-1 resistance reduces A{beta} accumulation and protects against premature death in a model of Alzheimer’s disease. FASEB J. 2009;23:3315–24.
Cohen E, Paulsson JF, Blinder P, Burstyn-Cohen T, Du D, Estepa G, et al. Reduced IGF-1 signaling delays age-associated proteotoxicity in mice. Cell. 2009;139:1157–69.
Gontier G, George C, Chaker Z, Holzenberger M, Aid S. Blocking IGF Signaling in Adult Neurons Alleviates Alzheimer’s Disease Pathology through Amyloid-beta Clearance. J Neurosci. 2015;35:11500–13.
Locatelli G, Marques-Ferreira F, Katsoulas A, Kalaitzaki V, Krueger M, Ingold-Heppner B, et al. IGF1R expression by adult oligodendrocytes is not required in the steady-state but supports neuroinflammation. Glia. 2022;71:616–32.
Holzenberger M, Dupont J, Ducos B, Leneuve P, Geloen A, Even PC, et al. IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature. 2003;421:182–7.
Jagust W. Vulnerable Neural Systems and the Borderland of Brain Aging and Neurodegeneration. Neuron. 2013;77:219–34.
Jakubik M, Floriddia EM, Nicotera P, Bano D. Heterozygous Igf1r deletion does not ameliorate pathological features associated with polyglutamine-containing huntingtin fragment. Neurosci Lett. 2014;580:52–5.
Zegarra-Valdivia J, Fernandez AM, Martinez-Rachadell L, Herrero-Labrador R, Fernandes J, Torres Aleman I. Insulin and insulin-like growth factor-I receptors in astrocytes exert different effects on behavior and Alzheimer s-like pathology. F1000Res. 2022;11:663.
Boucher J, Macotela Y, Bezy O, Mori MA, Kriauciunas K, Kahn CR. A Kinase-Independent Role for Unoccupied Insulin and IGF-1 Receptors in the Control of Apoptosis. Sci Signal. 2010;3:ra87.
Cohen E, Dillin A. The insulin paradox: aging, proteotoxicity and neurodegeneration. Nat Rev Neurosci. 2008;9:759–67.
Rincon M, Muzumdar R, Atzmon G, Barzilai N. The paradox of the insulin/IGF-1 signaling pathway in longevity. Mech Ageing Dev. 2004;125:397–403.
Zhang WB, Milman S. Looking at IGF-1 through the hourglass. Aging (Albany NY). 2022;14:6379–80.
Leifke E, Gorenoi V, Wichers C, Von Zur MA, Von Buren E, Brabant G. Age-related changes of serum sex hormones, insulin-like growth factor-1 and sex-hormone binding globulin levels in men: cross-sectional data from a healthy male cohort. Clin Endocrinol (Oxf). 2000;53:689–95.
Robertson DA, Savva GM, Kenny RA. Frailty and cognitive impairment-A review of the evidence and causal mechanisms. Ageing Res Rev. 2013;12:840–51.
Bodart G, Goffinet L, Morrhaye G, Farhat K, de Saint-Hubert M, Debacq-Chainiaux F, et al. Somatotrope GHRH/GH/IGF-1 axis at the crossroads between immunosenescence and frailty. Ann N. Y Acad Sci. 2015;1351:61–7.
Yeap BB, Paul Chubb SA, Lopez D, Ho KK, Hankey GJ, Flicker L. Associations of Insulin-like Growth Factor-I and its binding proteins, and testosterone, with frailty in older men. Clin Endocrinol (Oxf) 2012;708:752–59.
Gubbi S, Quipildor GF, Barzilai N, Huffman DM, Milman S. 40 YEARS of IGF1: IGF1: the Jekyll and Hyde of the aging brain. J Mol Endocrinol. 2018;61:T171–t185.
Chaker Z, George C, Petrovska M, Caron JB, Lacube P, Caille I, et al. Hypothalamic neurogenesis persists in the aging brain and is controlled by energy-sensing IGF-I pathway. Neurobiol Aging. 2016;41:64–72.
Zegarra-Valdivia JA, Fernandes J, Fernandez de Sevilla ME, Trueba-Saiz A, Pignatelli J, Suda K, et al. Insulin-like growth factor I sensitization rejuvenates sleep patterns in old mice. Geroscience. 2022;44:223–2257.
El-Ami T, Moll L, Carvalhal Marques F, Volovik Y, Reuveni H, Cohen E. A novel inhibitor of the insulin/IGF signaling pathway protects from age-onset, neurodegeneration-linked proteotoxicity. Aging Cell. 2014;13:165–74.
Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang RA. C. elegans mutant that lives twice as long as wild type. Nature. 1993;366:461–4.
Mustafa A, Lannfelt L, Lilius L, Islam A, Winblad B, Adem A. Decreased plasma insulin-like growth factor-I level in familial Alzheimer’s disease patients carrying the Swedish APP 670/671 mutation. Dement Geriatr Cogn Disord. 1999;10:446–51.
Tham A, Nordberg A, Grissom FE, Carlsson-Skwirut C, Viitanen M, Sara VR. Insulin-like growth factors and insulin-like growth factor binding proteins in cerebrospinal fluid and serum of patients with dementia of the Alzheimer type. J Neural Transm Park Dis Dement Sect. 1993;5:165–76.
Salehi Z, Mashayekhi F, Naji M. Insulin like growth factor-1 and insulin like growth factor binding proteins in the cerebrospinal fluid and serum from patients with Alzheimer’s disease. Biofactors. 2008;33:99–106.
Vardy ER, Rice PJ, Bowie PC, Holmes JD, Grant PJ, Hooper NM. Increased Circulating Insulin-like Growth Factor-1 in Late-onset Alzheimer’s Disease. J Alzheimers Dis. 2007;12:285–90.
Watanabe T, Miyazaki A, Katagiri T, Yamamoto H, Idei T, Iguchi T. Relationship between serum insulin-like growth factor-1 levels and Alzheimer’s disease and vascular dementia. J Am Geriatr Soc. 2005;53:1748–53.
Almeida OP, Hankey GJ, Yeap BB, Paul Chubb SA, Gollege J, Flicker L. Risk of prevalent and incident dementia associated with insulin-like growth factor and insulin-like growth factor-binding protein 3. Mol Psychiatry. 2018;23:1825–9.
Godau J, Herfurth M, Kattner B, Gasser T, Berg D. Increased serum insulin-like growth factor 1 in early idiopathic Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2010;81;536–8.
Mashayekhi F, Mirzajani E, Naji M, Azari M. Expression of insulin-like growth factor-1 and insulin-like growth factor binding proteins in the serum and cerebrospinal fluid of patients with Parkinson’s disease. J Clin Neurosci. 2010;17:623–7.
Bernhard FP, Heinzel S, Binder G, Weber K, Apel A, Roeben B, et al. Insulin-Like Growth Factor 1 (IGF-1) in Parkinson’s Disease: Potential as Trait-, Progression- and Prediction Marker and Confounding Factors. PLoS One. 2016;11:e0150552.
Saleh N, Moutereau S, Durr A, Krystkowiak P, Azulay JP, Tranchant C, et al. Neuroendocrine disturbances in Huntington’s disease. PLoS One. 2009;4:e4962.
Deuschle M, Blum WF, Strasburger CJ, Schweiger U, Weber B, Korner A, et al. Insulin-like growth factor-I (IGF-I) plasma concentrations are increased in depressed patients. Psychoneuroendocrinology. 1997;22:493–503.
Milanesi E, Zanardini R, Rosso G, Maina G, Barbon A, Mora C, et al. Insulin-like growth factor binding protein 2 in bipolar disorder: An expression study in peripheral tissues. World J Biol Psychiatry. 2018;19:610–8.
Torres-Aleman I, Barrios V, Berciano J. The peripheral insulin-like growth factor system in amyotrophic lateral sclerosis and in multiple sclerosis. Neurology. 1998;50:772–6.
Lanzillo R, Di Somma C, Quarantelli M, Ventrella G, Gasperi M, Prinster A, et al. Insulin-like growth factor (IGF)-I and IGF-binding protein-3 serum levels in relapsing-remitting and secondary progressive multiple sclerosis patients. Eur J Neurol. 2011;18:1402–6.
Hosback S, Hardiman O, Nolan CM, Doyle MA, Gorman G, Lynch C, et al. Circulating insulin-like growth factors and related binding proteins are selectively altered in amyotrophic lateral sclerosis and multiple sclerosis. Growth Horm IGF Res. 2007;17:472–9.
Wilczak N, Ramsaransing GS, Mostert J, Chesik D, De Keyser J. Serum levels of insulin-like growth factor-1 and insulin-like growth factor binding protein-3 in relapsing and primary progressive multiple sclerosis. Mult Scler. 2005;11:13–15.
Braunstein GD, Reviczky AL. Serum insulin-like growth factor-I levels in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 1987;50:792–4.
Huang TS, Wang YH, Lien IN. Suppression of the hypothalamus-pituitary somatotrope axis in men with spinal cord injuries. Metabolism. 1995;44:1116–20.
Otzel DM, Kok HJ, Graham ZA, Barton ER, Yarrow JF. Pharmacologic approaches to prevent skeletal muscle atrophy after spinal cord injury. Curr Opin Pharm. 2021;60:193–9.
Wang S, Liu Y, Wu C, Zhao W, Zhang J, Bao G, et al. The Expression of IGFBP6 after Spinal Cord Injury: Implications for Neuronal Apoptosis. Neurochem Res. 2017;42:455–67.
Hammarberg H, Risling M, Hökfelt T, Cullheim S, Piehl F. Expression of insulin-like growth factors and corresponding binding proteins (IGFBP 1-6) in rat spinal cord and peripheral nerve after axonal injuries. J Comp Neurol. 1998;400:57–72.
Busiguina S, Fernandez AM, Barrios V, Clark R, Tolbert DL, Berciano J, et al. Neurodegeneration Is Associated to Changes in Serum Insulin-like Growth Factors. Neurobiol Dis. 2000;7:657–65.
Torres-Aleman I, Barrios V, Lledo A, Berciano J. The insulin-like growth factor I system in cerebellar degeneration. Ann Neurol. 1996;39:335–42.
Saute JA, da Silva AC, Muller AP, Hansel G, de Mello AS, Maeda F, et al. Serum insulin-like system alterations in patients with spinocerebellar ataxia type 3. Mov Disord. 2011;26:731–5.
Schubert R, Reichenbach J, Zielen S. Growth factor deficiency in patients with ataxia telangiectasia. Clin Exp Immunol. 2005;140:517–9.
Palomino A, Gonzalez-Pinto A, Martinez-Cengotitabengoa M, de A, Sr., Alberich S, Mosquera F, et al. Relationship between negative symptoms and plasma levels of insulin-like growth factor 1 in first-episode schizophrenia and bipolar disorder patients. Prog Neuropsychopharmacol Biol Psychiatry. 2013;44:29–33.
Venkatasubramanian G, Chittiprol S, Neelakantachar N, Naveen MN, Thirthall J, Gangadhar BN, et al. Insulin and insulin-like growth factor-1 abnormalities in antipsychotic-naive schizophrenia. Am J Psychiatry. 2007;164:1557–60.
Yang YJ, Luo T, Zhao Y, Jiang SZ, Xiong JW, Zhan JQ, et al. Altered insulin-like growth factor-2 signaling is associated with psychopathology and cognitive deficits in patients with schizophrenia. PLoS One. 2020;15:e0226688.
Schwab S, Spranger M, Krempien S, Hacke W, Bettendorf M. Plasma insulin-like growth factor I and IGF binding protein 3 levels in patients with acute cerebral ischemic injury. Stroke. 1997;28:1744–8.
Bendel S, Koivisto T, Ryynänen OP, Ruokonen E, Romppanen J, Kiviniemi V, et al. Insulin like growth factor-I in acute subarachnoid hemorrhage: a prospective cohort study. Crit Care. 2010;14:R75.
Şimşek F, Işık Ü, Aktepe E, Kılıç F, Şirin FB, Bozkurt M. Comparison of Serum VEGF, IGF-1, and HIF-1α Levels in Children with Autism Spectrum Disorder and Healthy Controls. J Autism Dev Disord. 2021;51:3564–74.
Robinson-Agramonte MLA, Michalski B, Vidal-Martinez B, Hernández LR, Santiesteban MW, Fahnestock M. BDNF, proBDNF and IGF-1 serum levels in naïve and medicated subjects with autism. Sci Rep. 2022;12:13768.
Mills JL, Hediger ML, Molloy CA, Chrousos GP, Manning-Courtney P, Yu KF, et al. Elevated levels of growth-related hormones in autism and autism spectrum disorder. Clin Endocrinol (Oxf). 2007;67:230–7.
Abedini M, Mashayekhi F, Salehi Z. Analysis of Insulin-like growth factor-1 serum levels and promoter (rs12579108) polymorphism in the children with autism spectrum disorders. J Clin Neurosci. 2022;99:289–93.
Li Z, Xiao GY, He CY, Liu X, Fan X, Zhao Y, et al. Serum levels of insulin-like growth factor-1 and insulin-like growth factor binding protein-3 in children with autism spectrum disorder. Zhongguo Dang Dai Er Ke Za Zhi. 2022;24:186–91.
Trejo JL, Carro E, Garcia-Galloway E, Torres-Aleman I. Role of insulin-like growth factor I signaling in neurodegenerative diseases. J Mol Med. 2004;82:156–62.
Acknowledgements
We thank past members of the lab for their contributions and long-term funding support from Ciberned and the Spanish Ministerio de Ciencia e Innovación.
Author information
Authors and Affiliations
Contributions
AN, JZ-V, DFdeS, and JP designed and performed experiments commented in the text and reviewed the manuscript. ITA designed all the studies and wrote the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Nuñez, A., Zegarra-Valdivia, J., Fernandez de Sevilla, D. et al. The neurobiology of insulin-like growth factor I: From neuroprotection to modulation of brain states. Mol Psychiatry (2023). https://doi.org/10.1038/s41380-023-02136-6
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41380-023-02136-6