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Computational psychiatry is a field aimed at developing formal models of information processing in the human brain, and how
alterations in this processing can lead to clinical phenomena. There has been significant progress in the development of tasks and
how to model them, presenting an opportunity to incorporate computational psychiatry methodologies into large- scale research
projects or into clinical practice. In this viewpoint, we explore some of the barriers to incorporation of computational psychiatry
tasks and models into wider mainstream research directions. These barriers include the time required for participants to complete
tasks, test-retest reliability, limited ecological validity, as well as practical concerns, such as lack of computational expertise and the
expense and large sample sizes traditionally required to validate tasks and models. We then discuss solutions, such as the
redesigning of tasks with a view toward feasibility, and the integration of tasks into more ecologically valid and standardized game
platforms that can be more easily disseminated. Finally, we provide an example of how one task, the conditioned hallucinations
task, might be translated into such a game. It is our hope that interest in the creation of more accessible and feasible computational
tasks will help computational methods make more positive impacts on research as well as, eventually, clinical practice.
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INTRODUCTION
A major area of both need and opportunity in the field of psychiatry
is establishing the link between observed symptoms (e.g., the
criteria we use to diagnose and characterize illnesses) and
neurobiological findings (e.g., alterations in functional connectivity
or gene expression) via alterations in established information
processing carried out by the brain. The challenge posed here is that
of mapping symptoms onto neurobiology in a principled manner,
based on a sound understanding of what the brain is computing,
how this computation is implemented neurobiologically, what
specific computations are altered in disease, what changes in
neurobiological processes account for these alterations, and how
these alterations give rise to symptoms. This work is carried out in
the hope that an improved mechanistic understanding of
psychiatric illnesses will lead to new treatments and biomarkers
that could be linked to treatment mechanisms of action.
The field of computational psychiatry aims to fill this need [1–4].

Computational psychiatry can be broadly divided into two main
fields [5, 6]. The first focuses on prediction, using primarily data-
driven methods and aimed at discovering useful models for
predicting outcomes or events of interest, such as remission with
antidepressant treatment [7–10]. Predictive models have begun to
be implemented in clinical practice [11–13], and the major
challenge for these models at present is validation, replication,
optimization of clinical implementation, and interpretability [14].
The second domain focuses on theory using purely in silico
models and/or models meant to explain the generation of
collected data with the intention of better understanding the

pathophysiology of disease. The theory-driven domain of compu-
tational psychiatry is less often implemented in clinical and large-
scale research efforts, and will be the focus of this paper; further
references to computational psychiatry will therefore refer to this
branch of the field, aimed at better understanding disease
processes. There are many proposed computational approaches
for studying relevant psychiatric problems, ranging from reinfor-
cement learning models to hierarchical Bayesian models, amongst
a number of other approaches.. However, common to each is the
aim of identifying latent states that drive both normative brain
function as well as symptom and disease development: as in
physics, we should be able to formally describe models by which
the brain processes information and then design experiments and
gather data that specifically support, refute, or call for a
modification of the models proposed.
The key element of computational psychiatry is that many of

these models, which can be used to simulate behavior and which
can be fit to observed data, contain parameters corresponding to
latent states or processes that are not otherwise easily observable.
These parameters can then in turn be correlated not only with
behavior, but with various kinds of neural measures [15–17],
ultimately linking behavior and neural implementation via
computation. This approach has been applied to a number of
conditions such as psychosis [15, 18–23], anxiety and depression
[17, 24–26], obsessive-compulsive disorder [27], substance use
[28, 29], and transdiagnostic samples [17, 30, 31] and remains an
area of emphasis for major funding sources in psychiatric research,
including the National Institute for Mental Health (NIMH).
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Indeed, computational approaches are viewed by some as the
field’s best option for bringing psychiatric nosology into step with
that of the rest of medicine, by linking disease manifestations and
distal etiologies via distinct mechanisms [2, 3].
It is worthwhile discussing one illustrative example of this

approach that has recently been applied to understanding
hallucinations, which may be formulated as arising because of a
tendency to over-estimate the reliability of one’s prior expecta-
tions (or priors, in Bayesian terms) during perception
[15, 19, 21, 22]. With this hypothesis in mind, researchers
formulated a task to create conditioned hallucinations (CH) by
heightening expectations [15]. CH occur as a result of classical
conditioning, where a subject is presented with a salient stimulus
paired with a difficult-to-detect target (e.g., an image and a sound)
at the same time in a repeated manner, such that in the presence
of the salient stimulus (e.g., the image) and the absence of the
target, the subject may hallucinate the target due to their strong
expectation that the stimulus should be present. This task is
modeled using the Hierarchical Gaussian Filter or HGF [32] which
estimates parameters that can in turn be associated with
neurobiological measures, such as neuroimaging data [15]. We
will return to this illustrative example later in this article.
Adopting these methods into larger-scale translational research

efforts would allow for the identification of a more complete set of
computational ‘phenotypes’ than would be observed in smaller
studies and would facilitate longitudinal characterization of
computational parameter change over time. An improved under-
standing of the range and temporal dynamics of these parameters
and whether they covary with clinical symptoms, functional
impairment, or brain function, would allow for improved
identification of mechanistically distinct patient groups both
within and across diagnostic categories (e.g. see [17, 30]). This
could, in turn, lead to novel therapeutic, diagnostic, and treatment
monitoring approaches. These advances would only be possible in
large cohort studies implementing standard batteries of computa-
tional tasks. Recent progress in computational methods has, we
argue, created a novel opportunity to adopt these methods into
large-scale research efforts, and perhaps eventually into clinical
practice. Below, we will briefly discuss some of the barriers to
widespread adoption into large scale translational research efforts
that computational psychiatry faces, as well as some potential
routes to overcoming them.

Barriers
We propose that practical concerns are most likely to act as
barriers to the widespread implementation of computational
approaches in psychiatry. Most important among these are time,
ecological validity, and practical implementation concerns.

Time. When designing or modifying a task intended to be suitable
for computational modeling, the primary concern of the designer is
generally the validity of the task in terms of its ability to capture
relevant latent states that drive behavior. This is similar to the
problem faced by many classical neuropsychological or psycho-
physical tests, which often require many trials to establish reliable
measures and which in turn can require, in some cases, one to
multiple hours of testing, depending on the range of tasks included
[33–35]. Recently-published task-model combinations in computa-
tional psychiatry take between 15 and 40minutes for each
assessment [20, 36–39]. Adding any one of these tasks may present
a burden in the context of a larger study that must also collect
various clinical and neurophysiological measures. In addition, each
of these tasks is optimized for a certain set of parameters; as such,
multiple tasks would likely be required for the recovery of an
adequate computational phenotype of an individual. As these tasks
have not yet been integrated into batteries optimized for feasibility,
larger-scale research projects would be hard-pressed to include
several of them into their protocols.

Ecological validity. Another significant limitation of current tasks
in computational psychiatry, as well as in more traditional
neuropsychological testing, is the fact that they are not
ecologically valid: behavior or experiences during a task most
often do not reflect clinically relevant content domains, contexts,
and/or symptoms as they are experienced in the real world [40].
For example, decisions aimed at maximizing small amounts of
monetary reward or minimizing small shocks in the lab could
plausibly engage very different prior expectations than decisions
in real- world contexts to avoid feared situations or to maximize
overall life satisfaction. Laboratory tasks are also generally
designed to isolate certain behaviors or cognitive skills so that
they can be effectively measured, modeled, and interpreted.
Unfortunately, this ignores the fact that, during real-world
functioning, a participant might employ multiple skills when
solving a given problem or might need to solve different problems
in sequence or in parallel; additionally, various affective or
memory-based cues, or volatility in the environment, may
interfere with function in a manner not apparent in the more
sterile environment of a task [40–42]. It is important to note,
however, that some neuropsychological and computational tasks
(and their parameters) have been linked directly to patient
experiences and outcomes [3, 17, 28–31]. Indeed, we have
demonstrated that the parameter that denotes the relative
overweighting of priors in the HGF model of the CH task
correlates with recent hallucination severity [36]. Similarly, under-
standing how choices and decisions made during experiments
relate to real-world behavior has long been a focus of fields such
as psychology and economics, and methods and approaches have
been developed in these fields to improve the ecological validity
of tasks and to better define which aspects of it are most
important in a given context [43, 44]. For example, there is
evidence from some choice experiments that allowing people to
have more time to make a decision (e.g. about vaccination), as
they would in the real world, seems to reduce experiment related
bias (in the case of vaccination, this was demonstrated by reduced
propensity of those who were given time to think to fail internal
validity tests on surveys about vaccines) [43, 45]. There are
limitations to these findings, however. For example, the CH task
may generate a parameter that correlates with recent hallucina-
tion severity, but important causal factors have not yet been
included in the task or model: we are currently investigating more
ecologically valid implementations of the task that incorporate
affect and stress, given the importance of these in fluctuations of
symptom severity in the real world [46].
However, it is important to note that the limitations inherent in

less ecologically valid task implementations should not lead to the
conclusion that these tasks are not valid; rather, they are
abstractions that are often necessary in order to understand and
operationalize latent constructs and that may, as discussed,
provide clinically meaningful results. We argue simply that
increasing ecological validity may be of use in widening our
understanding of how these constructs may interact with others in
more realistic environments and/or in those that more closely
probe clinically relevant content domains. As we discuss in the
case of the CH task, where we plan to add dimensions of affect
and stress, more ecologically valid tasks and more complex
environments in which tasks can be completed may be more
informative as they include information about factors not present
in less ecologically valid implementations of a task. However,
those less ecologically valid implementations remain crucial; in
many cases having access to the initial abstraction provided by a
less ecologically valid task is necessary to interpret the more
complex results of an ecologically valid version of the same task.

Implementation concerns. In addition to the fact that a standard
battery does not yet exist that would facilitate the adoption of
these measures, there are several other practical barriers to

D. Benrimoh et al.

2190

Molecular Psychiatry (2023) 28:2189 – 2196



implementation. One is the fact that computational psychiatry
remains a niche field, with few investigators being equipped to
implement, refine, and interpret relevant models. This is proble-
matic because, in many cases, investigators with relevant research
questions, but without a computational background, would
benefit from being able to implement a standardized version of
a task that produces an output with a clear report of the results,
but are prevented from doing so because user-friendly versions of
tasks or models often do not exist. In the neuropsychological
realm, this is a problem that is partially addressed by digitized
batteries, where investigators who may not be experts in the
development or implementation of cognitive tests can still make
use of a standardized testing platform and utilize the results [34].
For those investigators who do have a computational background,
or an interest in developing relevant expertise, the process of
developing and iteratively validating models and tasks can also be
prohibitive in terms of both time and expense, resulting from the
large sample sizes required for testing.

Test-retest reliability. To be useful as clinical assessment tools, it is
also imperative that computational model parameters can be
measured repeatedly over time (e.g., at key points during
treatment). Yet, as many of these tasks involve learning, decision
strategies can change (e.g., become more habitual and with more
confident priors) with repeated performance. This can result in poor
test-retest reliability, raising the concern that the same latent
computational process is not being captured at each timepoint of
assessment. It is not yet clear which parameters should be expected
to fluctuate in a state-like fashion, and over what time scales, and
which parameters should be expected to remain more static and
trait-like. Part of this issue arises from the lack of longitudinal
studies in computational psychiatry; a key approach in the future
will be careful temporal characterization of these parameters.

Solutions
We argue that each of the barriers above have arisen because the
field of computational psychiatry has not yet pivoted from
validation of constructs to implementation of tools. We propose
the following solutions to address these barriers in turn.

Time. In order to reduce the time required to complete a given
task, existing tasks should be redesigned with a focus on
determination of the most efficient structure possible, to allow
for reliable parameter estimation in the shortest amount of time.
For example, it was recently determined that separation between
hallucinators and controls occurs fairly early on in the CH task,
information which is now being used to generate a shortened
version of this task [36]. The CH task’s relatively simple structure
(i.e., establishing a prior and then gradually testing its strength)
made a simple empirical review of the data sufficient to determine
when the task could be reasonably truncated. However, other task
designs may differ in ways that render this determination more
complex. In these situations, simulations of data generated by a
given task could be performed with the specific aim of
determining how many trials are required to derive parameters
of interest with tolerable accuracy; indeed, simulations aimed at
generating data which can then be compared to the data
produced by participants is regarded as being an important part
of good practice and model validation in the field of computa-
tional psychiatry [3]. As these tasks are shortened, it will also be
important to consider the tolerability of these tasks in aggregate, if
a traditional battery structure is to be considered.
One way to improve tolerability and increase engagement

would be to incorporate these tasks into the structure of a game, a
strategy used in other disciplines, such as education [47]. This idea
of a computational battery constructed in the form of a game is
one that we will continue to develop.

It should be noted that for some tasks, shortening may not be
possible or would lead to issues with reliability. This may be
especially true where the required precision for a single subject is
high. In these cases, it may be necessary to maintain the original
task. If these tasks are limited in number, then their integration
into standard batteries may yet be accommodated.
Reducing the time required to complete each task would be a

useful first step. Another opportunity comes in designing novel
tasks meant to model behavior driven by a richer set of
computational parameters (e.g., providing separable estimates
of various learning rates, prior precisions, epistemic drives, etc.),
where many separate tasks may currently be necessary to gather
this individual difference information. If it were demonstrated
that parameter estimates for such a task were recoverable, this
would potentially allow for fewer tasks while still providing the
same types of information about each individual. This approach
may be of use in replacing a number of single tasks that, for
reasons described above, cannot be shortened. These tasks could
then be tested in simulations to determine the optimal number
of trials thought to be needed, and this could then in turn be
tested empirically to determine if the number of shortened trials
produces valid estimates compared to longer versions of the
tasks. An example of shared parameter estimation would be of
two tasks, one focused on perceptual judgements and the other
on social judgements. While these two processes likely engage
some independent processes, there are likely to be some
common parameters shared between them, especially if
symptoms exist that seem to affect both domains (e.g. paranoid
hallucinations about a neighbor co-occuring in someone with
paranoid beliefs about their neighbors). In estimating parameters
using information from both tasks, it may be possible to
efficiently estimate the shared parameters–and at the same time
to determine which parameters are not shared, which in and of
itself would be an interesting mechanistic finding.
The use of explicit computational models is actually helpful in

this case: generative models of behavior are explicitly designed
to account for and measure different latent states driving
behavior that can appear similar when analyzed via descriptive
summary statistics. Thus, in principle, the use of explicit models
capable of taking into account multiple drivers of behavior
would make for a maximally efficient route toward estimating as
many latent states as possible at any given time.

Ecological validity. The idea of integrating tasks within a game
that has a believable world, perhaps one modeled on the
experiences of either the general public or specific groups of
participants, may also have benefits with respect to ecological
validity. By integrating tasks into this “gameworld”, it would
allow for participants to use multiple skills or be influenced by
previous experiences within the game, while solving problems
reminiscent of those they have to solve in clinically relevant real
world contexts (e.g., probing issues of avoidance, approach-
avoidance conflict, proximal vs. distal planning, exploration vs.
exploitation with respect to social contingencies and their
volatility, etc.). This in turn may increase the generalizability of
results from these tasks to clinical outcomes of interest. There is
also an opportunity here that goes beyond simply improving the
ecological validity of current tasks: by creating a gameworld,
participants would be able to make choices, approach problems
in different ways, and generally act with greater agency than is
possible in isolated computational tasks. This in turn would allow
for the modeling of new parameters related to patient choice
and their generation of action plans; these parameters in turn
may reflect latent states more relevant for the generation and
maintenance of various symptoms and syndromes [48], but
which have not been previously measured in ecologically
valid ways.
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Implementation concerns. The generation of an integrated
battery of efficient computational tasks may also help address
some of the concerns around implementation. Firstly, a more
comprehensive gameworld (with multiple nested perceptual and
decision tasks) would provide a standardized environment, and
could be engineered to elicit reports of participant behavior based
on computational models programmed into the software. The
nested tasks and models could also be made modular and
modifiable, to support researchers with various levels of computa-
tional experience in their use of this methodology. Digital tools,
such as games, are explicitly designed to be easy to disseminate
and require minimal training for participants, with training often
able to be delivered in the format of a tutorial experience within
the game. Hosting these tools online would allow access to large
populations of participants who otherwise would not be reached
by current lab-based efforts. As such, the expense required for the
development and validation of computational tasks and models
would be significantly reduced, and their use would be feasible for
a larger number of researchers with varying levels of expertise and
resources. Improved education of clinicians on what computa-
tional psychiatry is, what benefits it can provide, and how relevant
models function in an accessible manner are the most important
components of an approach to address concerns around
implementation. Adopting computational tools into large-scale
clinical research projects may provide a test bed not only for
computational models, but also for assessing different methods of
educating clinicians around their utility.

Test-retest reliability. One solution is that tasks be vetted for test-
retest reliability prior to inclusion in a battery. In previous research,
some tasks have been shown to exhibit higher reliability than
others, and this can depend on the time elapsed between
assessments [28, 31]. Another possible solution would be to have
participants complete tasks multiple times before starting to use
them for assessment, which could increase reliability if it allows
participants to first settle into a stable strategy–which could better
mimic the stable strategies they settle into when solving real-
world contexts of clinical relevance. Yet another strategy to
consider could be to continue to vary task contents, while keeping
the abstract decision structure identical. This could in principle
minimize changes in initial strategy if participants understood
each of these tasks to be new.
It is important to understand what might be driving poor test-

retest reliability in a given task. One key driver of poor reliability
may simply be that the parameter being estimated is not stable—
that it represents a state rather than a trait marker (or a mixture of
both). For example, as discussed in the CH task, the parameter
that measures overweighting of priors is generally higher in
hallucinators than non-hallucinators, but it also fluctuates with
the severity of recent hallucination symptoms [36]. Thus, this
parameter both correlates with higher hallucination proneness (a
trait) as well as recent hallucinations (a state). In these cases, the
best approach would be to understand the temporal dynamics of
parameters that vary naturally, and to determine what other
clinical or computational parameters they vary with. Further
research into novel metrics of parameter stability may help to
better characterize which parameters should be thought of as
more state-like and which as more trait-like. In other cases, a
parameter may well be expected to be stable, but may apparently
fluctuate over time because of the methodology used to
approximate it; in these cases, novel approximation methods
might be of use in improving the reliability of parameter
estimation. Lastly, each of the parameters estimated by these
models is instantiated within brain processes that are, them-
selves, dynamic over different time scales. A fuller understanding
of these processes will help to constrain our expectations of
corresponding parameters’ stability and usefulness as state and
trait markers of disease.

Potential interactions
Thus far, we have discussed barriers and their solutions in isolation
from each other; in reality, these barriers and solutions may
interact with each other in ways that are important to consider
when designing novel tasks and models. Shortening a task, for
example, may make it more palatable for use in a battery, yielding
more data from more diverse populations; on the other hand, this
may interfere with test reliability. Providing a more realistic
environment may enhance ecological validity, but given that
performance would then depend on that enriched environment,
designers of tasks would need to validate whether parameters
estimates are consistent across different virtual environments.
Creating batteries of computational tests that could be used
widely would also create a high burden of test validation: these
tests would need to be extensively studied in different
subpopulations prior to their deployment in order to avoid
misinterpretation of results; this in turn may, in turn, hamper or
delay implementation. Finally, the creation of a battery of tests
may also create the false impression that the battery is complete
or exhaustive, which in turn would perhaps make the integration
of novel tasks and models in the future more difficult. Careful and
nuanced management of batteries would therefore be necessary.
A summary of the barriers and solutions discussed is depicted in

Fig. 1.

Conclusions and future directions
In this article, we have examined the time requirements, lack of
ecological validity, test-retest reliability, and practical considera-
tions such as the lack of widespread computational expertise and
the need for expensive validation procedures have limited the
utilization of computational psychiatry methodologies in large
research initiatives. If these barriers can be overcome, we believe
that one of the aspects of the utility of computational psychiatry—
that is, an improved understanding of latent states and the
derivation of parameters that can be linked to neurobiological
measures in order to improve mechanistic understanding—will be
more easily realized.
It is important at this point to note that the barriers and

solutions discussed here were selected with the intent of
facilitating the widespread adoption of computational psychiatry

Fig. 1 Summary of barriers to the implementation of computational
psychiatry methods into large-scale clinical research and key
proposed solutions for each barrier.
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methods into large-scale research endeavors aimed at providing
eventual clinical benefit. However, we believe it is important to
note that this would not be the sole useful application of
computational psychiatry methods. Indeed, use of these methods
may facilitate mechanistic insights that could facilitate the

development of novel interventions or tests that may be far
simpler than the computational tests that led to their creation or
discovery. Let us discuss a hypothetical example: a computational
approach may identify dysfunction of a specific brain network as
being key for the formation of psychotic symptoms at a particular
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pre-clinical stage. This may lead to studies using non-
computational methods to probe this network, perhaps using
objective measures of neural function (such as positron emission
tomography or functional magnetic resonance imaging). Further-
more, if this network were amenable to modulation with
neurostimulation, patients with abnormalities on testing may be
candidates for preventative treatment that does not require
targeting with complex computational models. This would
produce clinical benefit and research methods that can be used
at scale, without the computational methods being utilized
beyond the provision of the initial methodological insight. In
keeping with this potential approach, a recent paper demon-
strated a method for turning in- silico models of medication
adherence into an adherence questionnaire which could be
administered without the need for a computational model [49].
We believe, based on our experiences working with computa-
tional models, that using them at scale may be extremely valuable.
However, at the same time, for the reasons just discussed, we also
believe that continued research into smaller scale applications and
the development of more specialized models is equally important.
Indeed, should the large-scale application of computational
models prove too challenging at present, these smaller-scale
applications will continue to provide key insights, as they have
done in recent decades.
Our proposed solutions, which are by no means comprehensive

or definitive, have focused on a combination of a focus on good
design (i.e., re-examining tasks and shortening them when
possible, vetting or adjusting tasks to ensure test-retest reliability)
and an exploration of the opportunity presented by the
integration of tasks into an overarching game world with nested
perceptual and decision problems. Depending on its specified
contents, such a gameworld could allow for greater ecological
validity and the measurement of novel computational parameters,
while also providing a modifiable platform that would empower
researchers with varying levels of expertise and resources to begin
to engage with computational psychiatry. Future work would
therefore naturally be focused on the development and validation
of this type of broader game environment. While this effort is in its
early stages, we present here an example of how a well-validated
computational task might be transported into a game world. In
Fig. 2, we see both a depiction of a possible gameworld and a
version of the CH task, where a player learns an association
between an auditory and visual stimulus (in this case, a dragon
and its growl) while navigating the gameworld, and must react in
a way that may affect their gameplay (for example, if they fail to
dodge when the dragon is present and growling, they may suffer
a penalty). This task is modeled using the HGF, (Fig. 2b), in a
manner consistent with the gameworld. Here the player is

learning the task while playing the game, and their behavior is
guided by the logic of the gameworld, rather than it being
dictated by the instructions of an arbitrary task. It should be noted
that this example is intended for illustration and could be altered
if greater relevance to everyday life is required (e.g., replacing the
dragon with a more realistic threat).
In addition to constructing tasks in a gameworld, there are

several other potential avenues for progress. Theoretical break-
throughs in modeling techniques (for example, computational
agents capable of generating novel model architectures as they
learn) may improve our ability to reproduce empirical data and, in
so doing, improve their ability to explain neurobiological
observations. Attempting to model large and often naturalistic
data sets associated with data- driven computational psychiatry
studies may lead to advances in ecological validity for theory-
driven efforts and interpretability for data-driven ones.
It is our hope that this article, and the example above, sparks

greater widespread motivation towards developing more acces-
sible computational psychiatry measures, bringing them into the
mainstream of psychiatric research where they are most likely to
have a positive impact on patient care and preventative efforts.
Indeed, beyond their use as research tools, it is our hope that
something like the gameworld we have briefly illustrated here
could eventually become commonplace in the assessment of, and
screening for, psychiatric conditions. Furthermore, as has been
demonstrated by recent approvals of digital therapeutics for
psychiatric indications, these games may also have the potential
to serve as accessible and personalizable vehicles for the delivery
of treatments. Once computational tools have been successfully
integrated into translational research and have hopefully pro-
duced novel screening and therapeutics tools, they will face a
different set of barriers that will stand in the way of their seamless
integration into standard clinical practice. These barriers will
include regulatory considerations as well as barriers related to
implementation into clinical workflows. With respect to regulation
computational tools for direct implementation in the clinic will be
required to meet standards for efficacy and safety relevant to
medical devices [50]. Because implementation of computational
tools has not yet been attempted at a large scale, the design of
these studies will need to be rigorous and at times creative to
manage concerns around patient, clinician, and researcher
blinding as well as training users of the tool. In addition, due to
the heterogeneity present in many psychiatric disorders, careful
delineation of intended use populations as well as indications and
use conditions for potential tools will be required to ensure tools
function as intended when out of the research context. This will in
turn require extensive feasibility and validation work prior to
large-scale clinical studies. Once approval is granted, the clinical

Fig. 2 The gameworld and the Conditioned Hallucinations (CH) task within it. a The character’s avatar is located in the center of the screen
in a which represents the gameworld. The yellow box, top left in a, represents a goal to be reached. The world is available for the player to
explore and they may encounter computational tasks built into the environment as they seek to find paths towards the goal. Both task
performance and exploration will be analyzed using computational models. As an example of this is the implementation of the visual version
of the CH task: in the lower left of a, a dragon’s shadow is present. This is part of one implementation of the CH task (see b). Finally, in the red
box on the lower right is an owl that may serve as a target for an ongoing attention task, should it be necessary to track player attention over
time. b In this figure, we represent the traditional hierarchical gaussian filter (HGF) model as it pertains to the Conditioned Hallucinations (CH)
game in the example gameworld. The version of the CH task demonstrated here is a visual conditioned hallucination as it is more intuitive to
demonstrate in a static figure, but the auditory version of the CH task can easily be implemented as well. In the game, we would modify the
traditional conditioned hallucinations task such that whenever a player hears a growl and sees a dragon shadow, they should dodge it.
However, if they do not see the shadow, they should not jump. As has been done successfully in other iterations of the task, the participant
learns to associate the shadow with the growl and reports seeing the shadow (by dodging) even when it is absent. In the HGF, there are three
levels that form an agent’s perceptual model of the world in the game. Level 1 reflects the agent’s belief regarding the presence/absence of
the dragon shadow on any given trial (trialwise P(V|A)). This is reflected in their decision to dodge or not. Level 2 reflects their belief that the
dragon shadow is associated with the growl (overall P(V|A)). Finally, level 3 represents their belief in the volatility of the association between
the growl and the shadow. Based on the participant’s decision to dodge or not, we can derive three important latent parameters that could
act as behavior-based biomarkers of various psychiatric disorders: decision noise (β−1), learning rate of the auditory-visual stimulus
associations (ω), and weighting of prior expectations (ν).
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utility of these tools will be determined in part by their impact on
day-to-day clinical workflow. For example, if tools add time to this
workflow that is not offset by utility for clinical decision-making at
key junctures, they will not be adopted in a way that impacts
patient care. Once tools are integrated into clinical workflows,
continued monitoring of their validity in the intended use
population as well as efforts to expand tools to other populations
will be important. To aid this effort, the lessons learned from
iterative improvement of research-based computational psychia-
try tools should be applied to clinic-ready tools, allowing for
progressive quality improvement and refinement of application to
increasingly precise subsets of the real-world patient populations
we treat. It is important to note that this iterative improvement
will need to be conducted in concert with regulators, in order to
ensure that changes to tools as a result of data collected after
marketing continue to result in safe and effective tools for the
given indication.
Lastly, overcoming these barriers will require sustained effort

and resources from an already- overburdened population of
academic psychiatrists. Marshaling these resources will require
significant investment from both public and private sources so
that incentives and expertise can align to transform these tools
into market-ready, validated products. In many respects, the
development of computational psychiatry tools is similar to and
overlaps with the rich literature on the development and
implementation of digital tools in clinical practice that is
beginning to emerge [11–13, 51, 52]. This literature, which
provides more detail on the barriers discussed here, as well as
potential solutions, should serve as a guide for the translation of
computationally-driven devices when they are ready.
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