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Alcohol use disorder (AUD) is a complex genetic disorder characterized by problems arising from excessive alcohol consumption.
Identifying functional genetic variations that contribute to risk for AUD is a major goal. Alternative splicing of RNA mediates the
flow of genetic information from DNA to gene expression and expands proteome diversity. We asked whether alternative splicing
could be a risk factor for AUD. Herein, we used a Mendelian randomization (MR)-based approach to identify skipped exons (the
predominant splicing event in brain) that contribute to AUD risk. Genotypes and RNA-seq data from the CommonMind Consortium
were used as the training dataset to develop predictive models linking individual genotypes to exon skipping in the prefrontal
cortex. We applied these models to data from the Collaborative Studies on Genetics of Alcoholism to examine the association
between the imputed cis-regulated splicing outcome and the AUD-related traits. We identified 27 exon skipping events that were
predicted to affect AUD risk; six of these were replicated in the Australian Twin-family Study of Alcohol Use Disorder. Their host
genes are DRC1, ELOVL7, LINC00665, NSUN4, SRRM2 and TBC1D5. The genes downstream of these splicing events are enriched in
neuroimmune pathways. The MR-inferred impacts of the ELOVL7 skipped exon on AUD risk was further supported in four additional
large-scale genome-wide association studies. Additionally, this exon contributed to changes of gray matter volumes in multiple
brain regions, including the visual cortex known to be involved in AUD. In conclusion, this study provides strong evidence that RNA
alternative splicing impacts the susceptibility to AUD and adds new information on AUD-relevant genes and pathways. Our
framework is also applicable to other types of splicing events and to other complex genetic disorders.
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INTRODUCTION
RNA alternative splicing is known to be associated with many
complex diseases, especially neurological or brain disorders,
including alcohol use disorder (AUD) [1–3]. AUD is a prevalent
psychiatric disorder characterized by problems resulting from
excessive and compulsive alcohol consumption. In the United
States, AUD affects nearly 29.5 million individuals and is the third-
leading preventable cause of death [4, 5]. There is a genetic
component to the risk for AUD, with the estimated heritability
ranging from 40% to 60% [6, 7]. Genome-wide association studies
(GWAS) have identified many AUD-associated genetic variants and
genes, including genes encoding the alcohol metabolizing enzymes
ADH1B and ADH1C, zinc transporter SLC39A8, and neurotransmitter
receptor DRD2 [8–11]. Genome-wide changes in RNA splicing were
recently reported in multiple human brain regions in individuals
with AUD [12, 13]. While previous research has identified
alternatively splicedmRNAs induced by alcohol, whether alternative
splicing impacts the susceptibility for AUD is not well studied.
The major challenge of studying RNA splicing in AUD is the

scarcity of large-scale transcriptomic data with high sequencing
depths in brains from individuals with and without AUD. More-
over, the contribution of an RNA splicing event to risk for AUD

cannot be directly inferred using RNA sequencing (RNA-seq) alone
[14], because the splicing changes contributing to the disorder
cannot be distinguished from the splicing changes induced by
alcohol exposure. Currently, methods are available to infer the
causality of gene expression for a trait, such as PrediXcan [15],
transcriptome-wide association study (TWAS) [16], and summary-
based Mendelian randomization (SMR) [17]. These methods have
been used in combination with splicing quantitative trait loci
(sQTL) to study the causal effect of alternative splicing in the
susceptibility to diseases such as Alzheimer’s disease [18], glioma
[19], osteoporosis [20], and more recently, AUD [13]. Although
these studies suggest that alternative splicing of genes is
associated with complex diseases including AUD, identification
of specific splicing events would provide not only stronger
evidence that RNA alternative splicing impacts risk for AUD, but
also the molecular basis for experimentally verifying the causal
nature of RNA alternative splicing. To identify these splicing
events, it is necessary to quantify the proportion of splicing
outcome that is genetically determined and evaluate the
contribution of this proportion to AUD risk.
In this study, our primary aim was to identify alternatively

spliced exons that contribute to the susceptibility to AUD. To
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achieve this aim, we established a computational model to predict
cis-regulated exon skipping in dorsolateral prefrontal cortex
(DLPFC), using data from the CommonMind Consortium (CMC)
[21]. Using the resulting prediction models, potentially causal
skipped exons were identified by a Mendelian randomization
(MR)-based approach that examined the association between the
genotype-imputed cis-regulated components of exon skipping
and DSM-IV alcohol dependence and symptom counts, based on
individual genotype and phenotype data from the Collaborative
Study on the Genetics of Alcoholism (COGA) [22–24]. Significant
results were evaluated in a replication dataset of the Australian
Twin-family Study of Alcohol Use Disorder (OZALC) [25]. In
particular, an alternatively spliced non-coding exon in ELOVL7
was found to impact AUD susceptibility; its impact was further
evaluated by leveraging the power of additional large-scale GWAS.
Furthermore, the impact of the ELOVL7 skipped exon in the brain
was visualized by association analysis with magnetic resonance
imaging data from the UK Biobank. Predicted downstream genes
and biological pathways of the replicated splicing events
implicated immunological and neurological functions. The frame-
work presented here is broadly applicable to study the role of RNA
splicing in the heritability of complex disease.

MATERIALS AND METHODS
Dataset for splicing model development
RNA sequencing data from the dorsolateral prefrontal cortex (DLPFC) and
DNA genotyping data from 991 samples were downloaded from the
CommonMind Consortium (CMC) [21]. The RNA-seq data were processed
as described previously [26]. Genetic variants that had minor allele
frequency (MAF) ≥ 0.03, Hardy–Weinberg equilibrium P > 0.001, and
genotyping rate ≥0.95, were used as the input for imputation using the
Michigan Imputation Server with default parameters. The reference panel
used was 1000 G Phase 3 v5 (GRCh37.p13, hg19; EUR). EAGLE was used to
phase genotypes and Minimac4 (v1.2.1) was used for imputation [27].

Quantification of exon inclusion
The outcome of alternative splicing was quantified as percent-spliced-in
(PSI, Ψ) computed by replicate Multivariate Analysis of Transcript Splicing
(rMATS, version 4.0.2) [28]. We adopted the Gencode annotation (GTF,
GRCh38.p13, hg38) to determine the exon skipping events. GTF annota-
tions were converted from hg38 to hg19 using LiftOver (version 1.20.0) [29]
to be consistent with the genotype data. Using the RNA-seq alignment
files, junction reads supporting the inclusion or exclusion isoforms of all
the annotated exon skipping events were counted. PSI was calculated as,

Ψ ¼ I
LI

� ��
I
LI
þ S
LS

� �

where I and S are the junction read counts supporting the inclusion and
exclusion (skipped exon) isoforms, respectively. LI and LS are the effective
lengths of the exon inclusion and exclusion isoforms, respectively, which
were automatically calculated by rMATS based on the annotation GTF.

Modeling PSI using genotype
To quantify the component of PSI (Ψ) determined by cis-acting genetic
variants, we established a computational model based on the genotype
and PSI derived from RNA-seq data of 991 CMC subjects [21]. For
modeling, we required that each splicing event must have: (i) more than
one SNV located in the transcribed region of the gene; (ii) number of
support samples ≥100; and (iii) interquartile range (IQR) of the calculated Ψ
across all support samples >10%. Specifically, support samples were
defined as those having genotype information available and total junction
read counts (including both inclusion and exclusion events) ≥10. For each
splicing event, we retrieved all SNVs within the transcribed region
spanning from the transcription start site (TSS) to the end of 3’-
untranslated region (UTR) of the host gene with MAF ≥ 0.01 and genotype
imputation score ≥0.6. To maximize the probability that the SNVs included
in each model were informative and to reduce the computation
complexity for events with large numbers of SNVs in the transcribed
region, we selected up to 20 top SNVs based on the ranking of their

genotype correlation with Ψ. Next, we used the elastic net regularization
algorithm to determine which variants were predictive for each
splicing event.
The variants selected by elastic net were used to calculate the

genetically determined component of Ψ, i.e., Ψ̂,

Ψ̂ ¼ αþ
XN
k¼1

βkXk þ ε

where α is the intercept (basal level), βk is the coefficient (weight or effect
size) of SNV k with alternative allele dosage Xk, ε is the noise, and N ≤ 20.
For each splicing event, the model performance was further evaluated

by leave-one-out cross-validation, in which the model was established
using n-1 samples and the splicing outcome of the nth sample was
predicted. We calculated the Pearson’s correlation r between the cross-
validated Ψ̂ and the observed Ψ. The p-value of the correlation was used
as an indicator of how reliably the genetic variants explained the Ψ to
the extent measured by r. Importantly, since r is the correlation between
prediction and observation, a zero or negative value indicates that the
model is non-explanatory. Thus, to test whether the Ψ of each splicing
event is explainable by genetic variants, the p-value was calculated as
P H0 : r � 0; �Ha : r > 0ð Þ. Any splicing event with a greater significance
than the Bonferroni adjusted 5%-threshold was accepted for later
analysis. In addition, the coefficient of determination, R2, was calculated
as:

R2 ¼ 1�
X

Ψ̂i � Ψi
� �2

= Ψ� Ψi
� �2

where Ψ̂i and Ψi are the predicted and observed splicing outcomes of
individual i, respectively. Ψ is the average across all individuals.

Heritability estimation for PSI
For each splicing event, Genome-wide Complex Trait Analysis (GCTA) [30]
was used to estimate heritability (h2) of the PSI (Ψ), i.e., proportion of
variance in Ψ explained by all the genetic variants genome-wide. The
GCTA-GREML approach was performed with Ψ as the molecular trait and
using all genetic variants in the CMC samples having a genotype
imputation score ≥0.6 and MAF ≥ 0.01. The estimation of h2 was adjusted
for the covariates sex and sequencing cohort.

Independent RNA-seq data used for validating elastic net-
derived splicing models
We used genotype and RNA-seq data from 139 human postmortem brain
samples of the superior frontal gyrus (Brodmann area 8) that were
previously reported [31]. PSI of the modeled events were quantified using
rMATS with Gencode annotation (GRCh37.p13, hg19). To compare the
analysis from this cohort with CMC, the same standards were imposed.
Skipped exons that have: (i) all marker variants available in the genotypes
of the PFC samples; (ii) more than 100 samples with ≥10 junction reads;
and (iii) PSI with IQR > 0.1, were compared.

GWAS data from the Collaborative Studies on Genetics of
Alcoholism (COGA)
COGA is a family study that includes both genotypic and alcohol-related
phenotypic data [22, 23]. Genotyping and imputation were previously
described [24]. We selected variants identified as PSI-predictive in the CMC
elastic net models. We focused on 8,038 European American (EA)
individuals from 1127 independent families, the largest ancestry group
in COGA. The phenotypes used in this analysis were DSM-IV alcohol
dependence (1 if dependent and 0 if non-dependent) and symptom count
(SXCT, the number of DSM-IV criteria met by a participant; range from 0 to
7) [24]. We adjusted for 11 covariates: sex, 3 genotyping array platforms, 4
principal components of population stratification, and 3 birth cohorts [24].
Because the COGA genotyping arrays differed from CMC, the imputation
might result in different variants. When imputing the PSI of the skipped
exon from the COGA genotype data, we only used the variants that were
present in both datasets, which was over 90% of the original CMC variants.

Identification of exon skipping events contributing to the
susceptibility for AUD
A Mendelian randomization (MR)-based approach was designed to
examine the relationship between the PSI imputed from genotypes and
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the GWAS AUD trait. In our implementation, the genetic variant (x) was
the instrumental variable encoding the information from the DNA level.
The genotype-imputed PSI Ψ̂ xð Þ was an intermediate molecular trait
(equivalent to the exposure in classic MR literature) [32]. Finally, the AUD
phenotype was the outcome (y). A significant association between Ψ̂ xð Þ
and y indicates that genetic variants contribute to the outcome (AUD)
via RNA splicing.
Using the COGA data, we examined the association between the

imputed PSI Ψ̂ xð Þ and both DSM-IV alcohol dependence and SXCT using
generalized estimating equation (GEE) [24, 33]. Binomial (logit link function)
and Poisson (log link function) were assumed to model DSM-IV AUD and
SXCT, respectively. The pedigree matrix was constructed as a tiling of
blocks along the diagonal; each block contained the correlation
coefficients of individuals from an independent family. Equal coefficients
were assumed for individuals in the same family; coefficients between
individuals from different families were zero. Finally, the GEE regression
was further adjusted with covariates of sex, 3 genotype arrays, 4 principal
components related to population, and 3 birth cohorts.

Replication using data from the Australian Twin-family Study
of Alcohol Use Disorder (OZ-ALC)
This dataset, including genotypes and DSM-IV alcohol-dependence
phenotypes, was downloaded from dbGaP (phs000181.v1.p1) [25]. As in
COGA, we limited the replication analysis to European American (EA)
individuals (n= 2856), and the pedigree matrix was constructed in the
same way. Additionally, sex, age, and the first three principal components
of population stratification as specified by OZ-ALC were included as
covariates in the replication analysis.

Analysis of downstream differentially expressed genes
We stratified the CMC samples according to the high and low levels of the
genetically determined Ψ̂, for each skipped exon identified in COGA and
replicated in OZ-ALC. Read counts for the respective groups of samples
(G1: low Ψ̂; G2: high Ψ̂) were retrieved from the RNA-seq data and a gene-
by-sample read count matrix was constructed. We considered only the
autosomal genes and removed low expression genes, which were defined
by ≤ 1 CPM in more than N samples, where N ¼ 1

2min n1; n2ð Þ; n1 and n2 are
the sample numbers in G1 and G2, respectively. We used the TMM method
in the R package EdgeR (version 3.34.1) [34] to normalize the read counts.
Differentially expressed genes were identified in EdgeR using a negative
binomial model with adjustments for two covariates: sex and sequencing
cohort. Cutoff of significance was FDR < 0.05.

Pathway enrichment analysis
We used the R package ClusterProfiler (version 4.0.5) [35] to perform
enrichment analysis for the differentially expressed genes based on Gene
Ontology (GO) biological processes and molecular functions. The enrich-
ment significance threshold was FDR < 0.05. We further explored the
functions of the skipped exons by Gene Set Enrichment Analysis (GSEA)
[36] through ClusterProfiler using three pathway knowledgebases GO [37],
KEGG [38] and Hallmarks [39]. An enrichment score was computed for each
pathway to determine if it was enriched or depleted based on changes of
the Ψ̂ levels. The significance threshold was also FDR < 0.05.

Additional GWAS datasets
Summary statistics from four large-scale GWAS were downloaded: (i)
Psychiatric Genomics Consortium analysis of DSM-IV alcohol dependence
[9] (PGC, n= 52,848, EU and AA ancestries); (ii) GWAS and Sequencing
Consortium of Alcohol and Nicotine Use (GSCAN, n= 941,280, EU ancestry)
analysis of drinks per week (DrnkWk) [40]; (iii) Million Veteran Program
(MVP, n= 274,424, multiple ancestries including EU and AA) analysis of
AUD diagnosis based on International Classification of Diseases 10th
Revision (ICD-10) [41]; and iv) UK Biobank (UKB, n= 112,117, EU ancestry)
analysis of AUDIT-P (Problems) scores [42].

GWAS statistics summary-based analysis
For the gene ELOVL7, we extracted all genetic variants (x) located in the
transcribed region (from TSS to 3’UTR) from the CMC genotyped subjects.
The effect size βxy of each variant (x) on the AUD trait (y) was retrieved from
the GWAS summary statistics. The effect size βxΨ of each variant (x) on PSI
(Ψ) of the ELOVL7 exon skipping event was calculated based on CMC data,
using a linear regression model adjusted for the demographic covariates of

sex and ethnic group. To infer the causality of splicing (Ψ) on trait (y), we
co-localized βxy with βxΨ by Generalized Summary data-based Mendelian
Randomization (GSMR), in which the causal effect size of Ψ on y, i.e., β̂Ψy
was estimated by a least-square (LS) regression model [43].

Brain magnetic resonance imaging (MRI) analysis
The T1 structural MRI data of subcortical volumes (FIRST, n= 14), regional
gray matter volumes (FAST, n= 139), and genotypes for 21,402 subjects
were downloaded from UKB [44]. The Ψ̂ of the ELOVL7 skipped exon was
imputed for each subject and the Ψ̂ was regressed against each of the
FIRST and FAST volumes. The regression was conducted using generalized
linear model (GLM) with Gaussian (log link function) and adjusted for three
covariates: sex, age and education score specified by UKB [45]. FDR values
of significant changes in the volumes were mapped to the Desikan-Killiany
atlas [46] to visualize the regions of interest.

RESULTS
Predictive models for the genetic components of alternative
splicing
In this study, we focused on skipped exons (SE), the dominant
type of splicing event in the brain, including in the prefrontal
cortex [47, 48]. A predictive model was built for each SE to
determine the extent that genetic variants could explain the
splicing outcome. We predicted the genetically determined
inclusion levels (Ψ̂) for a total of 41,109 SE events annotated in
Gencode using the RNA-seq data and imputed genotypes from
the CommonMind Consortium (CMC) [21]. The overall workflow is
depicted in Fig. 1A. After filtering for the number of junction reads
(>10), number of samples (>100), and PSI variability (IQR > 10%),
there were 6284 SE events remaining for analysis. For each SE, we
used a semi-supervised method to select the SNVs that were most
explanatory of the PSI variability. Then we applied the elastic
net algorithm to determine the marker SNVs for PSI prediction.
Although we initiated the modeling using more relaxed criteria,
we found that all of the final selected variants had MAF ≥ 5%, and
90% of them had imputation scores over 0.8, indicating that our
approach converged on higher confidence SNVs.
To evaluate how much the genetic variants could explain the

splicing outcome for each SE, we performed leave-one-out cross
validation. The SNV-determined proportion in the PSI of an exon
skipping event was assessed using Pearson’s correlation r
between the predicted PSI (Ψ̂) and RNA-seq measured PSI (Ψ).
An SE with a significant p value for a positive r indicates that the
splicing outcome can be, at least partially, explained by the SNVs
in the transcribed region. The variability of the PSI explained by
the model, R2, was also calculated (Supplementary Fig. S1).
Figure 1B shows the quantile-quantile plot of the observed p
values from our models (cross validated) against the expected p
values under the null hypothesis, which were randomly drawn
from a uniform distribution ranging from 0 to 1. We observed a
substantial deviation from the null distribution, indicating that
exon inclusion of a large proportion of skipped exon events in the
DLPFC transcriptome can be partially explained by the genetic
variants. We used a Bonferroni p cutoff= (1/
6284) × 0.05= 7.96 × 10−6 for the significance of cis-regulation
because our subsequent Mendelian randomization requires strong
dependency of splicing outcome on genetic variants. This resulted
in 1093 SE events.
We found that the degree to which exon skipping was genetically

determined varied widely. For example, in NMRK1 (Nicotinamide
Riboside Kinase 1), a key enzyme in the synthesis of NAD+, the PSI of
exon ENSE00000707111was highly cis-regulated (R2= 0.847, Fig. 1C).
In contrast, in SYNGAP1 (Synaptic Ras GTPase Activating Protein 1), a
gene associated with AUD and involved in regulating synaptic
plasticity and neuronal homeostasis [11], exon ENSE00001930700
showed a low degree of cis-regulation (R2= 13.5%, Fig. 1D). Our
results are consistent with the notion that complex regulatory
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mechanisms influence splicing outcomes and that genetic variants
are only one of several contributing factors.

Validation of predictive models
To test whether the marker variants from the elastic net models
were appropriately determined, we evaluated the model predic-
tions for the 1,093 events by estimating the heritability of the
splicing outcomes using GCTA [30]. We found that the R2 of the
model prediction for 87.5% of the events were within the 95%
confidence interval (CI) of the GCTA estimated heritability, h2

(Fig. 1E), which indicates that the genetically determined splicing
outcomes can be largely explained by the variants we selected
within the transcribed region.
We carried out a replication analysis by predicting the PSI in an

independent, previously reported RNA-seq dataset from superior
frontal gyrus of subjects from the New South Wales Brain Tissue

Resource Center (NSWBTRC) [31]. PSI of each SE was predicted
based on the genotypes of the NSWBTRC subjects using the models
established from CMC. Using the same criteria as for the CMC cohort
resulted in 570 SE, which were used to compare the model
predictions from the CMC and the NSWBTRC cohorts. We found that
the predictions from the NSWBTRC dataset was consistent with that
of CMC (Fig. 1F). The majority (75.4%) of the results showed positive
correlation between the genetically imputed and the RNA-seq PSI.
Similar to the CMC result (Fig. 1B), the p value distribution deviated
from the null hypothesis of randomness (Fig. 1G).

Identification of SE contributing to AUD susceptibility
To test whether these skipped exon events play a causal role in
the development of AUD, we designed a MR-based approach.
First, considering the genetic variants as the instrumental variable,
we imputed the splicing outcome Ψ̂ for each of the 1093 SE using
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our predictive models, based on the genotypes of 8038 EA
subjects from 1127 independent families in COGA [24]. Second,
we examined the associations between Ψ̂ and alcohol depen-
dence diagnosis (DSM-IV, n= 2348 control and 2412 AUD
subjects) and symptom count (SXCT, n= 7421; 67% had one or
more symptoms). The analysis workflow is depicted in Fig. 2A.
Of the 1093 SE, we found that five were significantly associated

with DSM-IV dependence (Fig. 2B) and 24 were significantly
associated with SXCT (Fig. 2C); two events were associated with
both DSM-IV and SXCT. Overall, the result of our MR-based analysis
indicated that 27 SE events contributed to at least one of these
AUD traits (Supplementary Table S1).
We next asked whether these 27 events could be replicated in

an independent dataset. To address this question, we conducted
the same analysis using the Australian Twin-family Study of
Alcohol Use Disorder (OZ-ALC) dataset, which included 2856
individuals [24]. We found that six of the 27 SE were replicated
with FDR < 0.05; these events were among the top candidates
ranked by p-value from the COGA discovery cohort (Fig. 2B, C).
Moreover, the effect sizes of all six SE were consistent in both the
COGA and OZ-ALC cohorts (Fig. 2D, E). Detailed information for
the 6 events is summarized in Table 1.
The host genes for these six SE include one lncRNA (LINC00665)

and five protein-coding genes: NSUN4 (NOP2/Sun RNA Methyl-
transferase 4), SRRM2 (Serine/Arginine Repetitive Matrix 2), ELOVL7
(Elongation of Very Long Chain Fatty Acids Protein 7), DRC1
(Dynein Regulatory Complex Subunit 1) and TBC1D5 (TBC1
Domain Family Member 5). We searched the GTEx database and
found that all six genes are expressed in the brain. We also found
evidence in the literature that each of the six genes plays roles in
alcohol-related diseases, neurological disorders, or immune
response [49–55]. In addition, the elastic net models specified
51 genetic variants that are most explanatory to the PSI of the six
SE (Supplementary Table S2). None of these explanatory variants
have previously been associated with AUD in the NHGRI GWAS
Catalog [56] or in a recent comprehensive genome-wide meta-
analysis of problematic alcohol use [11].

Predicted downstream genes regulated by the identified SE
To further explore the function of the six identified SE in human
brains, we designed a computational strategy to identify their
downstream genes. For each SE, we first predicted the Ψ̂SE using
the genotypes in the transcribed region of the host gene from all
available CMC samples, and then we stratified the individuals into

two groups based on low and high Ψ̂SE .levels (Supplementary
Fig. S2A–E). The splicing event inTBC1D5 was not analyzed
because most samples clustered in the central region of all Ψ̂
values; thus, the number of remaining samples that could be
stratified as high or low was insufficient for statistical analysis
(Supplementary Fig. S2F). We identified the differentially
expressed genes between the two groups for each SE indepen-
dently. The number of the downstream differentially expressed
genes identified for each SE ranged from 5 for LINC00665 to 471
for DRC1 (Supplementary Fig. S3). In total, 970 unique differentially
expressed genes were found; the full list of differentially expressed
genes for each SE is provided in Supplementary Table S3.
We next used these 970 differentially expressed genes to

provide additional information regarding causality to 4456 genes
previously found to be responsive to alcohol in a cell culture study
[57]. We found 197 genes were also differentially expressed
following alcohol treatment in a lymphoblastoid cell line. Of these
genes, 173 (88%) are expressed in human brain. In particular, two
genes (OXTR and OAS3) showed evidence for association with
alcohol dependence or consumption in GWAS (at p ≤ 9 × 10−6)
[58, 59]; 48 genes were differentially expressed in at least one
human brain region between alcohol dependence and control
individuals; and 55 genes were differentially expressed in the
brains of selectively bred alcohol-preferring (P) rats consuming
large amounts of alcohol [57, 60]. Twenty genes overlapped
between the 48 differentially expressed genes in human post-
mortem brain and 55 differentially expressed genes in P rat brain
studies (Supplementary Table S4). Therefore, these 20 genes
might be prioritized in future experimental studies.
The host gene for one of the identified SE events, ELOVL7, was

among the 20 genes common to both the human and rat studies.
This event had the largest variance for the genetically imputed PSI
(Ψ̂), thereby incurring high statistical power for MR causality
inference [32, 61]. The ELOVL7 skipped exon (ENSE00002079807) is
in the 5’UTR (Fig. 3A) and it does not change the protein
sequence. We found that the change of Ψ̂ for this SE (Fig. 3B)
correlated with differential expression of ELOVL7 itself, and 249
other genes (FDR < 0.05, Fig. 3C and Supplementary Table S3).
Another notable example for AUD relevance is the gene heat
shock protein family A (Hsp70) member 6 (HSPA6), which encodes a
splicing factor found to be significantly upregulated in human
brain upon alcohol intake [12]. HSPA6 was identified as a
downstream gene of the SE in ELOVL7 as well as the events in
LINC00665 and NSUN4.

Fig. 1 Predictive modeling for the genetic component of skipped exon (SE) events. A Modeling workflow. CommonMind Consortium
(CMC) RNA-seq and genotyping data from dorsolateral prefrontal cortex (DLPFC) were used to derive the splicing outcomes (PSI, Ψ) and
imputed genotypes (GT), respectively. These data were filtered before training the elastic net (EN) model that was used to compute the
genetically determined component of Ψ, denoted as Ψ̂. The models were evaluated by leave-one-out cross validation, Genome-wide Complex
Trait Analysis (GCTA) and a replication RNA-seq dataset from the New South Wales Brain Tissue Resource Center (NSWBTRC). MIS, Michigan
imputation Server. B Quantile-quantile (Q-Q) plot of leave-one-out. Observed significance (-log10 P value, black dots, n= 6284 SE) of the
Pearson’s r Ψ̂;Ψ

� �
against a random null distribution (red line) in CMC. C Example of a highly cis-regulated splicing event. The genetically

predicted PSI (y-axis) is plotted versus the total PSI derived from RNA-seq (x-axis) for a specific SE (ENSE00000707111) in NMRK1 using the CMC
samples (black dots, n= 380). Pearson’s r and its P value; and the R2, proportion of PSI variance explained by the model are provided. Solid red
line represents the correlation. Dashed blue line is the identity line. D Example of a lowly cis-regulated splicing event. The genetically
predicted PSI (y-axis) is plotted versus the total PSI derived from RNA-seq (x-axis) for a specific SE (ENSE00001930700) in SYNGAP1 using the
CMC samples (black dots, n= 380). Pearson’s r and its P value, and the R2 are provided. Solid red line represents the correlation. Dashed blue
line is the identity line. E Model evaluation by heritability analysis. The finalized elastic net models (1093 SE) were evaluated by the
independent heritability analysis approach of GCTA. Results shown are the model prediction (R2, red dots), GCTA evaluation (h2, blue dots in
ascending order), and 95% confidence interval (CI) of h2 (gray dashes), for each event. For 87.5% of the splicing events, our predicted R2 lies
between the lower and upper bounds of the GCTA estimation h2, indicating that the model prediction is consistent with genome-wide
estimation. F Model validation on replication cohort. The same elastic net models as in (E) were validated on the NSWBTRC RNA-seq cohort,
which contains different individuals from CMC. Leave-one-out Pearson’s r from our models are shown (gray dots, ascending order), in which
the eligible events for comparison in the replication cohort are highlighted in blue (570 SE). The replication Pearson’s r are shown as purple
triangles. Distribution of the replication r is visualized by the marginal histogram, where 75.4% of the events had a r > 0 (yellow horizontal line)
indicating the success of replication. G Quantile-quantile (Q-Q) plot based on the replication cohort. Observed significance (-log10 P value,
black dots, n= 570 SE) of the Pearson’s r against a random null distribution (red line) in the COGA RNA-seq cohort.
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Pathway analyses of the differentially expressed genes
downstream of the six skipped exons
GO enrichment analysis (Supplementary Table S5) showed that the
ELOVL7 splicing event implicated 250 differentially expressed genes
that significantly enriched immune response pathways (Fig. 3D), such
as, the type I interferon (IFN) signaling pathway (FDR= 7.20 × 10−06).

Gene Set Enrichment Analysis (GSEA) [39] of three pathway
databases (GO, KEGG, and MSigDB Hallmark) showed consistent
enrichment for these immune pathways (Supplementary Table S6)
along with several neural pathways, including glial cell differentiation
and neurogenesis regulation (Fig. 3E, F). Neuroimmune pathways
were commonly enriched for multiple SE events, including TNF, NF-
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κB, IL6-JAK-STAT3, IL2-STAT5, NOD-like receptor (NLR) signaling
pathways, as well as T cell activation and differentiation (Supple-
mentary Table S6). Noteworthy, the complement cascade, which is
part of the innate immune system involved in alcoholic liver disease
[62], was enriched for the SE events in ELOVL7, LINC00665, NSUN4,
and SRRM2. We also found that epithelial-mesenchymal transition
(EMT) was enriched for the SE events in ELOVL7, SRRM2 and TBC1D5
and was depleted for DRC1 and LINC00665 in GSEA. Recent studies
suggest that genes associated with EMT have altered expression
levels in the brain of patients with Alzheimer’s disease, which causes
chronic neuroinflammation [63]. Other functions significantly
enriched or depleted for the identified events included protein
folding, chaperone (modulatory process), heat response and heat
shock protein, cell-cell adhesion, ECM-receptor signaling pathways,
and autoimmune disease (e.g., diabetes).

GWAS summary data-based analysis
To test the reproducibility of the genetically inheritable effect of
the ELOVL7 SE event on AUD, we performed additional analyses in
four large-scale AUD-related GWAS datasets (PGC, MVP, UKB, and
GSCAN), using Generalized Summary data-based Mendelian
Randomization (GSMR) [43]. Using CMC as the training set, GSMR
inferred the causality of the ELOVL7 SE event on four AUD-related
traits: DSM-IV alcohol dependence, ICD-10 AUD diagnosis, AUDIT-
P, and drinks per week (Fig. 3G–J). These results showed
significant causality in each GWAS dataset, indicating that the
splicing regulation of ELOVL7 likely plays an important role in the
genetic basis of AUD.

Association analysis with brain MRI data
To view the impact of the ELOVL7 SE event in the brain, we
analyzed the associations between the genotype-imputed PSI (Ψ̂)
and brain volumes from UKB. We found that the SE contributed to
changes of gray matter volumes in multiple regions involved in
processing auditory and visual information, such as the left and
right Heschl’s gyrus and left occipital cortex (Fig. 4 and
Supplementary Table S7). This result shows that the ELOVL7 SE
may impact specific brain regions, including the visual cortex
which plays a role in alcohol addiction [64, 65].

DISCUSSION
The primary conclusion of the current study is that mRNA alternative
splicing, specifically exon skipping, has a causal effect on AUD
susceptibility. This conclusion is supported by the identification and
replication of six exon skipping events; one was further substan-
tiated in GWAS with diverse populations and additional AUD-related
traits. Furthermore, some differentially expressed genes down-
stream of the identified events are known to be alcohol-responsive
and associated with immunological and neurological pathways,
providing additional evidence that AUD shares a genetic basis with
immune and neural diseases. This knowledge advances our
understanding of the contribution of RNA splicing to the genetic
risk for AUD. In addition, our workflow can be a framework for
splicing studies in the genetics of other complex diseases.

To date, the aim of most genomic or transcriptomic-scale studies
of splicing in AUD has been to reveal how alcohol consumption
affects splicing [12, 66]. Multiple studies have indicated that specific
RNA splicing events are important in the brain and in neurological
disorders [2, 3]. However, our understanding of the causal role of
splicing on the susceptibility of AUD is limited. Therefore, we
implemented a Mendelian randomization (MR)-based strategy to
systematically assess the causality of splicing events in AUD. MR
typically utilizes a modeling approach to map genetic variants to
the molecular trait of gene expression, such as PrediXcan, TWAS, or
SMR [15–17]. The purpose of the modeling is not to simply predict
the molecular trait; rather, it is to determine the extent to which
genetic variants can explain the molecular trait. In this study, we
adapted MR from a gene expression-centric approach to accom-
modate RNA splicing analysis.
We established new splicing models to use with classic MR in

identifying the specific splicing events instead of conducting sQTL
analysis together with commonly used summary-based
approaches as used in previous studies [13, 18–20]. Our strategy
provides greater precision and specificity in terms of selecting the
explanatory SNVs and dissecting the genetically determined
component of RNA splicing. On one hand, summary-based studies
infer a causal splicing event by co-localizing the SNV (Z)-splicing
(X) association βzx and the SNV (Z)-trait (Y) association βzy. In such
approaches, the explanatory SNVs for splicing outcome are not
identified, and the genetic component of the splicing outcome
cannot be directly assessed. As a result, a challenge arises in
evaluating the true validity of the model. In this regard, models
established herein are verifiable directly through either heritability
analysis or an independent RNA-seq dataset. On the other hand,
identifying the SNVs responsible for alternative splicing events
that impact disease susceptibility enables prediction of the
disease risk based on individual genotyping information. There-
fore, these models described herein facilitate future studies on
personalized health care including AUD.
The adapted MR approach enabled us to identify six exon

skipping events that impact AUD susceptibility. Interestingly, four
of the five exons in protein coding genes are in the untranslated
regions and two of these changed the expression of their host
genes (ELOVL7 and NSUN4), suggesting that they may be involved
in post-transcriptional regulation. Of note, ELOVL7, was previously
identified as down-regulated in prefrontal cortex in individuals
with alcohol dependence [52]. DRC1 encodes a critical component
involved in regulating ciliary dynein motors that are targeted by
alcohol-induced ciliary dysfunction [54]. NSUN4 and SRRM2 are
both involved in neurological disorders [50, 51]; in particular,
SRRM2, a splicing factor, regulates ethanol-cue-induced memory in
flies [67]. Alcohol downregulates TBC1D5, which contributes to
alcoholic liver disease as well as to Parkinson’s disease and
Alzheimer’s disease [68]. Additionally, LINC00665 is an emerging
cancer biomarker, including in glioma and alcohol-related cancers
(e.g., breast cancer and liver cancer) [69–71].
Additionally, of the 970 genes that are potentially regulated by

at least one of the five analyzable skipped exons, 197 (20%,
Supplementary Table S4) were responsive to alcohol in a cell

Fig. 2 Mendelian randomization (MR)-based analysis of COGA. A Overview of the MR-based analysis. Genetic variant (X) is the instrumental
variable. The intermediate molecular trait (i.e., exposure) is the genetically predicted PSI, Ψ̂ xð Þ, for RNA splicing, and the phenotypic variable is
the trait (Y). Ψ̂ is inferred from X using the elastic net (EN) models and the association between Ψ̂ and Y is evaluated by generalized estimating
equation (GEE). Splicing events showing significant associations with the trait Y are putatively causal for the trait. This MR pipeline was run in
the discovery cohort COGA and repeated in the replication cohort OZ-ALC. The number of subjects for each phenotype is provided.
B, C Manhattan plots of significant splicing events. Chromosomal distribution of significance of association for all splicing events (Ψ̂, Y), with
respect to the DSM-IV (B) and SXCT (C). Blue line, -log10 of the p-value corresponding to FDR= 0.05; green dots, significant events in discovery
cohort; red dots, replicated significant events. D, E Effect sizes of the replicated events. Forest plots of the effect sizes of the six replicated
events. The estimates of effect sizes (beta) in COGA (D) and OZ-ALC (E) are consistent. The rectangles are the estimates and hashed lines
represent the 95% CI.
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culture study [57]. Among these genes, 20 have also been
identified as alcohol-responsive in human and animal studies,
further increasing their relevance to AUD. Together, these findings
indicate that expression changes of these 197 genes are not
simply an effect of alcohol intake, but rather, the expression of
these genes contribute to the genetic basis of AUD. Two
additional genes, OAS3 (2’-5’-Oligoadenylate Synthetase 3) and
OXTR (Oxytocin Receptor) show evidence in the NHGRI GWAS
catalog for association with alcohol consumption and depen-
dence, respectively. OAS3 is an interferon (IFN-α/β or γ)-induced,
dsRNA-activated oligoadenylate synthase that plays a critical role
in cellular antiviral response. OXTR is a G-protein coupled receptor
for oxytocin, which is known to play a role in neuropsychiatric
disorders, including alcohol and drug addiction [72, 73]. Moreover,
we found that Hsp70/HSPA6 was differentially expressed as a result
of genetic variant-induced splicing changes in any of the three
skipped exons in ELOVL7, LINC00665, and NSUN4. HSPA6 is a
splicing factor found to be significantly upregulated upon alcohol
intake in multiple brain regions, which suggests it may contribute
to mis-splicing in the brain transcriptome [12]. Thus, although the
functional roles of these genes in AUD have not been well studied,
our findings provide evidence that they not only exhibit alcohol-
induced effects, but may also contribute to the risk for AUD. The
genes identified in our analysis that have not been described in
earlier studies might also prove to be important for AUD risk.
Pathways that were enriched by the differentially expressed

genes downstream of one or more of the causal splicing events
include neural developmental pathways such as neurogenesis and
gliogenesis, as well as neuropathological pathways such as
Parkinson’s and Alzheimer’s diseases. Interestingly, each of the
causal splicing events implicated the epithelial-mesenchymal
transition (EMT) pathway, which underlies many fundamental
biological processes, including neural tube formation and cancer
metastasis [74]. The host gene LINC00665 is known to regulate
EMT in cancer [71], and alcohol stimulates the EMT program in
cancer cells, which leads to cancer progression [75]. These data
further support the overlap of AUD with neurodegenerative
disease [76], as well as a role of splicing in the development of
alcohol-related cancers.
Our findings indicate that type 1 interferon (IFN-α/β) signaling,

along with the type 2 interferon (IFN-γ) pathway, are regulated by
alternative splicing in AUD. For each of the five exon skipping events,
their respective downstream genes were enriched in IFN-α/β/γ
signaling pathways. The IFN-α/β pathway was found to be affected
by alcohol in a previous cell culture study [57]. In addition, our
findings provide further evidence for the relevance of neuroimmune
pathways to AUD, including the TNF, NF-κB, IL6-JAK-STAT3, IL2-
STAT5, and NOD-like receptor (NLR) signaling pathways, as well as T
cell activation and differentiation, because they are regulated by one
or more of these five splicing events. These neuroimmune pathways
have previously been shown to be responsive to alcohol [57, 77]. Our
results also showed that the exon skipping events in ELOVL7,
LINC00665, NSUN4, and SRRM2 implicate the complement cascade,
which is part of the innate immune system. While the complement
cascade is known to be involved in alcoholic liver disease, it also
participates in neurodevelopment and protects the central nerve
system from inflammation [78]. Taken together, our findings further
support the relevance of inflammatory cytokine-induced immune
response to AUD.
We observed that the ELOVL7 exon skipping event exhibits greater

significance for the association with the problematic alcohol use
traits of alcohol dependence, AUD, and AUDIT-P (Fig. 3G–I), compared
to the alcohol consumption trait of drinks per week (DrnkWk, Fig. 3J).
A potential explanation for this finding is provided by a previous
GWAS meta-analysis demonstrated that drinks per week differs from
the other three AUD traits, having only a mild or moderate genetic
correlation with them [11]. Together, these results provide high
confidence for the role of ELOVL7 in risk of AUD.Ta
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Moreover, the occipital cortex (left hemisphere, including the
left primary and secondary visual cortices, BA 17 and 19,
respectively) that is potentially impacted by the ELOVL7 splicing
event, is one of the main brain areas of neurological alterations
induced by alcohol intake [79]. Furthermore, the occipital cortex
is activated by drug cues including alcohol, as functional MRI

signaled significant alcohol or drug-elicited activity in the left BA
19 and BA 17 [65]. In a recent study, AUD was found to be
associated with change of the alpha oscillatory activity in the
occipital cortex, indicating that the visual cortex plays a role in
alcohol addiction [64]. In addition, the auditory cortex, i.e.,
Heschl’s gyrus, was impacted by the ELOVL7 splicing event on
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both hemispheres. This area indeed exhibits alcohol-induced
changes in brain functional connectivity studies [79, 80];
however, no studies to date have indicated its role in the
development of alcohol addiction. Thus, although our observa-
tion here does not imply a causal role for these brain regions, it
provides additional relevance of these cortical structures in
alcohol use disorder.
One limitation of the current study is that, since it was designed

to answer the general question whether RNA splicing impacts the
genetics of AUD, it cannot answer cell type-specific questions. Our
study design used bulk RNA-seq data because the statistical
genetics analysis required the power of large-scale cohorts of
samples with known genotypes, AUD-related phenotypes, and
transcript-level quantifications. In addition, splicing analysis
requires sufficient read depth that is not currently available in
single-cell RNA sequencing data. Moreover, the relatively small
sample size such as COGA and OZ-ALC may limit the power in
discovering significant splicing events. Another limitation is that

causality cannot be directly verified because of the challenges in
experimentally modeling complex traits such as AUD, as cell
culture studies and animal models cannot completely represent
the human disease system. Nevertheless, a major strength of our
study is that the use of the MR methodology, including the GSMR,
leverages high power in causality inference from large-scale
datasets. This method enables identification of causal splicing
events, which provides new information on the role of RNA
splicing in AUD risk. The new information regarding the down-
stream genes and pathways implicated by the splicing events
provides evidence of causality for findings from previous GWAS
and differential gene expression studies, as well as sheds new
insights in the molecular mechanisms contributing to AUD. For
example, targeting an alternatively spliced exon identified herein
an experimental model system relevant to AUD could provide
further verification. Together, our results advance the field of AUD
research and our method provides a framework for studying RNA
splicing in complex genetic diseases.

Lateral occipital (left)

Bankssts (left)

Transverse temporal (Heschl’s gyrus, left)

Bankssts (right)

Fusiform (right)

Transverse temporal (Heschl’s gyrus, right)

Entorhinal (left)

Lateral occipital (left)

Entorhinal (right)

Calcarine

0.00

0.01

0.02

0.03

FDR

Fig. 4 Impact of the ELOVL7 exon skipping event in the brain. Regions showing significant changes of gray matter volume in UK Biobank
(UKB) subjects with high cis-regulated PSI (Ψ̂) compared with individuals having low Ψ̂. FDR of the changes were mapped to the
Desikan–Killiany atlas regions.

Fig. 3 Functional analysis exemplified by the ELOVL7 splicing event. A Schematic of two ELOVL7 splice variants. Splicing pattern and gene
structure were adapted from Ensembl genome browser. The skipped exon (SE) is highlighted. Open and filled boxes represent untranslated
and protein coding regions, respectively. B Sample stratification. CMC samples with genetically imputed PSI values greater than the level
marked by the red dashed line (n= 200) were labeled as high, and those less than the level marked by the blue dashed line (n= 139) were
labeled as low. Intervening samples (n= 41) were unused. C Differentially expressed (DE) genes. Volcano plot shows the -log10 FDR (y-axis)
versus the log2 fold-change (FC, x-axis). Red dots are the differentially expressed genes between the high and low PSI groups in (B) with
FDR < 0.05. D Gene Ontology (GO) pathway enrichment of DE genes. Pathways enriched by the DE genes with FDR < 0.05 are shown with the
respective gene ratios. The color represents the FDR, i.e., the Benjamini-Hochberg-adjusted p values. The size of dots indicates the gene count.
E, F Examples of two neural pathways enriched in GSEA. These pathways were enriched by genes upregulated in samples having high PSI
level. The green line is the running enrichment score and the red dished line marks the maximum of score that corresponds to the leading-
edge subset of genes that optimally contribute to the enrichment. Genes (black bars) were ranked high (red) to low (blue) based on log2 FC
between the high and low PSI groups in (B). The normalized enrichment score (NES) and the FDR of enrichment are shown. G–J Results of
Generalized Summary data-based Mendelian Randomization (GSMR). Effect sizes of SNV (x) on trait (y), βx,y, were plotted versus the effect sizes
of SNV (x) on splicing (Ψ), βx,Ψ. The estimated slope (β̂Ψ;y ), which is the coefficient of least-square (LS) regression, is shown with the p value.
G Psychiatric Genomics Consortium (PGC) GWAS of alcohol dependence (AD, DSM-IV). H Million Veteran Program (MVP), alcohol use disorder
(AUD, ICD10). I UK Biobank (UKB), problematic drinking (AUDIT-P). J GWAS and Sequencing Consortium of Alcohol and Nicotine Use (GSCAN),
drinks per week (DrnkWk).
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DATA AVAILABILITY
The datasets and tools used in the current study are available from the following
sources. RNA-seq in DLPFC and genotypes from CMC: https://www.synapse.org/#!
Synapse:syn2759792/wiki/69613. RNA-seq in PFC and genotypes of samples from
NSWBTRC: https://www.sydney.edu.au/medicine-health/schools/school-of-medical-
sciences/nsw-brain-tissue-resource-centre.html. Genotypes and phenotypes from
COGA: https://www.niaaa.nih.gov/research/major-initiatives/collaborative-studies-
genetics-alcoholism-coga-study. Genotypes and phenotype from OZ-ALC: https://
www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000181.v1.p1.
GTEx database (V8): https://gtexportal.org/home. GWAS summary statistics of PGC:
https://www.med.unc.edu/pgc. GWAS summary statistics of GSCAN: https://
genome.psych.umn.edu/index.php/GSCAN. GWAS summary statistics of MVP:
https://www.research.va.gov/mvp. GWAS summary statistics and MRI data of UKB:
https://www.ukbiobank.ac.uk/. This study did not generate code.
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