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Bipolar disorder’s core feature is the pathological disturbances in mood, often accompanied by disrupted thinking and behavior. Its
complex and heterogeneous etiology implies that a range of inherited and environmental factors are involved. This heterogeneity
and poorly understood neurobiology pose significant challenges to existing drug development paradigms, resulting in scarce
treatment options, especially for bipolar depression. Therefore, novel approaches are needed to discover new treatment options. In
this review, we first highlight the main molecular mechanisms known to be associated with bipolar depression–mitochondrial
dysfunction, inflammation and oxidative stress. We then examine the available literature for the effects of trimetazidine in said
alterations. Trimetazidine was identified without a priori hypothesis using a gene-expression signature for the effects of a
combination of drugs used to treat bipolar disorder and screening a library of off-patent drugs in cultured human neuronal-like
cells. Trimetazidine is used to treat angina pectoris for its cytoprotective and metabolic effects (improved glucose utilization for
energy production). The preclinical and clinical literature strongly support trimetazidine’s potential to treat bipolar depression,
having anti-inflammatory and antioxidant properties while normalizing mitochondrial function only when it is compromised.
Further, trimetazidine’s demonstrated safety and tolerability provide a strong rationale for clinical trials to test its efficacy to treat
bipolar depression that could fast-track its repurposing to address such an unmet need as bipolar depression.
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INTRODUCTION
Bipolar disorder (BD) is characterized by recurring manic or
hypomanic episodes that alternate with depressive episodes [1–3].
Manic episodes include symptoms such as increased energy and
activity, elevated mood, disinhibition, irritability, and psychotic
symptoms. Depressive episodes are defined by decreased energy,
fatigue, pervasive sadness, suicidal thoughts, and cognitive difficulties.
BD is a top 10 cause of disability that has threadbare treatment

options compared to any other major cause of disability [4]. Its
global disability-adjusted life years have worsened from 6 to 9
million in the last 3 decades [5]. This disability is largely driven by
bipolar depression [4, 6]. Only four evidence-based monotherapies
approved by the FDA are available for treating acute bipolar
depression [7]. Despite treatment, people with BD spend >70% of
their symptomatic periods depressed [4, 6]. BD also has higher
suicide/mortality rates than any other psychiatric disorder [4]. This
has remained unchanged for decades [5] and reflects a continued
failure in developing effective therapies for bipolar depression [8, 9].

An important step towards treating bipolar depression is
differentiating unipolar and bipolar depression [10–12]. Antide-
pressant monotherapy is not recommended to treat bipolar
depression [7, 13], highlighting the need to understand the
biological mechanisms specific to bipolar depression. The failure
in bipolar depression treatment discovery is largely due to its
complex pathophysiology with many known and unknown
biological and environmental factors [4]. Typical drug develop-
ment paradigms that target single proteins insufficiently address
this challenge [14–17]. We have bypassed this obstacle using a
novel cross-disciplinary adaptation of an in silico treatment
discovery model without any a priori hypothesis [18], which
identified trimetazidine as having transcriptomic effects that
mimic a combination of first-line BD medications [19]. Importantly,
trimetazidine’s main mechanism of action in boosting mitochon-
drial energy generation when mitochondrial function is impaired
dovetails with previous research highlighting bipolar depression
as a state of decreased mitochondrial energy generation [20–25].
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Our discovery is critical – there currently are no psychiatric
medications that directly target mitochondrial dysfunction.
Trimetazidine is being assessed for its efficacy in treating

bipolar depression in an international multi-site clinical trial
(Australian New Zealand Clinical Trials Registry registration:
ACTRN12622000474752). Notably, trimetazidine’s potential to
treat bipolar depression goes beyond addressing mitochondrial
dysfunction to reversing inflammation and oxidative stress
[26–29]. The present review will first focus on these inter-related
biological mechanisms underlying bipolar depression (Fig. 1) and
then highlight trimetazidine’s potential application in its treat-
ment. While previous reviews examine BD overall with the
described studies predominantly focused on the mania phase of
BD, our aim here is to navigate biological processes that are
strongly associated with bipolar depression.

MITOCHONDRIAL DYSFUNCTION IN BIPOLAR DEPRESSION
There has been a recent conceptualization of BD as a mitochon-
drial disorder, with the suggestion that energy production is
increased in mania and decreased in the depressive phase [30, 31].
The brain is the body’s major consumer of the primary energy
molecule adenosine triphosphate (ATP) [32]. ATP production and
mitochondrial respiration in the brain may be increased in bipolar
mania, while mitochondrial function and brain metabolism may
be reduced in the depressive or euthymic phases of BD [33–36].
Accordingly, the disorder is now thought of as a failure in the
regulation of mitochondrial energy generation [20]. For example,
mitochondria in the postmortem prefrontal cortex of people with
BD were found to exhibit smaller size and tendency to

concentrate more within the perinuclear region compared with
people without BD [37]. These differences were not related to
lithium exposure [37], suggesting that mitochondrial abnormal-
ities are not caused by BD treatment. Considering that people with
BD spend >70% of their symptomatic periods depressed [4, 6], the
smaller mitochondria likely suggest reduced function related to
bipolar depression. In the past two decades, high quality genetic,
transcriptomic, protein, enzymatic, and pharmacotherapeutic
studies have consistently highlighted reduced mitochondrial
function associated with bipolar depression.

DNA evidence
Genetic studies support reduced mitochondrial function in chronic
BD, which may relate to its dominant phase of bipolar depression.
Clinically stable patients with BD showed significantly lower
leukocyte mitochondrial DNA copy number and higher mitochon-
drial oxidative damage compared with participants without any
psychiatric illness [38]. Several mutations in mitochondrial DNA
sequence have been found in patients with BD, with several
nonsynonymous nucleotide substitutions found in genes encod-
ing complex I subunits [39]. These lead to reduced complex I
activity and impaired mitochondrial calcium uptake [40]. Elevated
intracellular calcium, in particular monoamine regulated calcium
signaling, is one of the most consistent findings in the disorder
[41, 42]. Further, the calcium/calmodulin-activated kinase kinase 2
(CAMKK2) gene single nucleotide polymorphism (SNP) rs1063843
is associated with an increased risk of BD [43]. CAMKK2 is a gene
regulating mitochondrial function, and when deleted, cellular
respiration is reduced [44]. CAMKK2 rs1063843 is associated with
reduced CAMKK2 mRNA expression [45], consistent with the idea

Fig. 1 Bipolar depression is consistently associated with mitochondrial dysfunction, inflammation, and oxidative stress. These three
major processes are closely connected with each other. For example, reduced expression of mitochondrial electron transport chain complexes
I-V leads to inefficient oxidation of glucose and/or fatty acids. This can impair adenosine diphosphate (ADP) to adenosine triphosphate (ATP)
conversion. In bipolar depression, increased calcium binding protein S100B has been observed, coupled with decreased superoxide dismutase
(SOD), glutathione S-tranferase and carbonyl. These alterations can exacerbate inefficient oxidation and vice versa, and increase reactive
oxygen species (ROS) overall to damage DNA. Chronic bipolar depression is associated with increased peripheral and central inflammation
indicated by biomarkers such as elevated tumor necrosis factor alpha (TNF-α). Inflammation is more often observed in chronic rather than
acute bipolar disorder, suggesting that it may be the result of prolonged mitochondrial dysfunction and oxidative stress. Figure created with
Biorender.com.
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of reduced mitochondrial function and energy generation in
bipolar depression.

RNA, protein, and enzymatic evidence
A global downregulation of the expression of genes encoding
mitochondrial proteins, such as those encoding mitochondrial
electron transport chain (ETC) components for ATP production,
has been reported in postmortem prefrontal cortex samples of BD
patients receiving pharmacological treatment [46]. Downregula-
tions in gene-expression profiles of ETC complexes I, IV and V was
also reported in the postmortem frontal cortex of people with BD
compared to control samples without BD [47]. Similarly, protein
and enzymatic assessments of ETC complexes in the postmortem
prefrontal cortex showed that levels of the ETC complex I subunit
and complex I activity were decreased significantly in patients
with BD compared with nonpsychiatric individuals [48]. These
findings all indicate reduced brain ATP production in chronic BD.
Peripheral tissue assays of ETC gene expression and complex

activity are generally supportive of reduced mitochondrial
function in bipolar depression. In whole blood of people with
BD in the depressive phase, the expression of genes in the ETC
pathway are the most significantly altered compared to healthy
controls, with 22 genes upregulated and 2 downregulated in BD
[49]. Recent enzymatic analyses in lymphocytes showed that BD
patients in the depressive phase had lower levels of mitochondrial
complex II activity compared to those in the euthymic phase, with
a significant negative correlation between the Hamilton Depres-
sion Rating Scale score and mitochondrial complex II activity [50],
providing a strong link between reduced mitochondrial function
and current bipolar depressive phase. However, one study showed
that ETC complex activity in the peripheral blood mononuclear
cells was not different between euthymic patients with BD
compared to healthy participants [51].
The tricarboxylic acid cycle produces key substrates used by the

mitochondrial ETC for ATP production [52]. A postmortem study
reported reduced neural mRNA expression of the tricarboxylic acid
cycle enzyme malate dehydrogenase in BD [53]. However,
tricarboxylic acid enzymatic activity in leukocytes of recent-onset
drug-naïve people with BD in a depressive episode was not
different from healthy participants [52]. These findings suggest
tricarboxylic acid cycle changes may be a consequence of chronic
BD and/or are specific to tissue.
Some evidence involving calcium homeostasis and apoptotic

proteins in mitochondrial dysfunction has been reported in
bipolar depression. The anti-apoptotic protein Bcl-2, encoded in
a putative BD susceptibility gene locus, modulates endoplasmic
reticulum-calcium dynamics that is related to mitochondrial
function [54]. In B lymphoblast cell lines derived from blood
samples in people with BD, Bcl-2 SNP rs956572 (G/G) genotype
was associated with the low Bcl-2 mRNA and protein levels
compared to healthy control cell lines [55]. The Bcl-2 SNP rs956572
(G/G) genotype also showed higher basal intracellular calcium
concentrations compared with other genotypes and with healthy
individuals [55]. When the expression of 44 pro-apoptotic genes
was assessed in the postmortem hippocampus, 19 of those genes
were significantly upregulated in BD, which was unrelated to the
exposure to mood stabilizers [56]. Such upregulation was not
observed in schizophrenia [56], suggesting that the upregulation
of apoptotic gene expression is unlikely to be related to mania but
may subserve the dominant phase of bipolar depression. A
postmortem frontal cortex study also showed significant increases
in protein and mRNA levels of pro-apoptotic factors and
significant decreases in levels of anti-apoptotic factors in BD
compared to nonpsychiatric controls [54].
There is a link between apoptotic markers and mitochondrial

proteins, with a significant negative correlation between mito-
chondrial fission/fusion proteins and apoptotic markers in
peripheral blood cells of people with BD [57]. The levels of

pro-apoptotic active caspase-3 protein were significantly
increased while the anti-apoptotic proteins and mitochondrial
fusion-related proteins were significantly decreased in BD patients
compared to healthy controls [57]. A positive correlation between
mitochondrial fusion-related proteins with mitochondrial content
markers was also reported [57]. In that study, younger onset of
bipolar depression (average 15.31 years of age) compared to
mania (average 19.11 years of age) in BD patients was reported,
suggesting that the findings likely relate to bipolar depression
rather than mania. The inverse relationship between apoptosis
and mitochondrial function in BD highlights reduced mitochon-
drial function with increased apoptosis in bipolar depression.

Pharmacotherapeutic evidence
Postmortem frontal cortex analyses showed higher ETC complex I
in people with BD receiving lithium than those not receiving
lithium [47]. Long-term treatment of cultured cells with lithium
and valproate also enhanced cellular respiration rate and
mitochondrial function as determined by mitochondrial mem-
brane potential and oxidation [58]. Lithium and valproate also
protect against mitochondria-mediated cell toxicity [58]. This may
suggest that increased mitochondrial function likely plays a role in
mediating the therapeutic effects of lithium and valproate
treatments in BD.
Consistent with this idea, agents that are known to enhance

mitochondrial function, known as mitochondrial modulators, have
been studied as potential adjunct treatments for bipolar depres-
sion [59]. N-acetylcysteine, which amongst many other effects,
enhances the efficiency of mitochondrial energy generation has
an efficacy signal in some but not all trials examining bipolar
depression [60, 61]. Coenzyme Q10 is a lipid-soluble benzoqui-
none present in the phospholipid bilayers of mitochondria that
has two main roles: it shuttles electrons within the mitochondrial
ETC and serves as a potent antioxidant [62]. Coenzyme
Q10 significantly decreased bipolar depression severity without
changing creatine kinase activity [63]. Creatine plays a role in brain
energy homeostasis, acting as a buffer for cytosolic and
mitochondrial pools of the cellular energy currency ATP. Creatine
monohydrate as adjunctive treatment in people with bipolar
depression showed a significant improvement in verbal fluency
compared with placebo, but not on other neuropsychological
tests [64]. Another trial did not find creatine monohydrate to be
efficacious compared to placebo in treating bipolar depression,
but creatine monohydrate performed better than placebo when
remission criteria were considered [65]. However, hypomania/
mania switch has also been reported with creatine monohydrate
supplementation [65, 66], highlighting that targeting only
mitochondrial function may not be sufficient to treat bipolar
depression.

INFLAMMATION IN BIPOLAR DEPRESSION
Cytokines and other inflammatory markers suppress mitochon-
drial energy generation. Inflammatory mechanisms may play a
crucial role in BD pathophysiology via their regulation of synaptic
transmission/plasticity and neuronal survival [67, 68]. The evi-
dence has been largely RNA- and protein-based with increased
concentrations of interleukin (IL)-4, tumor necrosis factor (TNF)-α,
soluble TNF receptor 1 (sTNFR1), and soluble IL-2 receptor
consistently reported in BD compared to healthy controls
[67, 68]. However, clarity is needed to interpret these findings in
the context of depressive vs manic phases.

RNA and protein evidence
In blood, a combination of mRNA levels of inflammation genes has
been shown to differentiate people with BD in the euthymic phase
from healthy controls with diagnostic power of 0.85 [69]. While
evidence of shared aberrant expression of inflammatory genes
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in people with BD and their offspring suggests inflammation as a
risk factor [70], a twin study showed that shared environmental
factors dominate more than the genetic factors in the shared gene
expression [71]. That is, inflammation in BD likely reflects a
consequence of the disease.
Seven depressed and one manic BD patients showed higher

inflammatory gene expression compared to healthy controls and
euthymic BD patients, who did not differ from each other [72].
Another study reported BD patients (75 euthymic, 14 manic/
hypomanic, 45 depressive) had higher levels of all cytokines,
including slL-2R, C-reactive protein (CRP) and sTNFR1 than the
healthy controls [73], with depressed BD patients having reduced
sTNFRl and slL-2R compared to those in mania and euthymia [73].
A meta-analysis indicated that increased TNF-α levels may be
present in both mania and depression in BD, while increased
sTNfRI and CRP may be specific for mania [74]. Despite some
inconsistencies in the results, especially regarding the different
mood states of BD [75], these findings support the potential of
anti-inflammatory medications to treat BD without the risk of
switching between the mood states.

Pharmacotherapeutic evidence
Baseline blood IL-6 levels in people currently experiencing bipolar
depression inversely predict antidepressant efficacy of sleep
deprivation and sleep phase advance [76]. That is, higher
inflammation was associated with reduced therapeutic efficacy
[76]. Similarly, BD patients who are lithium responders showed
significantly lower levels of inflammatory markers such as IL-2, IL-
6, and IL-10 compared to non-responders [77].
Several clinical and preclinical studies have shown that the

mechanism of action of mood stabilizers may include reduction of
inflammatory cytokines [78]. BD patients who started pharma-
cotherapy for the first time showed decreased cytokine produc-
tion after 3 months of lithium treatment [77]. In addition,
monotherapy or polytherapy with lithium, carbamazepine, valpro-
ate, and/or antipsychotics in people with BD (mainly euthymic)
was associated with downregulated expression of inflammatory
genes [70]. However, antidepressants, benzodiazepines, and
levothyroxine medications were not associated with changes in
inflammatory gene expression [70]. A systematic review of
monotherapies reported that long-term use of lithium and
euthymia was associated with normal cytokine levels [79].
Valproate use was not associated with levels of cytokines, but
only two studies met the monotherapy criteria [79]. A pilot trial on
the efficacy of interpersonal social rhythm therapy with quetiapine
or placebo in patients experiencing bipolar depression reported
that the quetiapine group had higher pro-inflammatory and lower
anti-inflammatory cytokines compared to the placebo group [80].
However, this pilot trial did not match baseline cytokine levels
between the pharmacotherapy conditions nor report any changes
in depression levels at the end of treatment, hence the results may
not be related to bipolar depression symptomology.

OXIDATIVE STRESS IN BIPOLAR DEPRESSION
Mitochondrial dysfunction and inflammation can lead to oxidative
stress. Oxidative stress itself suppresses mitochondrial function,
which contributes to diminished neuroplasticity and neurogen-
esis, with increased apoptosis and neurodegeneration in BD
[23, 25, 81]. Indeed, increased oxidative stress evidenced by DNA,
RNA, protein, and enzymatic analyses has been consistently
reported in bipolar depression [82–85]. Pharmacotherapeutic
evidence also supports the association between bipolar depres-
sion treatment efficacy and antioxidant activity [86].

DNA evidence
SNPs of the antioxidant genes superoxide dismutase 2 (SOD2) and
glutathione peroxidase 3 were differentially associated with brain

volumes in depressed youth with BD [82]. Specifically, there was
smaller anterior cingulate cortex in the BD SOD2 rs4880 GG group
compared to the healthy group with the same SNP, and smaller
frontal and parietal lobes in the BD glutathione peroxidase 3
rs3792797 A-allele carrier group compared to the BD CC and HC
A-allele carrier groups. SOD rs4880 was associated with increased
reactive oxygen species (ROS) [87, 88], which may play a role in
the reduced brain volume. Glutathione peroxidase 3 rs3792797 is
associated with increased risk for Crohn’s Disease via reduced
antioxidant pathways [89]. In addition, leukocytes from euthymic
BD patients have increased oxidative stress-induced DNA damage
and decreased base excision repair capacity than healthy
individuals [90]. Overall, these oxidative stress findings may be
related to the prolonged periods of depression in BD.

RNA, protein, and enzymatic evidence
In the serum of 30 patients with bipolar depression, oxidant nitric
oxide levels were increased while antioxidant SOD levels were
decreased compared to healthy controls, suggesting that the
ability to cope with oxidative stress is impaired in bipolar
depression [83]. Consistent with this finding, postmortem studies
have reported markedly downregulated gene expression of
antioxidant enzymes such as SOD1 and glutathione S-transferase
in the hippocampus of BD patients, a finding that may relate to
bipolar depression as the dominant phase [56]. Glutathione
S-transferase conjugates glutathione, the major antioxidant in
brain, to form nontoxic products [91]. Increased serum thiobarbi-
turic acid reactive substances and decreased Na+–K+-ATPase
activity are indicative of oxidative stress such as lipid peroxidation
[92], which are observed in unmedicated patients with bipolar
depression compared to healthy controls [84].
People with bipolar depression also show more oxidative

protein damage measured by increased serum protein carbonyl
content over and above people with mania or euthymia and
healthy controls [85]. There was a correlation between decreased
complex I activity and increased protein oxidation (measured by
protein carbonylation, and levels of 3-nitrityrosine) when investi-
gating postmortem prefrontal cortex brains from BD affected and
non-affected individuals [48]. Additionally, a negative correlation
between complex II activity and oxidative stress measures has
been reported in BD patients during depressive episodes,
suggesting that mitochondrial oxidative stress related mitochon-
drial dysfunction may contribute to bipolar depression [50].
Calcium binding protein S100B is a measure of accumulated
oxidative stress, and its level in individuals with bipolar depression
is approximately two-fold higher compared to healthy subjects
[93]. In these participants, S100B levels correlated with cyto-
chrome c release, a mitochondrial apoptotic marker [93],
supporting the oxidative stress/mitochondrial dysfunction inter-
play in bipolar depression.

Pharmacotherapeutic evidence
Serum thiobarbituric acid reactive substances were decreased by
lithium in a clinical trial in bipolar depression, with a further
decrease observed in lithium responders compared to non-
responders [86]. These findings are consistent with preclinical
results in which chronic lithium treatment alleviates oxidative
stress induced by chronic variable stressors (e.g., restraint and
noise) in rats showing depression-like symptoms via increasing
SOD and total antioxidant activity [94]. Lithium has also
demonstrated antioxidant effects by increasing mRNA expression
and protein levels of different glutathione S-transferase isoen-
zymes in rat cortical cells [95]. In addition, lithium or valproate
significantly inhibit oxidative damage to lipids and proteins
induced by various insults in rat cerebral cortical cells [96].
Lithium and valproate have also been shown to inhibit H2O2-
induced and complex I inhibitor rotenone-induced cytochrome c
release, caspase-3 activation and cell death in human
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neuroblastoma cells and in murine hippocampal cells [97]. In
these cells, lithium, valproate, carbamazepine and lamotrigine
increased the levels of the major antioxidant glutathione and the
expression of glutamate-cysteine ligase, the rate-limiting enzyme
in glutathione synthesis [97]. These results support the neuropro-
tective function of mood stabilizing drugs against oxidative stress.
A double-blind randomized trial of adjunctive N-acetylcysteine,

a precursor of glutathione, in individuals with bipolar depression
yielded positive results compared to placebo [98, 99].
N-acetylcysteine as a maintenance treatment for bipolar depres-
sion also appeared to be beneficial [100]. These promising results
from Australia potentiated more trials of N-acetylcysteine in Brazil,
Denmark and USA to treat bipolar depression [101–106]. A recent
meta-analysis of all the double-blind, placebo-controlled, rando-
mized clinical trials of N-acetylcysteine as adjunctive therapy in
bipolar depression confirmed its superiority over placebo in
reducing depressive symptoms with a moderate effect size (95%
confidence interval 0.06–0.84) [61]. While these findings are highly
promising, the substantial heterogeneity (I2= 49%) reflect more
recent trial outcomes which have not shown statistically
significant N-acetylcysteine and placebo differences. Moderating
analyses of baseline depression scores, mean N-acetylcysteine
dose and duration of study did not explain the heterogeneity
[61, 104–106].

TRIMETAZIDINE
Treatment options for bipolar depression are scarce. It is an urgent
imperative to identify drugs that can target the biological
processes associated with bipolar depression to maximize the
chance of positive outcomes. Drug development typically costs
2–3 billion USD across 13–15 years from first discovery to final
regulatory approval [107]. An alternative is drug repurposing,
which is strongly supported by governments and funding bodies
as an efficient and effective option [108] (see [109] for detailed
benefits). In addition, drug repurposing may be particularly
appropriate in conditions with high oxidative stress and comor-
bidities [110, 111]. We propose that trimetazidine is a promising
drug that can be repurposed to target mitochondrial dysfunction,
inflammation and oxidative stress to treat bipolar depression.
Trimetazidine hydrochloride is an anti-ischemic agent that is

widely used in coronary artery disease treatment [112]. It is a
piperazine derivative with molecular formula of C14H24Cl2N2O3 (1-
[(2,3,4-trimethoxyphenyl) methyl] piperazine dihydrochloride)
[112]. The neutral trimetazidine has very low solubility in an
aqueous solution while its dihydrochloride salt form is water
soluble [113]. Trimetazidine is sold as a 20 mg immediate release
tablet or a 35mg modified release tablet formulation [112, 114].
Trimetazidine is rapidly absorbed with high bioavailability, reach-
ing peak plasma concentration of 53.6 mg/L within 1.8 h for
immediate release and steady level within 24 h for modified
release [112, 114].
We have identified trimetazidine as a candidate to treat

bipolar depression [19] using an in silico treatment discovery
model in diabetes [18] that led to a successful Phase 2 clinical
trial to treat diabetes [115]. In this cross-disciplinary adaptation,
human NT2-N neuronal cell cultures [116] were treated with a
cocktail of first-line bipolar depression medications or vehicle to
detect an overall effect of effective therapies. RNAseq was used
to measure genome-wide mRNA levels to discover the gene-
expression signature that best describes the overall medication
effects. This gene-expression signature predicted the medication
effects with power of >99%, which was then confirmed by
candidate-gene assays. We then treated new NT2-N cells with
positive (medication cocktail) control, negative control (vehicle),
and 960 off-patent compounds from the Prestwick
library (http://www.prestwickchemical.com/libraries-screening-
lib-pcl.html). Based on the changes in gene expression, a

similarity score for each drug relative to the medication cocktail
was calculated. We then excluded compounds that are not yet
approved for human use, have potential toxicity issues, were
never marketed, or were not known to cross the blood–brain
barrier. After such screening, trimetazidine was identified as the
most promising candidate to treat bipolar depression because it
is novel in psychiatry, has an excellent safety profile, and crosses
the blood–brain barrier. Using the social isolation with chronic
restraint rat model, we confirmed that trimetazidine (30 mg/kg)
injected once-daily for 2 weeks had an antidepressant-like effect
shown by reduced immobility in the forced swim test. We also
observed trimetazidine’s antidepressant effects on Flinders
Sensitive Line rats that are prone to depression-like behaviors.
The main mechanism of trimetazidine is modulating mitochon-

drial energy production [117]. Mitochondria mainly utilize oxida-
tion of glucose or fatty acids to produce ATP [118]. While fatty acid
oxidation produces more ATP per gram, it requires more oxygen
and can be slower than glucose oxidation in producing ATP, which
increases risks such as hypoxia and oxidative stress to the cell
[119]. Specifically, fatty acid oxidation may not keep up with
required rapid ATP generation during periods of extended
continuous and rapid neuronal firing, making it less suitable than
glucose oxidation for brain metabolism [119]. Fortunately,
inhibiting fatty acid oxidation can shift the metabolic processes
to rely more on efficient glucose oxidation [118, 120]. Trimetazi-
dine is a selective inhibitor of 3-ketoacyl-CoA thiolase, a key
enzyme in fatty acid oxidation [121]. By selectively inhibiting β-
oxidation of free fatty acids, trimetazidine promotes glucose
oxidation and decreases oxygen consumption [121]. Trimetazidine
also increases pyruvate dehydrogenase activity to decrease lactate
accumulation [117]. These processes ultimately result in trimeta-
zidine reducing intracellular calcium ion accumulation, reactive
oxygen species and neutrophil infiltration to increase cellular
membrane stabilization [113, 122–127].
Trimetazidine, though introduced as an anti-anginal agent to

increase metabolic efficiency when metabolic processes are
compromised, is postulated to have a cytoprotective action as
above [128–130]. Indeed, preclinical and clinical studies evidence
beneficial effects of trimetazidine not only on mitochondrial
energy metabolism but also on inflammation and oxidative stress
compared to saline or vehicle [131, 132]. Such literature strongly
suggests the potential of trimetazidine to address key elements of
bipolar depression’s pathophysiology (Fig. 2).

MITOCHONDRIAL AND METABOLIC FUNCTIONS OF
TRIMETAZIDINE
Preclinical studies
Models of partial or total global ischemia followed by reperfusion
in the isolated rat heart showed that trimetazidine accelerated
restoration of phosphorylation, attributed to rapid energy transfer
by trimetazidine [133]. This was replicated in rat kidney under-
going cold ischemia-reperfusion injury [134]. Similarly, an ex-vivo
rat heart ischemia study showed that trimetazidine increased
mitochondrial complex I activity, decreased oxygen consumption
and free radical production thereby increasing mitochondrial
integrity and maintenance of function [135].
In vivo studies also demonstrate trimetazidine’s mitochondrial

effects. Lung transplantation injury was significantly prevented by
an injection of trimetazidine (5 mg/kg) to donor and receiver,
which caused significantly higher ATP levels and better oxygena-
tion [136]. In rats, gavage of trimetazidine (10 mg/kg/day) for 7
days prior to induction of acute myocardial ischemia preserved
the mitochondrial structure, improved respiratory control ratio
and mitochondrial complex I activity, as well as mitochondrial
biosynthesis and fusion [137].
Trimetazidine improves mitochondrial function beyond

ischemic damage. Intraperitoneal injections of trimetazidine
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(25 mg/kg/day for 5 days) in rats before seizure induction
prevented apoptosis of hippocampal neurons [138]. Trimetazidine
increased serum and platelet levels of serotonin when adminis-
tered to rats with induced myocardial infarction and depression
[139]. However, brain serotonin levels were significantly
decreased. The authors hypothesized that this was due to
trimetazidine affecting the brain tissue cell metabolism, and
potentially transporting serotonin from brain tissue into the
peripheral nervous system. Cultured rat myocytes challenged with
palmitate showed decreased mitochondrial ATP levels, oxygen
consumption rate, mitochondrial volume, and increased mito-
chondria per cell indicating increased mitochondrial fission [140].
All of these processes were reversed by pre-treatment with
trimetazidine [140]. Diabetes-associated cardiomyopathy in rats
was rescued by oral gavage of trimetazidine for 8 weeks (30 mg/
kg/day), which also decreased insulin resistance [141].
While trimetazidine’s ability to increase mitochondrial function

is clear, these findings generally did not assess trimetazidine’s
effects on healthy tissue. Therefore, an important question
remains. Does trimetazidine push mitochondrial processes over
and above healthy mitochondrial function? Fantini et al. showed
that in cultured rat ventricular myocytes, trimetazidine’s beneficial
effects were only observed when cells were undergoing hypoxia
and not during normoxia, highlighting trimetazidine as a
metabolic regulator that would not increase mitochondrial
function in healthy states [123]. Similarly, trimetazidine treatment

(0.5 mg/kg) was protective of mouse myocytes in an ischemia/
reperfusion injury via anti-apoptotic pathway without affecting
healthy controls [142]. One study in healthy rat brain mitochondria
also did not observe any direct effect of trimetazidine on
mitochondrial permeability transition [143].

Clinical studies
Patients with past myocardial infarction who underwent perfusion
imaging and revascularization showed evidence of improved
mitochondrial oxidative metabolism from a single tablet of
trimetazidine (60 mg) compared to placebo [144]. Three months
of trimetazidine (70 mg/day) in patients with cardiomyopathy
decreased the myocardial β-oxidation rate compared to placebo,
implying its ability to shift mitochondrial processes to glucose
oxidation [145]. Two periods of 90 days of trimetazidine (60 mg/
day) also increased cardiac phosphocreatine/ATP ratio in nine
patients (but three patients showed a decrease), which indicated
improved mitochondrial energetics [146].

ANTI-INFLAMMATORY FUNCTIONS OF TRIMETAZIDINE
Preclinical studies
Neutrophils are a key part of the immune system as the major type
of white blood cells [147]. Neutrophil increase is a reliable marker of
inflammation [148, 149]. Inflammation following myocardial infarc-
tion of anaesthetized rabbit heart was significantly protected by an

Fig. 2 Trimetazidine is a selective inhibitor of 3-ketoacyl-CoA thiolase. Hence trimetazidine modulates mitochondrial energy production by
inhibiting fatty acid oxidation to engage efficient glucose oxidation, which increases adenosine triphosphate (ATP) conversion compared to
oxygen consumed. Trimetazidine also increases pyruvate dehydrogenase activity to decrease lactate accumulation. These effects ultimately
reduces intracellular calcium ion accumulation and reactive oxygen species (ROS) to reduce apoptosis, inflammation and oxidative stress
indicated by reduced level of biomarkers such as tumor necrosis factor alpha (TNF-α) and nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase 2. Trimetazidine has also been shown to increase antioxidant activity measured by increased glutathione, glutathione
peroxidase, superoxide dismutase (SOD), and catalase. Taken together, accumulating preclinical and clinical evidence of trimetazidine’s
regulation of mitochondrial function, anti-inflammatory and antioxidant properties strongly support its potential efficacy to reduce bipolar
depression. Figure created with Biorender.com.
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acute pre-infarction intravenous trimetazidine infusion, with lowered
neutrophils [150]. Chronic trimetazidine injection (3mg/kg/day for
1 week) in rats had similar outcomes [151]. In vitro human
neutrophils activated by formyl-methonyl-leucyl-peptide were also
attenuated by trimetazidine [151]. Interestingly, trimetazidine
appears to only reduce neutrophils when levels become too high.
In mouse sepsis and endotoxemia, trimetazidine (60mg/kg)
promoted neutrophil recruitment to the heart tissue and alleviated
myocardial dysfunction [152].
Lipopolysaccharide injection induces robust inflammation, and

trimetazidine (60 mg/kg/day for 3 days) protected against
lipopolysaccharide-induced myocardial dysfunction and apoptosis
by inhibiting macrophage pro-inflammatory cytokines [153]. In
fact, inflammation often resolves with apoptosis [154], and much
of the evidence for anti-inflammatory actions of trimetazidine
comes from demonstrations in apoptosis and cell survival. For
example, oral gavage of trimetazidine for 8 weeks (30 mg/kg/day)
reduced cardiac apoptosis in diabetic rats [141]. Inhibition of
cardiac apoptosis by trimetazidine (2.5 mg/kg acute pre-treat-
ment) was replicated in swine with myocardial infarction [155]. In
a similar mini pig microembolization model, trimetazidine pre-
treatment (2.5 mg/kg) reduced myocardial damage by inhibiting
the pro-inflammatory programmed cell death/nuclear factor kB/
TNF-α pathway [156]. In a neonatal rat in vitro cardiomyocyte
hypoxia/reoxygenation study, pre-treatment with trimetazidine
reduced apoptosis and inflammation [157]. These anti-
inflammatory properties of trimetazidine were replicated in a
mouse sunitinib-induced cardiotoxicity model [158].
Trimetazidine was also shown to reduce inflammatory markers

in other organs beyond the heart and blood. In an ischemic pig
kidney, 5 or 10 mg/kg of trimetazidine given intravenously
significantly reduced CD4+ lymphocytes [159]. When cultured
murine skeletal muscle cells were atrophied by the pro-
inflammatory cytokine TNF-α, not only did trimetazidine signifi-
cantly reverse the reduction in myotube size, it also increased
myosin heavy chain expression and induced hypertrophy [160].
These studies clearly highlight trimetazidine as an anti-
inflammatory medication peripherally. Trimetazidine is lipophilic
and crosses the blood-brain-barrier [112], hence it is highly likely
to exert anti-inflammatory effects also in the brain. At least one
study showed that an acute injection of trimetazidine (10 mg/kg)
reduced hippocampal inflammation measured by TNF-α and IL-1β
while protecting against seizure and associated cognitive impair-
ments in diabetic and epileptic rats [161]. These effects were
correlated with increased ATP/adenosine diphosphate ratio [161].

Clinical studies
Trimetazidine has been clinically studied for its effects on several
direct and indirect markers of inflammatory responses. Oral
trimetazidine (60 mg/day) taken for three days prior to percuta-
neous transluminal coronary angioplasty reduced CRP and nitrite
levels both at pre- and post-angioplasty and TNF-α at post-
angioplasty compared to no treatment [162]. Similarly, oral
trimetazidine (20 mg three times a day) among volunteers with
diabetes and idiopathic dilated cardiomyopathy maintained CRP
levels stable over 6 months compared to a placebo control that
showed increased CRP [163]. Bobescu and colleagues (2021)
conducted a large study involving 570 patients with inadequately
treated symptoms of coronary artery disease to examine the effect
of trimetazidine (70 mg/day). They observed trimetazidine sig-
nificantly reduced CRP levels at 6 months from treatment
compared to no treatment [117].
In participants receiving coronary artery bypass grafting,

12–15 days of oral trimetazidine (60 mg/day) significantly reduced
IL-6 levels compared to placebo treatment at baseline, 5 mins after
aortic unclamping, 12 and 24 h after surgery [164]. When Shao
et al. examined trimetazidine (60 mg/day) alone and in combina-
tion with coenzyme Q10 in acute viral myocarditis, both groups

receiving trimetazidine showed decreased pro-inflammatory
makers such as TNF-α and IL-8 at 2 weeks of treatment compared
with baseline [165]. In a randomized study where trimetazidine
(35 mg/day) was prescribed for 4 days during elective coronary
scaffold implantation, the trimetazidine group showed reduced IL-
6 [166]. In people with stable refractory angina, adjunctive
trimetazidine (70 mg/kg/day) significantly enhanced external
counter pulsation intervention by decreasing inflammatory
markers such as IL-1β [167].

ANTIOXIDANT FUNCTIONS OF TRIMETAZIDINE
Preclinical studies
In vitro evidence supports trimetazidine as an antioxidant.
Cisplatin induced cardiotoxicity in rat myocytes benefited from
trimetazidine, which reduced ROS and the oxidative stress product
malondialdehyde while increasing antioxidant SOD and catalase
[168]. In rat embryonic myocytes with hypoxia/reoxygenation,
trimetazidine pre-treatment mitigated the increase in oxidative
stress proteins such as lactate dehydrogenase and ROS [169]. In
cultured human endothelial progenitor cells, trimetazidine pro-
tected against hydrogen peroxide induced oxidative stress by
increasing SOD and reducing malondialdehyde [170].
There is also in vivo evidence, with trimetazidine (5 mg/kg) pre-

treatment attenuating superoxide levels in the rat heart following
ischemia/reperfusion [171]. In rats with type 2 diabetic cardiomyo-
pathy, trimetazidine (10 mg/kg/day for 11 weeks) alleviated
diabetes induced structural and functional changes of the heart
by inhibiting oxidative stress [172]. Further, acute trimetazidine
injection (5 or 10 mg/kg) significantly decreased ROS in cardio-
myocytes in rats with myocardial infarction [173]. In atherosclero-
tic rats, trimetazidine (30 mg/kg/day for 12 weeks) prevented ROS
upregulation, and restored antioxidant SOD levels while reducing
oxidized low-density lipoprotein and malondialdehyde [169].
Trimetazidine (10 mg/kg/day for 2 weeks) reduced peripheral
blood oxidative stress caused by amikacin, a widely prescribed
antibiotic that can produce ototoxic effects that can cause
damage to the cochlea [174]. Trimetazidine (5 or 25mg/kg single
injection) restored SOD levels in the brain after it was reduced
following cerebral ischemia-reperfusion injury [175]. Trimetazidine
(10 or 20 mg/kg/day for up to 5 weeks) also significantly alleviated
pentylenetetrazole-induced seizure in mice while reducing lipid
peroxidation and increasing glutathione levels in the brain [176].
In ischemia/reperfusion injured rat intestine, an infusion of

intravenous trimetazidine (3 mg/kg) lowered malondialdehyde
and myeloperoxidase, which is a pro-oxidative enzyme that
catalyzes the formation of ROS [177]. In renal tissue, acute or
chronic systemic injections of trimetazidine have been shown to
reduce thiobarbituric acid reactive substances in
immunosuppressant-induced renal dysfunction [178] and prevent
SOD, glutathione peroxidase, catalase or glutathione decrease in
ischemia/reperfusion injury in rats [179, 180]. Similar findings were
observed in an ischemia/reperfusion rat forebrain injury, in which
chronic trimetazidine (alone or with progesterone) alleviated SOD
and glutathione decrease while preventing malondialdehyde and
lipid peroxidase increase [181]. Also in the rat brain, pre-treatment
injection of trimetazidine (25 mg/kg/day for 7 days) prevented
oxidative changes measured by SOD, catalase and malondialde-
hyde in a model of a sporadic type of Alzheimer’s disease [182].
The latter findings confirm that trimetazidine can cross the blood-
brain-barrier to reduce oxidative stress in the brain.
Lastly, trimetazidine can alleviate oxidative stress following

lifestyle-related injuries. Oral trimetazidine (6 mg/kg/day for up to
42 days) in rats was able to prevent the increase in malondialde-
hyde and nitric oxide and decrease in glutathione in the crushed
sciatic nerve [183]. Eight weeks of high fat diet in mice decreased
insulin sensitivity and manganese-dependent SOD activity while
increasing malondialdehyde, all of which was prevented by
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co-administration of trimetazidine (10 mg/kg/day, intragastric)
[184]. In that study, the effect size of trimetazidine on reducing
oxidative stress was larger than daily exercise intervention,
showing its potential as a powerful antioxidant.

Clinical studies
Two weeks of trimetazidine (60 mg/day for 2 weeks) alone or in
combination with coenzyme Q10 in people with acute viral
myocarditis increased SOD and glutathione while reducing
malondialdehyde compared to baseline [165]. Trimetazidine
(60 mg/day for 6 months) was also effective in reducing
malondialdehyde compared to baseline among a group of
patients with end stage renal disease on hemodialysis and
continuous peritoneal ambulatory dialysis [185].

CONCLUSIONS AND LOOKING AHEAD
Bipolar depression is different from major depressive disorder in
its ontogeny and clinical characteristics [11, 186]. Their biological
differences are highlighted by the fact that antidepressant
monotherapy is not recommended to treat bipolar depression
[7, 13]. In this review, three major biological processes associated
with bipolar depression were highlighted. Overall, evidence for
mitochondrial dysfunction, inflammation and oxidative stress in
bipolar depression is consistent with many replicated findings
across tissue types, molecular assays, and ethnicities [187, 188]. A
particularly compelling hypothesis is that bipolar depression is a
state of decreased mitochondrial energy generation, which may
be overcompensated by increased mitochondrial energy genera-
tion in mania [20–25]. Trimetazidine’s main activity in boosting
mitochondrial energy generation only when mitochondrial func-
tion is reduced, while also targeting inflammation and oxidative
stress that occurs in both depression and mania in bipolar
disorder makes it a promising novel pharmacotherapy candidate
to be tested in clinical trials. Should such trials yield positive
outcomes, it can be rapidly translated into clinical care to treat
bipolar depression due to its availability, low cost, safety, and
tolerability. A randomized, double-bind, placebo-controlled trial of
chronic trimetazidine as an adjunct therapy in >6000 patients who
had undergone successful percutaneous coronary intervention at
365 centers in 27 countries across Europe, North Africa, Asia, and
South America showed strong evidence for the safety and
tolerability of trimetazidine compared to placebo at 27.5 months
of chronic daily administration [189]. Such a safety profile is better
than existing first-line treatments for bipolar depression [7]. Taken
together, this review provides a rationale for the use of
trimetazidine as a promising repurposing candidate to treat
bipolar depression.
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