Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Brain-based gene expression of putative risk genes for anorexia nervosa

Abstract

The etiology of anorexia nervosa (AN) remains elusive. Recent genome-wide association studies identified the first genes liked to AN which reached genome-wide significance, although our understanding of how these genes confer risk remains preliminary. Here, we leverage the Allen Human Brain Atlas to characterize the spatially distributed gene expression patterns of genes linked to AN in the non-disordered human brain, developing whole-brain maps of AN gene expression. We found that genes associated with AN are most expressed in the brain, relative to all other body tissue types, and demonstrate gene-specific expression patterns which extend to cerebellar, temporal and basal ganglia structures in particular. fMRI meta-analyses reveal that AN gene expression maps correspond with functional brain activity involved in processing and anticipating appetitive and aversive cues. Findings offer novel insights around putative mechanisms through which genes associated with AN may confer risk.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Differential stability of protein coding genes.
Fig. 2: The pathway of gene expression for anorexia nervosa risk genes in the human brain.
Fig. 3: Cognitive state correlates of the five differentially stable genes associated with AN.
Fig. 4: Mental state correlates of the five differentially stable genes associated with AN.

Similar content being viewed by others

References

  1. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Arlington, VA: American Psychiatric Publishing; 2013.

  2. Fichter MM, Quadflieg N, Crosby RD, Koch S. Long-term outcome of anorexia nervosa: results from a large clinical longitudinal study. Int J Eat Disord. 2017;50:1018–30.

    Article  PubMed  Google Scholar 

  3. Murray SB, Quintana DS, Loeb KL, Griffiths S, Le Grange D. Treatment outcomes for anorexia nervosa: a systematic review and meta-analysis of randomized controlled trials. Psychological Med. 2019;49:535–44.

    Article  Google Scholar 

  4. Lilenfeld LR, Kaye WH, Greeno CG, Merikangas KR, Plotnicov K, Pollice C, et al. A controlled family study of anorexia nervosa and bulimia nervosa: Psychiatric disorders in first-degree relatives and effects of proband comorbidity. Arch Gen Psychiatry. 1998;55:603–10.

    Article  CAS  PubMed  Google Scholar 

  5. Strober M, Freeman R, Lampert C, Diamond J, Kaye WH. Controlled family study of anorexia nervosa and bulimia nervosa: evidence of shared liability and transmission of partial syndromes. Am J Psychiatry. 2000;157:393–401.

    Article  CAS  PubMed  Google Scholar 

  6. Bulik CM, Sullivan PF, Tozzi F, Furberg H, Lichtenstein P, Pedersen NL. Prevalence, heritability, and prospective risk factors for anorexia nervosa. Arch Gen Psychiatry. 2006;63:305–12.

    Article  PubMed  Google Scholar 

  7. Bulik CM, Thornton LM, Root TL, Pisetsky EM, Lichtenstein P, Pedersen NL. Sample. Understanding the relation between anorexia nervosa and bulimia nervosa in a Swedish national twin sample. Biol Psychiatry. 2010;67:71–77.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Klump KL, Keel PK, McGue M, Iacono WG. Genetic and environmental influences on anorexia nervosa syndromes in a population-based twin sample. Psychological Med. 2001;31:737–40.

    Article  CAS  Google Scholar 

  9. Wade TD, Bulik CM, Neale M, Kendler KS. Anorexia nervosa and major depression: shared genetic and environmental risk factors. Am J Psychiatry. 2000;157:469–71.

    Article  CAS  PubMed  Google Scholar 

  10. Duncan L, Yilmaz Z, Gaspar H, Walters R, Goldstein J, Anttila V, et al. Significant locus and metabolic genetic correlations revealed in genome-wide association study of anorexia nervosa. Am J Psychiatry. 2017;174:850–8.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Negraes PD, Cugola FR, Herai RH, Trujillo CA, Cristino AS, Chailangkarn T, et al. Modeling anorexia nervosa: transcriptional insights from human iPSC-derived neurons. Transl Psychiatry. 2017;7:e1060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lutter M, Bahl E, Hannah C, Hofammann D, Acevedo S, Cui H, et al. Novel and ultra-rare damaging variants in neuropeptide signaling are associated with disordered eating behaviors. PLoS One. 2017;12:e0181556.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Boraska V, Franklin CS, Floyd JA, Thornton LM, Huckins LM, Southam L, et al. A genome-wide association study of anorexia nervosa. Mol Psychiatry. 2014;19:1085–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nakabayashi K, Komaki G, Tajima A, Ando T, Ishikawa M, Nomoto J, et al. Identification of novel candidate loci for anorexia nervosa at 1q41 and 11q22 in Japanese by a genome-wide association analysis with microsatellite markers. J Hum Genet. 2009;54:531–7.

    Article  CAS  PubMed  Google Scholar 

  15. Wang K, Zhang H, Bloss CS, Duvvuri V, Kaye W, Schork NJ, et al. A genome wide association study on common SNPs and rare CNVs in anorexia nervosa. Mol Psychiatry. 2011;16:949–59.

    Article  CAS  PubMed  Google Scholar 

  16. Watson HJ, Yilmaz Z, Thornton LM, Hübel C, Coleman JRI, Gaspar HA, et al. Genome-wide association study identifies eight risk loci and implicates metabo psychiatric origins for anorexia nervosa. Nat Genet. 2019;51:1207–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jaffe AE, Deep-Soboslay A, Tao R, Hauptman DT, Kaye WH, Arango V, et al. Genetic neuropathology of obsessive psychiatric syndromes. Transl Psychiatry. 2014;4:e432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kleinman JE, Law AJ, Lipska BK, Hyde TM, Ellis JK, Harrison PJ, et al. Genetic neuropathology of schizophrenia: new approaches to an old question and new uses for postmortem human brains. Biol Psychiatry. 2011;2:140–5.

    Article  Google Scholar 

  19. Hawrylycz M, Miller JA, Menon V, Feng D, Dolbeare T, Guillozet-Bongaarts AL, et al. Canonical genetic signatures of the adult human brain. Nat Neurosci. 2015;18:1832–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Quintana DS, Rokicki J, van der Meer D, Alnæs D, Kaufmann T, Córdova Palomera A, et al. Oxytocin pathway gene networks in the human brain. Nat Commun. 2019;10:668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Watanabe K, Taskesen E, Bochoven A, Posthuma D. Functional mapping and annotation of genetic associations with FUMA. Nat Commun. 2017;8:1826.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kaye WH, Fudge JL, Paulus M. New insights into symptoms and neurocircuit function of anorexia nervosa. Nat Rev Neurosci. 2009;10:573–84.

    Article  CAS  PubMed  Google Scholar 

  23. Petrovich GD, Ross CA, Mody P, Holland PC, Gallagher M. Central, but not basolateral, amygdala is critical for control of feeding by aversive learned cues. J Neurosci Off J Soc Neurosci. 2009;29:15205–12.

    Article  CAS  Google Scholar 

  24. Petrovich GD, Gallagher M. Amygdala subsystems and control of feeding behavior by learned cues. Ann N Y Acad Sci. 2003;985:251–62.

    Article  PubMed  Google Scholar 

  25. Soria-Gomez E, Bellocchio L, Marsicano G. New insights on food intake control by olfactory processes: the emerging role of the endocannabinoid system. Mol Cell Endocrinol. 2014;397:59–66.

    Article  CAS  PubMed  Google Scholar 

  26. Browning KN, Carson KE. Central neurocircuits regulating food intake in response to gut inputs-preclinical evidence. Nutrients. 2021;13:908. (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015;518:197–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Speliotes EK, Willer CJ, Berndt SI, Monda KL, Thorleifsson G, Jackson AU, et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat Genet. 2010;42:937–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Loos RJ, Yeo GSH. The genetics of obesity: from discovery to biology. Nat Rev Genet. 2022;23:120133.

    Article  Google Scholar 

  30. Rathjen T, Yan X, Kononenko NL, Ku MC, Song K, Ferrarese L, et al. Regulation of body weight and energy homeostasis by neuronal cell adhesion molecule 1. Nat Neurosci. 2017;20:1096–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Steinhaussen HC. The outcome of anorexia nervosa in the 20th century. Am J Psychiatry. 2002;159:1284–93.

    Article  Google Scholar 

  32. Murray SB, Quintana DS, Loeb K, Griffiths S, Le Grange D. Treatment outcomes for anorexia nervosa: a systematic review and meta-analysis of randomized controlled trials. Psychological Med. 2019;49:535–44.

    Article  Google Scholar 

  33. Thomas LA, Akins MR, Biederer T. Expression and adhesion profiles of SynCAM molecules indicate distinct neuronal functions. J Comp Neurol. 2008;510:47–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lozano R, Gbekie C, Siper PM, Srivastava S, Saland JM, Sethuram S, et al. FOXP1 syndrome: a review of the literature and practice parameters for medical assessment and monitoring. J Neurodev Disord. 2021;13:18.

    Article  PubMed  PubMed Central  Google Scholar 

  35. The Autism Spectrum Disorders Working Group of The Psychiatric Genomics Consortium. Meta-analysis of GWAS of over 16,000 individuals with autism spectrum disorder highlights a novel locus at 10q24.32 and a significant overlap with schizophrenia. Mol Autism. 2017;8:21.

    Article  Google Scholar 

  36. Chien W-H, Gau SS-F, Chen C-H, Tsai W-C, Wu Y-Y, Chen P-H, et al. Increased gene expression of FOXP1 in patients with autism spectrum disorders. Mol Autism. 2013;4:23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Siper PM, De Rubeis S, Trelles MDP, Durkin A, Di Marino D, Muratet F, et al. Prospective investigation of FOXP1 syndrome. Mol Autism. 2017;8:57.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hamdan FF, Daoud H, Rochefort D, Piton A, Gauthier J, Langlois M, et al. De novo mutations in FOXP1 in cases with intellectual disability, autism, and language impairment. Am J Hum Genet. 2010;87:671–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Weiss L, Arking D.The Gene Discovery Project of Johns Hopkins & the Autism Consortium. A genome-wide linkage and association scan reveals novel loci for autism. Nature. 2009;461:802–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Baron-Cohen S, Jaffa T, Davies S, Auyeung B, Allison C, Wheelwright S. Do girls with anorexia nervosa have elevated autistic traits? Mol Autism. 2013;4:24.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Tchanturia K, et al. Exploring autistic traits in anorexia: a clinical study. Autism. 2013;4:44.

    Google Scholar 

  42. Zucker NL, Losh M, Bulik CM, Labar KS, Piven J, Pelphrey KA. Anorexia nervosa and autism spectrum disorders: guided investigation of social cognitive endophenotypes. Psychological Bull. 2007;133:976–1006.

    Article  Google Scholar 

  43. Oldershaw A, Treasure J, Hambrook D, Tchanturia K, Schmidt U. Is anorexia nervosa a version of autism spectrum disorders? Eur Eat Disord Rev. 2011;19:462–74.

    Article  PubMed  Google Scholar 

  44. Mignot E. A commentary on the neurobiology of the hypocretin/orexin system. Neuropsychopharmacology. 2001;25:S5–S13.

    Article  CAS  PubMed  Google Scholar 

  45. Borgland SL, Taha SA, Sarti F, Fields HL, Bonci A. Orexin A in the VTA is critical for the induction of synaptic plasticity and behavioral sensitization to cocaine. Neuron. 2006;49:589–601.

    Article  CAS  PubMed  Google Scholar 

  46. Froemke RC, Young LJ. Oxytocin, neural plasticity, and social behavior. Annu Rev Neurosci. 2021;44:359–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Marlin BJ, Mitre M, D’amour JA, Chao MV, Froemke RC. Oxytocin enables maternal behaviour by balancing cortical inhibition. Nature. 2015;520:499–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Steinglass JE, Walsh BT. Neurobiological model of the persistence of anorexia nervosa. J Eat Disord. 2016;4:19.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Nebendahl C, Görs S, Albrecht E, Krüger R, Martens K, Giller K, et al. Early postnatal feed restriction reduces liver connective tissue levels and affects H3K9 acetylation state of regulated genes associated with protein metabolism in low birth weight pigs. J Nutritional Biochem. 2016;29:41–55.

    Article  CAS  Google Scholar 

  50. Khalsa SS, Craske MG, Li W, Vangala S, Strober M, Feusner JD. Altered interoceptive awareness in anorexia nervosa: effects of meal anticipation, consumption and bodily arousal. Int J Eat Disord. 2015;48:889–97.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Zipfel S, Giel KE, Bulik CM, Hay P, Schmidt U. Anorexia nervosa: aetiology, assessment, and treatment. Lancet Psychiatry. 2015;2:1099–111.

    Article  PubMed  Google Scholar 

  52. Kaye WH, Wierenga CE, Bailer UF, Simmons AN, Bischoff-Grethe A. Nothing tastes as good as skinny feels: the neurobiology of anorexia nervosa. Trends Neurosci. 2013;36:110–20.

    Article  CAS  PubMed  Google Scholar 

  53. Lambert E, Treasure J, Purves KL, McGregor T, Bergou N, Kan C, et al. Fear conditioning in women with anorexia nervosa and healthy controls: a preliminary study. J Abnorm Psychol. 2021;130:490–7.

    Article  PubMed  Google Scholar 

  54. Murray SB, Strober M, Craske MG, Griffiths S, Levinson CA, Strigo IA. Fear as a translational mechanism in the psychopathology of anorexia nervosa. Neurosci Biobehav Rev. 2018;95:383–95.

    Article  PubMed  Google Scholar 

  55. Strober M. Pathologic fear conditioning and anorexia nervosa: on the search for novel paradigms. Int J Eat Disord. 2004;35:504–8.

    Article  PubMed  Google Scholar 

  56. Cha J, Ide JS, Bowman FD, Simpson HB, Posner J, Steinglass JE. Abnormal reward circuitry in anorexia nervosa: a longitudinal, multimodal MRI study. Hum Brain Mapp. 2016;37:3835–46.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Keating C. Theoretical perspective on anorexia nervosa: the conflict of reward. Neurosci Biobehav Rev. 2009;34:73–79.

    Article  PubMed  Google Scholar 

  58. Frank GK, Shott ME, Hagman JO, Mittal VA. Alterations in brain structures related to taste reward circuitry in ill and recovered anorexia nervosa and in bulimia nervosa. Am J Psychiatry. 2013;170:1152–60.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Jappe LM, Frank GKW, Shott ME, Rollin MDH, Pryor T, Hagman JO, et al. Heightened sensitivity to reward and punishment in anorexia nervosa. Int J Eat Disord. 2011;44:317–24.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Steinglass JE, Figner B, Berkowitz S, Simpson HB, Weber EU, Walsh BT. Increased capacity to delay reward in anorexia nervosa. J Int Neuropsychological Soc. 2012;18:773–80.

    Article  Google Scholar 

  61. Wierenga CE, Bischoff-Grethe A, Melrose AJ, Irvine Z, Torres L, Bailer UF, et al. Hunger does not motivate reward in women remitted from anorexia nervosa. Biol Psychiatry. 2015;77:642–52.

    Article  PubMed  Google Scholar 

  62. Deep AL, Nagy LM, Weltzin TE, Rao R, Kaye WH. Premorbid onset of psychopathology in long-term recovered anorexia nervosa. Int J Eat Disord. 1995;17:291–7.

    Article  CAS  PubMed  Google Scholar 

  63. Pollice C, Kaye WH, Greeno CG, Weltzin TE. Relationship of depression, anxiety, and obsessionality to state of illness in anorexia nervosa. Int J Eat Disord. 1997;21:367–76.

    Article  CAS  PubMed  Google Scholar 

  64. Rokicki J, Quintana DS, Westlye LT. Linking central gene expression patterns and mental states using transcriptomics and large-scale meta-analysis of fMRI data: a tutorial and example using the oxytocin signaling pathway. In: Werry EL, Reekie TA, Kassiou M, editors. Oxytocin: Methods and Protocols. US: Springer; 2022. 2384, pp. 127–37.

Download references

Author information

Authors and Affiliations

Authors

Contributions

SBM conceptualized the manuscript, interpreted statistical analyses, and wrote the initial draft. DSQ conceptualized the manuscript, performed statistical analyses, and interpreted statistical analyses. JR performed statistical analyses. AMS performed statistical analyses. All authors edited the final version of the manuscript.

Corresponding author

Correspondence to Daniel S. Quintana.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

41380_2023_2110_MOESM1_ESM.docx

Supplementary Table 1: Regional patterns of gene expression for genes linked to anorexia nervosa in the non-disordered human brain.

Online Supplementary Material

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murray, S.B., Rokicki, J., Sartorius, A.M. et al. Brain-based gene expression of putative risk genes for anorexia nervosa. Mol Psychiatry 28, 2612–2619 (2023). https://doi.org/10.1038/s41380-023-02110-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-023-02110-2

Search

Quick links