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Risky decision-making is a common, heritable endophenotype seen across many psychiatric disorders. Its underlying genetic
architecture is incompletely explored. We examined behavior in the Balloon Analogue Risk Task (BART), which tests risky decision-
making, in two independent samples of European ancestry. One sample (n= 1138) comprised healthy participants and some
psychiatric patients (53 schizophrenia, 42 bipolar disorder, 47 ADHD); the other (n= 911) excluded for recent treatment of various
psychiatric disorders but not ADHD. Participants provided DNA and performed the BART, indexed by mean adjusted pumps. We
constructed a polygenic risk score (PRS) for discovery in each dataset and tested it in the other as replication. Subsequently, a
genome-wide MEGA-analysis, combining both samples, tested genetic correlation with risk-taking self-report in the UK Biobank
sample and psychiatric phenotypes characterized by risk-taking (ADHD, Bipolar Disorder, Alcohol Use Disorder, prior cannabis use)
in the Psychiatric Genomics Consortium. The PRS for BART performance in one dataset predicted task performance in the
replication sample (r= 0.13, p= 0.000012, pFDR= 0.000052), as did the reciprocal analysis (r= 0.09, p= 0.0083, pFDR=0.04).
Excluding participants with psychiatric diagnoses produced similar results. The MEGA-GWAS identified a single SNP (rs12023073;
p= 3.24 × 10−8) near IGSF21, a protein involved in inhibitory brain synapses; replication samples are needed to validate this result.
A PRS for self-reported cannabis use (p= 0.00047, pFDR= 0.0053), but not self-reported risk-taking or psychiatric disorder status,
predicted behavior on the BART in our MEGA-GWAS sample. The findings reveal polygenic architecture of risky decision-making as
measured by the BART and highlight its overlap with cannabis use.
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INTRODUCTION
The ability to make decisions in uncertain conditions that involve
the balance between risk and reward is fundamental to success and
survival, and high risk-taking behavior is common among
individuals with certain neuropsychiatric disorders [1–6]. For these
reasons, the biological bases of risk-taking behavior, including its
neural underpinnings [7, 8] and genetic architecture [9, 10], have
been a subject of recent interest. The propensity for or tolerance of
risk can be evaluated using questionnaires, such as the DOSPERT
Scale [11] and other surveys of individual preferences [12], while
actual risk-taking can be measured using laboratory tests such as
the Iowa Gambling Task [13], the Cambridge Gambling Task [14],
and the Balloon Analogue Risk Task (BART) [3]. Importantly, different
measures of risk-taking, both self-report and laboratory, are poorly
correlated and may measure distinct underlying processes [15].
There is evidence that risk-taking is heritable. A twin study

estimated the contributions of genes and environment to risk-

taking propensity, using a scale that integrated seven domains of
risk-taking, and found additive genetic but individually unique
environmental influences [9]. Heritability estimates ranged from
29–55% for the different domains of risk-taking in a meta-analyses
of twin studies [9]. In another twin study, which measured risk
taking on the Iowa Gambling Task, a latent “decision-making”
factor was identified, and genetic factors explained 35%, 20%, and
46% of the variance in in a sample that was tested longitudinally
at three times during adolescent development [16].
Some progress in identifying specific genes contributing to risk-

taking has been made in large genome-wide association studies
(GWAS). Studies of self-reported risk-taking in very large samples
from 23andMe and the UK Biobank, among others, have produced
numerous associations [17–25]. Converging data from these
analyses implicated Cell Adhesion Molecule 2 (CADM2), a neural
cell-adhesion gene, in several risk-taking phenotypes
[18, 20–22, 24] and extended to drug and alcohol use phenotypes
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[23, 25–28]. In a study of UK Biobank participants, self-evaluation
as a “risk-taker” was associated with loci on chromosomes 3
(rs13084531, highlighting CADM2) and 6 (rs9379971) and shared
significant genetic risk with schizophrenia, bipolar disorder,
attention-deficit hyperactivity disorder, post-traumatic stress
disorder, smoking and obesity [21]. The largest study of self-
reported risk taking to date included over a million individuals and
identified 99 risk loci [24], implicating genes involved in
glutamatergic and GABAergic neurotransmission. Finally, an
interaction between a variant in Phospholysine Phosphohistidine
Inorganic Pyrophosphate Phosphatase (LHPP) and alcohol depen-
dence moderated self-reported history of risky sexual behavior
and was associated with brain circuitries previously implicated in
the inhibition of risky behavior [29]. Overall, the results suggested
that risk-taking is a complex trait that is highly polygenic—driven
by many genetic variants of small effect. Additional complexity is
introduced by the method of phenotype assessment, whether
self-reported personality attributions or objective performance on
a laboratory test.
In this study, we measured risk-taking behavior on the BART [3], a

laboratory test that measures risk-taking under ambiguous condi-
tions. We used a laboratory test to avoid bias that can influence self-
report data, and selected the BART because its psychometric
properties are well characterized [1, 3, 4, 8, 30, 31]. We administered
the BART in two large independent studies that also provided
genomic data. The BART consists of a series of choices in which both
the potential for reward and the risk of loss increase. Human data
exploring the genetic basis of performance on the BART is sparse,
and adequately powered studies are lacking. A twin study found
that genetic factors explained 47% of the variation in risk-taking on
the BART by young adults [32]. A study of inbred strains of rats,
performing an adapted version of the BART, demonstrated an
approximately similar level of heritability, with about 55% of the
variance attributable to heritability, and data consistent with a
polygenic model [33]. Conversely, the BART showed no evidence of
family-based heritability across extended pedigrees in a population
isolate [34]. In a study of 66 healthy adults, a score combining
functional variation across five genes affecting dopaminergic
signaling (DRD2, DRD3, DRD4, DAT1, and COMT) was related to
dorsolateral prefrontal cortical function during risky decision-
making and to task earnings [35]. A candidate gene study of 223
youths reported that female but not male carriers of the
COMT158Met allele had higher risk-taking propensity compared to
Val homozygotes on a youth-adapted version of the BART [36].
Overall, these findings suggest that performance on the BART has a
heritable component that may be related to dopaminergic function,
but the results should be interpreted with caution given a
propensity for bias in candidate gene studies.
Given variability in the existing literature, the present study

sought to develop and test a polygenic model to estimate the
variability in risky decision-making measured by the BART that is
explained by common genetic variation, and to conduct a GWAS
to identify specific risk variants. To increase generalizability and
reproducibility, we applied the model in two large samples
independently and tested for its association with psychiatric
conditions known for risk-taking and impulsivity in large publicly
available datasets.

METHODS
Participants
Data for this study came from two projects. One was the Consortium for
Neuropsychiatric Phenomics (CNP), a study performed at the Semel
Institute of the University of California Los Angeles (UCLA) to examine
underlying genetic and neural factors and their links to three neuropsy-
chiatric illnesses: schizophrenia, bipolar disorder, and attention-deficit
hyperactivity disorder (ADHD). Genetic, cognitive and behavioral data were
similarly collected in the Genetics of Impulsivity (GOI) project, performed at

the University of Georgia and the University of Chicago. Ancestry was self-
reported and genetically confirmed in both studies. Combining the CNP
and GOI samples increased power and improved generalizability of study
results. Significant care was also taken in the analytic method (see Results
section) to: a) ensure that results obtained in one sample generalized to
the other sample; b) control for demographic differences between
samples; and c) generalize findings to public datasets in the Psychiatric
Genomics Consortium.
CNP Sample [37]. Healthy control participants, ages 21–50, were

recruited by community advertisements in the Los Angeles area and were
“White, not Hispanic or Latino;” or “Hispanic or Latino, of any racial group.”
The primary language was either English or Spanish (N= 1138; 731 White,
407 Hispanic, of any race). Participants were excluded if they met the
following criteria: neurological disease, history of head injury with loss of
consciousness, use of psychoactive medications, and a positive drug
screen on the day of testing. In addition, smaller samples of people with
diagnoses of schizophrenia, bipolar disorder, and ADHD (following
Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition—
Text Revision (DSM-IV-TR) [38]) were recruited using a patient-oriented
strategy involving outreach to local clinics and online portals. Use of
psychotropic medications was allowed in the patient groups. In total, 996
healthy individuals, 53 participants with schizophrenia, 42 with bipolar
disorder, and 47 with ADHD were evaluated. Both healthy and affected
individuals participating in the CNP study were included because,
according to the model, we would expect a similar genetic basis in
healthy and affected individuals, with more extreme phenotypes
expressed in those with psychiatric disorders. Diagnoses for all individuals
followed the DSM-IV-TR, and were based on the Structured Clinical
Interview for DSM-IV (SCID-I) [39] supplemented by the Adult ADHD
Interview (a structured interview form derived from the Kiddie Schedule
for Affective Disorders and Schizophrenia, Present and Lifetime Version
(KSADS-PL) [40]. Participants who were included underwent a neuropsy-
chological battery and submitted blood samples for genotyping. All
subjects gave written informed consent in line with the procedure
approved by the Institutional Review Board at UCLA. Data from the CNP
study have been reported in prior publications [41–57].
GOI Sample [15, 58]. A total of 934 Caucasian-ancestry participants 18–30

years of age were tested at two sites (40% at Athens, GA and 60% Chicago,
IL). Inclusion criteria were English fluency, age 18–30 years, and self-
reported Caucasian race and non-Hispanic ethnicity to minimize popula-
tion stratification [59]. Exclusion criteria were scores >12 on the Alcohol
Use Disorders Identification Test (AUDIT) [60] or the Drug Use Disorders
Identification Test (DUDIT) [61]. All participants were screened for recent
alcohol or drug use via breathalyzer or urine drug test before testing.
Another exclusion criterion was treatment over the last 12 months or self-
reported current need for treatment for: depression, bipolar disorder,
general anxiety, social anxiety, post-traumatic stress disorder, obsessive
compulsive disorder, panic attacks/disorder, phobia, schizophrenia spec-
trum disorders, anorexia, bulimia, or binge eating. ADHD was not excluded
in this sample although it was exclusionary in the CNP sample. DNA was
collected via a saliva sample for DNA collection in an Oragene DNA kit
(DNA Genotek Inc., Kanata, ON, Canada).

Balloon Analogue Risk Task. The BART is a computerized behavioral
measure of risky decision-making [4]. Virtual balloons are presented on a
computer screen, one balloon per trial, and the participant can “pump” the
balloons up by pressing a response key, virtually inflating the balloons.
Each pump produces a set increase in an amount of money (e.g., 5 cents
per pump) or points earned on that trial. However, after a certain number
of pumps, determined probabilistically, the balloon explodes, and the trial
yields no money or points. The participant must decide when to “cash out”
of a given trial, by pressing a response key, to retain earnings in a
cumulative bank. The objective is for the participant to earn as much
money, or as many points, as possible across the trials in the task. Versions
of the BART vary with respect to the number of trials/balloons used, as well
as the probability of explosions (e.g., some tasks have used balloons with a
single probability of explosion [4], while others have used different-colored
balloons with different probabilities of explosion [3]). The primary
dependent variable of the task is the mean or total number of pumps
on trials in which the balloon did not explode; these have been termed
‘adjusted pumps’. The measure ‘adjusted pumps’ is preferred to the
absolute number of pumps because explosions artificially restrict the range
of pumping [30].
The CNP version of the BART task, programmed in E-Prime 2.0, consisted

of 40 total trials, with balloons that were colored red or blue (20 of each
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color). Red balloons were “high risk”, with the probability of explosion on
each red balloon randomly selected from a range of 1 to 32 pumps; blue
balloons were “low risk”, in which the probability of explosion was
randomly selected from a range of 1 to 128 pumps. The order of balloon
color across trials was random. Participants received 5 points for each
adjusted pump. The GOI version of the BART consisted of thirty balloons,
associated with a probability of explosion selected from a range of 1 to 64
pumps. Participants in both studies did not receive payment for their
performance.

Genetic analyses. Genotyping was performed using the Omni Illumina
500,000 SNP chip. For all genotype data, markers were excluded for quality
control if they had less than a 95% genotyping rate, a minor allele
frequency less than 1%, deviated significantly from Hardy Weinberg
equilibrium (p < 10−6), or were identified as having non-random genotyp-
ing failure (p < 10−10). Individuals were excluded for missing genotypic
data (<2% genotypes), missing phenotypic data, or deviation from
expected autosomal heterozygosity (Fhet < 0.2). To reduce spurious effects
arising from poorly powered rare variants in these modestly sized samples,
only SNPs with MAF greater than 0.20 were included in the analyses, thus
emphasizing the inclusion of more reliable associations. Results were
similar but slightly weaker when the traditional 0.01 cut-off was used.
GWAS was performed on each of the CNP and GOI datasets as follows.
Principal component analysis (PCA) was performed within study as well as
joint with the 1000 Genomes (1KG) ancestry informative markers for use in
QC and modeling efforts. Partial correlations (in R) were used in the
polygenic scoring analysis to control for the population differences in the
phenotype when comparing to the scored PCA-controlled GWAS. Plink [62]
was used to perform two linear regressions with Mean Adjusted Pumps as
the dependent variable of interest, supplying sex, age and the first five PCA
dimensions as covariates (Mean Adjusted Pumps ~ sex + age + 5 ancestry
principal components). Each set of summary statistics was clumped and,
along with the paired genotypes from its complement study, used to
create polygenic scores for each individual in the target sample [63]. As
performed by the PRSice method, we tested multiple thresholds (in this
case 500 possible thresholds between 0.001–0.5) by running a linear
regression of the score at each threshold (MeanAdjPumpsZ~SCORE@-
THRESHOLD + sex + age+ 5 ancestry principal components) to determine
the optimal threshold (the smallest p-value). The p-value obtained at the
optimal threshold is corrected for multiple testing (500 potential thresh-
olds) using the false discovery rate (FDR). Scores were then compared
using a partial correlation analysis that controlled for the same covariates
in the target dataset as in the source’s GWAS. Imputation to 1KG Phase 3
was also performed on each dataset, and the same methodology was
applied.
A MEGA-analysis GWAS was performed on the merged imputed

genotypes of the CNP and GOI datasets. To account for the sample
population differences, the MEGA-analysis included the population
covariates of the respective sources while also covarying by the source
factor itself. After standard QC measures (see methods above), PLINK was
used to perform a linear regression per the following model (Mean
Adjusted Pumps ~ gt + sex + age + study sample + 5 ancestry principal
components). A quantile-quantile (Q-Q) plot of observed vs. expected p-
values and Manhattan plot of the linear regression results were performed

in R. Estimation of genetic variance of all SNPs was performed using the
GREML method [64] as implemented in GCTA (v1.92.4) [65]. Risk scores
were then derived and the best MEGA-PRS was then tested for overlap
with the single question self-report of risk-taking (“Would you describe
yourself as someone who takes risks?”) in European UK Biobank
participants (N= 436,236) [19] and disease status in European samples
from the 2017 public ADHD, Bipolar Disorder, Alcohol Use Disorder, and
“ever/never” prior cannabis use datasets using PRS methods above. Public
datasets representing Attention-Deficit Disorder (PGC & iPSYCH,
N= 19,099 cases, 34,194 controls) [66] and Bipolar Disorder (PGC,
N= 20,352 cases, 31,358 controls, effective sample size 46,582) [67], a
non-psychiatric control phenotype (PGC Inflammatory Bowel Disease,
which is a combination of Ulcerative Colitis and Crohn’s disease PGC
datasets), as well as Alcohol Use Disorder (UK Biobank AUDIT, N= 121,604)
[23] and prior cannabis use (UK Biobank and ICC, N= 53,179 cases, 131,586
controls, effective sample size 151,493) [28] were downloaded and
summary statistics were extracted in order to construct PRS models. For
each disorder, a PRS was constructed and tested for prediction of BART
performance in our MEGA-analysis combined sample. Similarly, UK Biobank
analyses were conducted using the summary statistics as reported by
Clifton and colleagues [19] to evaluate a shared genetic propensity for risk-
taking between self-report and BART performance in CNP, GOI and our
MEGA samples according to the PRS methods above.

RESULTS
A PRS for risky decision-making, constructed based on BART
performance in the GOI sample (i.e., the discovery sample),
predicted BART performance in the CNP sample (replication
sample) (r= 0.13, p= 1.2 × 10−5), and the correlation remained
significant (pFDR= 5.2 × 10−5) when corrected for multiple
comparisons made in empirically determining the optimal p-value
threshold (0.34) for SNP inclusion in the model (Fig. 1A). When the
PRS was derived from BART performance in the CNP dataset and
applied to the GOI sample, a similar correlation was observed
(r= 0.09, p= 0.0083, pFDR = 0.04) at an optimal threshold of
0.361 (Fig. 1B). Exclusion of subjects with psychiatric diagnoses
and Hispanic origin from the CNP data produced similar but less
significant results, suggesting a power limitation.
The Q-Q plot and genomic inflation factor lambda for the

MEGA-analysis demonstrated that the principal components
employed corrected for any effects of ancestry (Fig. 2A). MEGA-
analysis linear regression (Fig. 3B) identified one variant that
achieved genome-wide significance, SNP (rs12023073) in the first
intron of immunoglobulin superfamily member 21 (IGSF21) on
chromosome 1 (p= 3.24 × 10−8). The C-allele was associated with
greater risk-taking compared to the minor T-allele (MAF= 0.34). A
weaker signal occurred at rs386423 in a proximal intron of Slit-
Robo GTPase activating protein 3 (SRGAP3) on chromosome 3
(MAF 0.41, p= 4.91 × 10−6). SNP heritability (h2 SNP) was
significant at 0.27 (SE= 0.08, 7.1 × 10−14); however, this estimate

Fig. 1 Polygenic Risk for Risky Decision Making as Measured by BART Performance is Replicated Across Independent Samples. A PRS
analysis using GOI as training and CNP as replication sample. B PRS analysis using CNP as training and GOI as replication sample. The optimal
threshold (0.338 in A and 0.108 in B), determined by strongest PRS correlation with BART phenotype, is highlighted by the box along with
correlation (r), p-value, and FDR corrected p-value. Horizontal line indicates nominal significance.
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should be interpreted with caution given the limitations of our
small sample size.
When PRS data derived from the selected Psychiatric Genomics

Consortium public datasets were applied to our MEGA-analysis,
we observed a significant overlap in genetic factors underlying
BART performance and prior cannabis use (Fig. 3, p= 0.00047,
pFDR = 0.0053) but not ADHD, Bipolar Disorder, Alcohol Use
Disorder or non-psychiatric control.

DISCUSSION
In line with the few previous rodent and human studies, our
findings support a heritable, polygenic component to risky
decision-making, with common variation (h2 SNP) explaining
27% of the variance in risk-taking on the BART. h2 SNP prediction
in this modest sample (n= 2044) should be interpreted with
caution [68]; however, our finding is in line with the 47% estimate
from twin data that also includes rare variant contributions.
The MEGA-analysis identified two signals, one meeting a

genome-wide significance threshold and the other approaching
significance. Neither of these loci were reported by the large

self-report biobank studies; however, consistent with our findings,
gene pathway analysis in the largest study revealed an enrich-
ment of brain expressed genes involved in maintaining the
excitatory-inhibitory balance [24]. Our key associated SNPs map to
genes that represent strong biological candidates for risk-taking
and relevant phenotypic associations, as discussed below. The
strongest signal from the MEGA-analysis occurred at SNP
rs12023073, a variant in the first intron of IGSF21, annotated as
impacting an enhancer of brain expression based on histone
marks [69]. The immunoglobulin superfamily protein IGSF21,
which is robustly expressed in brain tissue, is believed to play an
integral role in thalamic and inhibitory synaptic development [70,
71]. Through an unbiased expression screen and proteomic
analysis in mice, Tanabe and colleagues found that postsynaptic
Igsf21 interacts with presynaptic Neurexin2α [70]. They further
showed that Igsf21 knockout mice have a number of phenotypic
abnormalities, including impaired inhibitory presynaptic organiza-
tion, diminished GABA-mediated synaptic transmission in hippo-
campal CA1 neurons, and deficits in sensory gating [70].
Interestingly, ethanol consumption increases the expression of
Igsf21 in rhesus macacques [72].
The rs386423 SNP in SRGAP3, demonstrating suggestive

association, is annotated as an enhancer in multiple tissues based
on histone marks, and is in perfect linkage disequilibrium with
SNPs impacting brain expression [69]. Rodent studies reveal
prominent hippocampal and cortical expression and gene knock-
out results in neurodevelopmental cognitive and behavioral
phenotypes [73, 74]. In humans, SRGAP3 is also known as mental
disorder-associated GAP protein (MEGAP) given its hypothesized
role in chromosomal intellectual disability in the context of
hemizygous loss of function [75]. Two de novo missense variants
in SRGAP3 were proposed to be related to Autism Spectrum
Disorder in the Simons Simplex Collection [76].
Given the shift in conceptualizing mental illness from a

categorical disease model to extremes of intersecting dimensional
traits seen in the population [77], we tested whether risky
decision-making represented one domain that would genetically
overlap with psychiatric disorders characterized by prominent
impulsivity and risk-taking. We hypothesized that ADHD, Bipolar
Disorder, and substance use disorders (specifically Alcohol Use
Disorder and cannabis use) would share polygenic underpinnings
with risky decision-making, but only prior cannabis use was
correlated with BART performance in our combined sample,
notably withstanding correction for testing in 5 phenotypes. While
a shared genetic basis between these phenotypes is also bolstered

Fig. 2 A GWAS Performed in the Combined GOI and CNP Samples Identifies One Locus Associated with BART Performance at the
Genome-wide Significance Level. A Q-Q plot of expected vs. observed p-values for the MEGA-GWAS. B Manhattan plot of genome-wide
association with risky decision-making as measured by BART performance. Upper line demarcates genome-wide significance. Lower line
indicates Bonferroni correction significance threshold.

Fig. 3 PRS Analysis of Cannabis Dependence Versus BART Perfor-
mance in the Combined GOI and CNP Samples Reveals
Shared Genetic Risk. The optimal threshold (0.11), determined by
strongest PRS correlation with BART phenotype, is highlighted by
the box along with correlation (r), p-value, and FDR corrected
p-value. Horizontal line indicates nominal significance.
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by the emergence of the CADM2 locus as the strongest signal in
multiple prior GWAS studies of both risk-taking [21, 24, 25] and
Cannabis Use Disorder [26, 27], this locus did not contribute to
risky decision making in our sample.
While our PRS findings suggest a common genetic contribution

to both risky decision-making and cannabis use, we cannot isolate
the component of behavior on the BART that is responsible for the
genetic overlap. BART performance is a genetically complex
phenotype. Because outcome probabilities are not known when
the participant starts the task, multiple cognitive processes, which
include the propensity for risk-taking as well as learning, are
involved. In a study using a version of the BART similar to the one
implemented in the CNP sample, adolescents who reported daily
cigarette smoking failed to increase their responding to balloons
across trials, whereas nonsmokers adapted their performance over
time and thus earned more money [31]. This same study found
that the adjusted pumps measure was modestly but positively
associated with years of education and nonverbal IQ. At moderate
levels, pumping on the task is adaptive and results in increased
gains, despite the presence of some explosion trials. In contrast,
excessive pumping is maladaptive. Relevant to the present finding
with cannabis use is the observation that young adults who
regularly use cannabis showed significant differences in self-
reports on social, health/safety, and ethical risk-taking scales, but
not in the propensity to take recreational or financial risks or in
performance on a laboratory monetary risk-taking task, as
compared non-using control participants [78]. Therefore, the
component of BART performance that is linked to the observed
genetic overlap with initiation of cannabis use is yet to be
determined.
The complexity of the BART performance phenotype may also

underlie the lack of genetic correlation with self-reported risk-
taking in the large UK Biobank sample. The BART is an objective,
quantitative measure but its complexity poses a barrier to
achieving adequate sample sizes needed to detect smaller genetic
effects. In contrast, the UK Biobank approach uses a very blunt
tool but benefits from superior power. Thus, these approaches
may both detect legitimate but separate components of risky
decision-making. Our data do not suggest that the self-report of
risk-taking, despite its reported correlation with self-reported
smoking, alcohol use, and addiction in the UK Biobank study,
captures the dimensions of risky decision-making assessed with
the BART although power limitations may have precluded our
finding such a relationship.
Notably, the cannabis use sample was the largest of the publicly

available samples examined, many times larger than the ADHD
and bipolar samples. Since the public samples are highly
heterogeneous, it is impossible to make comparative conclusions
across disorders. Importantly, the lack of PRS replication does not
necessarily imply an absence of shared genetic risk, but rather an
inability to detect it with the current samples. It may be relevant
that a meta-analysis confirmed that euthymic patients with bipolar
I disorder make more risky choices than healthy controls on the
Iowa Gambling Task, with an effect size that was small to medium
by Cohen’s standard [79]. Moreover, lack of a difference in
performance between patients with ADHD and healthy controls
on the Cambridge Gambling Task despite differences in real-life
risk taking suggests some insensitivity of laboratory tasks to
propensity for risk-taking [80]. The positive correlation between
BART performance and the categorical diagnosis of prior cannabis
use, however, is consistent with the hypothesis that risky decision-
making and initiation of substance use share a common
genetic link.
This study represents the first genome-wide assessment of

heritability of risky decision-making based on BART performance.
It benefits from comparing similar objective and complex
behavioral measurements in moderately sized, relatively geneti-
cally homogenous samples. Suboptimal power is the main

limitation of this study. Given the highly complex phenotypes
being evaluated, it is likely that a much larger sample is needed to
definitively identify the variants and genes associated with risky
decision-making and demonstrate an association with these and
other psychiatric diagnoses. Further limitations relate to genetic
ancestry. The sample is unpowered for meaningful examination of
ancestry or sex, and there was an uneven representation of
Hispanic ethnicity between the CNP and GOI datasets, which may
be responsible for the weaker correlation observed when the
discovery set was less homogenous. While principal component
analysis shows substantial overlap between the American Hispanic
and Caucasian CNP sample, the CNP and GOI datasets are
imperfectly matched.
Future analyses would benefit from a more comprehensive

approach to ancestry. Regarding the link to psychiatric illness,
analyses utilizing public data rely on highly heterogeneous
datasets with limited available data. As additional diagnoses and
sample numbers expand within the public domain, additional
analyses will be possible. Additionally, if available in the future, a
replication sample providing independent BART data to confirm
the MEGA-PRS would be useful to further validate the findings.
Participants were not paid for their performance on the BART in
the current study; this could be considered in future studies to
enhance motivation. The ability of large population studies to
comprehensively capture complex psychological constructs would
be facilitated by further understanding of the limitations of self-
report data versus objective measures and the development of
strategies to align these approaches. Finally, targets for the
development of novel psychiatric treatments may be revealed by
clarifying the biological bases of common endophenotypes, such
as risky decision-making, that may be more therapeutically
tractable than categorical disease.
In conclusion, here we demonstrate for the first time that a

polygenic score derived from a GWAS of a risk-taking phenotype
successfully replicates in a distinct independent sample. Combining
the samples, we found that a substantial portion of the variance in
performance on the BART was captured by common genetic
variation, consistent with the idea that risk-taking behavior is a
heritable, highly polygenic trait. A MEGA-analysis GWAS, while not
comprehensive due to limited power, produced one significant and
one suggestive association in two functionally relevant genes.
Finally, shared genetic architecture between BART performance in
our sample and categorical cannabis use in a public dataset
supports the current model of risky decision-making as a
dimensional, intermediate phenotype of substance use disorder.
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