Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Microbial modulation via cross-fostering prevents the effects of pervasive environmental stressors on microglia and social behavior, but not the dopamine system

Abstract

Environmental toxicant exposure, including air pollution, is increasing worldwide. However, toxicant exposures are not equitably distributed. Rather, low-income and minority communities bear the greatest burden, along with higher levels of psychosocial stress. Both air pollution and maternal stress during pregnancy have been linked to neurodevelopmental disorders such as autism, but biological mechanisms and targets for therapeutic intervention remain poorly understood. We demonstrate that combined prenatal exposure to air pollution (diesel exhaust particles, DEP) and maternal stress (MS) in mice induces social behavior deficits only in male offspring, in line with the male bias in autism. These behavioral deficits are accompanied by changes in microglial morphology and gene expression as well as decreased dopamine receptor expression and dopaminergic fiber input in the nucleus accumbens (NAc). Importantly, the gut-brain axis has been implicated in ASD, and both microglia and the dopamine system are sensitive to the composition of the gut microbiome. In line with this, we find that the composition of the gut microbiome and the structure of the intestinal epithelium are significantly shifted in DEP/MS-exposed males. Excitingly, both the DEP/MS-induced social deficits and microglial alterations in males are prevented by shifting the gut microbiome at birth via a cross-fostering procedure. However, while social deficits in DEP/MS males can be reversed by chemogenetic activation of dopamine neurons in the ventral tegmental area, modulation of the gut microbiome does not impact dopamine endpoints. These findings demonstrate male-specific changes in the gut-brain axis following DEP/MS and suggest that the gut microbiome is an important modulator of both social behavior and microglia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: DEP/MS impairs social behavior in male but not female offspring.
Fig. 2: DEP/MS induces a hyper-ramified phenotype in male but not female microglia.
Fig. 3: Chemogenetic activation of VTA dopamine neurons rescues sociability in DEP/MS males.
Fig. 4: DEP/MS shifts the composition of the gut microbiome and epithelial gene expression and anatomy.
Fig. 5: Cross-fostering at birth prevents DEP/MS-induced social deficits in male offspring.
Fig. 6: Cross-fostering prevents changes in microglial hyper-ramification but does not alter dopaminergic endpoints.

Similar content being viewed by others

References

  1. Fuller R, Landrigan PJ, Balakrishnan K, Bathan G, Bose-O’Reilly S, Brauer M, et al. Pollution and health: a progress update. Lancet Planet Health. 2022;6:e535–547.

    Article  PubMed  Google Scholar 

  2. Southerland VA, Brauer M, Mohegh A, Hammer MS, van Donkelaar A, Martin RV, et al. Global urban temporal trends in fine particulate matter (PM2·5) and attributable health burdens: estimates from global datasets. Lancet Planet Health [Internet]. 2022. https://doi.org/10.1016/S2542-5196(21)00350-8.

  3. Jbaily A, Zhou X, Liu J, Lee T-H, Kamareddine L, Verguet S, et al. Air pollution exposure disparities across US population and income groups. Nature. 2022;601:228–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Earnshaw VA, Rosenthal L, Lewis JB, Stasko EC, Tobin JN, Lewis TT, et al. Maternal experiences with everyday discrimination and infant birth weight: a test of mediators and moderators among young, urban women of color. Ann Behav Med. 2013;45:13–23.

    Article  PubMed  Google Scholar 

  5. McGuinn LA, Windham GC, Messer LC, Di Q, Schwartz J, Croen LA, et al. Air pollution, neighborhood deprivation, and autism spectrum disorder in the Study to Explore Early Development. Environ Epidemiol [Internet]. 2019. https://doi.org/10.1097/ee9.0000000000000067.

  6. Rahman MM, Shu Y-H, Chow T, Lurmann FW, Yu X, Martinez MP, et al. Prenatal exposure to air pollution and autism spectrum disorder: sensitive windows of exposure and sex differences. Environ Health Perspect. 2022;130:17008.

    Article  CAS  PubMed  Google Scholar 

  7. Carter SA, Rahman MM, Lin JC, Shu Y-H, Chow T, Yu X, et al. In utero exposure to near-roadway air pollution and autism spectrum disorder in children. Environ Int. 2022;158:106898.

    Article  CAS  PubMed  Google Scholar 

  8. Volk HE, Lurmann F, Penfold B, Hertz-Picciotto I, McConnell R. Traffic-related air pollution, particulate matter, and autism. JAMA Psychiatry. 2013;70:71–7.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Roberts AL, Koenen KC, Lyall K, Ascherio A, Weisskopf MG. Women’s posttraumatic stress symptoms and autism spectrum disorder in their children. Res Autism Spectr Disord. 2014;8:608–16.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kinney DK, Munir KM, Crowley DJ, Miller AM. Prenatal stress and risk for autism. Neurosci Biobehav Rev. 2008;32:1519–32.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Baio J, Wiggins L, Christensen DL, Maenner MJ, Daniels J, Warren Z, et al. Prevalence of autism spectrum disorder among children aged 8 years - autism and developmental disabilities monitoring network, 11 Sites, United States, 2014. MMWR Surveill Summ. 2018;67:1–23.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Klein SL, Flanagan KL. Sex differences in immune responses. Nat Rev Immunol. 2016;16:626–38.

    Article  CAS  PubMed  Google Scholar 

  13. Supekar K, Kochalka J, Schaer M, Wakeman H, Qin S, Padmanabhan A, et al. Deficits in mesolimbic reward pathway underlie social interaction impairments in children with autism. Brain. 2018;141:2795–805.

    PubMed  PubMed Central  Google Scholar 

  14. Walsh JJ, Christoffel DJ, Heifets BD, Ben-Dor GA, Selimbeyoglu A, Hung LW, et al. 5-HT release in nucleus accumbens rescues social deficits in mouse autism model. Nature. 2018;560:589–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Polk M, Ikuta T. Disrupted functional connectivity between the nucleus accumbens and posterior cingulate cortex in autism spectrum disorder. Neuroreport. 2022;33:43–7.

    Article  CAS  PubMed  Google Scholar 

  16. Gunaydin LA, Grosenick L, Finkelstein JC, Kauvar IV, Fenno LE, Adhikari A, et al. Natural neural projection dynamics underlying social behavior. Cell. 2014;157:1535–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kopec AM, Smith CJ, Ayre NR, Sweat SC, Bilbo SD. Microglial dopamine receptor elimination defines sex-specific nucleus accumbens development and social behavior in adolescent rats. Nat Commun. 2018;9:3769.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Manduca A, Servadio M, Damsteegt R, Campolongo P, Vanderschuren LJ, Trezza V. Dopaminergic neurotransmission in the nucleus accumbens modulates social play behavior in rats. Neuropsychopharmacology. 2016;41:2215–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Block ML, Calderon-Garciduenas L. Air Pollution: mechanisms of neuroinflammation and CNS disease. Trends Neurosci. 2009;32:506–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dziabis JE, Bilbo SD. Microglia and sensitive periods in brain development. Curr Top Behav Neurosci [Internet]. 2021. https://doi.org/10.1007/7854_2021_242.

    Article  Google Scholar 

  21. Sherwin E, Bordenstein SR, Quinn JL, Dinan TG, Cryan JF. Microbiota and the social brain. Science [Internet]. 2019;366:eaar2016.

    Article  CAS  PubMed  Google Scholar 

  22. Kang D-W, Adams JB, Vargason T, Santiago M, Hahn J, Krajmalnik-Brown R. Distinct fecal and plasma metabolites in children with autism spectrum disorders and their modulation after microbiota transfer therapy. mSphere [Internet]. 2020. https://doi.org/10.1128/mSphere.00314-20.

  23. Kang D-W, Adams JB, Coleman DM, Pollard EL, Maldonado J, McDonough-Means S, et al. Long-term benefit of Microbiota Transfer Therapy on autism symptoms and gut microbiota. Sci Rep. 2019;9:5821.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Yap CX, Henders AK, Alvares GA, Wood DLA, Krause L, Tyson GW, et al. Autism-related dietary preferences mediate autism-gut microbiome associations. Cell. 2021;184:5916–31.e17.

    Article  CAS  PubMed  Google Scholar 

  25. Erny D, Hrabě de Angelis AL, Jaitin D, Wieghofer P, Staszewski O, David E, et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci. 2015;18:965–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Thion MS, Low D, Silvin A, Chen J, Grisel P, Schulte-Schrepping J, et al. Microbiome influences prenatal and adult microglia in a sex-specific manner. Cell. 2018;172:500–16.e16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Buffington SA, Di Prisco GV, Auchtung TA, Ajami NJ, Petrosino JF, Costa-Mattioli M. Microbial reconstitution reverses maternal diet-induced social and synaptic deficits in offspring. Cell. 2016;165:1762–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sgritta M, Dooling SW, Buffington SA, Momin EN, Francis MB, Britton RA, et al. Mechanisms underlying microbial-mediated changes in social behavior in mouse models of autism spectrum disorder. Neuron. 2019;101:246–59.e6.

    Article  CAS  PubMed  Google Scholar 

  29. van den Brule S, Rappe M, Ambroise J, Bouzin C, Dessy C, Paquot A, et al. Diesel exhaust particles alter the profile and function of the gut microbiota upon subchronic oral administration in mice. Part Fibre Toxicol. 2021;18:7.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Liu Y, Wang T, Si B, Du H, Liu Y, Waqas A, et al. Intratracheally instillated diesel PM2.5 significantly altered the structure and composition of indigenous murine gut microbiota. Ecotoxicol Environ Saf. 2021;210:111903.

    Article  CAS  PubMed  Google Scholar 

  31. Bolton JL, Huff NC, Smith SH, Mason SN, Foster WM, Auten RL, et al. Maternal stress and effects of prenatal air pollution on offspring mental health outcomes in mice. Environ Health Perspect. 2013;121:1075–82.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Block CL, Eroglu O, Mague SD, Smith CJ, Ceasrine AM, Sriworarat C, et al. Prenatal environmental stressors impair postnatal microglia function and adult behavior in males, Cell Reports, 2022;40:111161.

  33. Rice CJ, Sandman CA, Lenjavi MR, Baram TZ. A novel mouse model for acute and long-lasting consequences of early life stress. Endocrinology. 2008;149:4892–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Smith CJW, Wilkins KB, Mogavero JN, Veenema AH. Social novelty investigation in the juvenile rat: modulation by the μ-Opioid system. J Neuroendocrinol. 2015;27:752–64.

    Article  CAS  PubMed  Google Scholar 

  35. Hanamsagar R, Alter MD, Block CS, Sullivan H, Bolton JL, Bilbo SD. Generation of a microglial developmental index in mice and in humans reveals a sex difference in maturation and immune reactivity. Glia. 2017;65:1504–20.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bordt EA, Block CL, Petrozziello T, Sadri-Vakili G, Smith CJ, Edlow AG, et al. Isolation of microglia from mouse or human tissue. STAR Protoc [Internet]. 2020. https://doi.org/10.1016/j.xpro.2020.100035.

  37. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21.

    Article  CAS  PubMed  Google Scholar 

  39. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–30.

    Article  CAS  PubMed  Google Scholar 

  40. Blighe K, Rana S, Turkes E, Ostendorf B, Lewis M. EnhancedVolcano: publication-ready volcano plots with enhanced colouring and labeling [internet]. Bioconductor version: Release (3.12). 2021.

  41. Franklin, K & Paxinos G. Franklin and Paxinos Mouse Brain Atlas, 5th Edition, Academic Press 2019.

  42. Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14.

    Article  CAS  PubMed  Google Scholar 

  43. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012;6:1621–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci USA. 2011;108:4516–22.

    Article  CAS  PubMed  Google Scholar 

  45. Hammer O, Harper DA, Ryan PD. PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron. 2001;4:9–18.

    Google Scholar 

  46. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Katoh K, Misawa K, Kuma K-I, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bokulich NA, Dillon MR, Zhang Y, Rideout JR, Bolyen E, Li H, et al. q2-longitudinal: longitudinal and paired-sample analyses of microbiome data. mSystems [Internet]. 2018. https://doi.org/10.1128/mSystems.00219-18.

  49. McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A, et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 2012;6:610–8.

    Article  CAS  PubMed  Google Scholar 

  50. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12:R60. Jun 24

    Article  PubMed  PubMed Central  Google Scholar 

  51. Weinhard L, di Bartolomei G, Bolasco G, Machado P, Schieber NL, Neniskyte U, et al. Microglia remodel synapses by presynaptic trogocytosis and spine head filopodia induction. Nat Commun. 2018;9:1228.

    Article  PubMed  PubMed Central  Google Scholar 

  52. York EM, LeDue JM, Bernier L-P, MacVicar BA. 3DMorph automatic analysis of microglial morphology in three dimensions from ex vivo and in vivo imaging. eNeuro [Internet]. 2018. https://doi.org/10.1523/ENEURO.0266-18.2018.

  53. Smith CJW, Mogavero JN, Tulimieri MT, Veenema AH. Involvement of the oxytocin system in the nucleus accumbens in the regulation of juvenile social novelty-seeking behavior. Horm Behav. 2017;93:94–8.

    Article  CAS  PubMed  Google Scholar 

  54. Smith CJW, Wilkins KB, Li S, Tulimieri MT, Veenema AH. Nucleus accumbens mu opioid receptors regulate context-specific social preferences in the juvenile rat. Psychoneuroendocrinology. 2018;89:59–68.

    Article  PubMed  Google Scholar 

  55. Folkes OM, Báldi R, Kondev V, Marcus DJ, Hartley ND, Turner BD, et al. An endocannabinoid-regulated basolateral amygdala-nucleus accumbens circuit modulates sociability. J Clin Invest. 2020;130:1728–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lefter R, Ciobica A, Timofte D, Stanciu C, Trifan A. A descriptive review on the prevalence of gastrointestinal disturbances and their multiple associations in autism spectrum disorder. Medicina [Internet]. 2019;56:11.

    Article  PubMed  Google Scholar 

  57. Nalbant K, Erden S, Yazar A, Kılınç İ. Investigation of the relation between epithelial barrier function and autism symptom severity in children with autism spectrum disorder. J Mol Neurosci [Internet]. 2022. https://doi.org/10.1007/s12031-021-01954-z.

  58. Abrams GD, Bauer H, Sprinz H. Influence of the normal flora on mucosal morphology and cellular renewal in the ileum. A comparison of germ-free and conventional mice. Lab Investig. 1963;12:355–64.

    CAS  PubMed  Google Scholar 

  59. Arike L, Seiman A, van der Post S, Rodriguez Piñeiro AM, Ermund A, Schütte A, et al. Protein turnover in epithelial cells and mucus along the gastrointestinal tract is coordinated by the spatial location and microbiota. Cell Rep. 2020;30:1077–87.e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Park J-H, Kotani T, Konno T, Setiawan J, Kitamura Y, Imada S, et al. Promotion of intestinal epithelial cell turnover by commensal bacteria: role of short-chain fatty acids. PLoS One. 2016;11:e0156334.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Cahill KM, Huo Z, Tseng GC, Logan RW, Seney ML. Improved identification of concordant and discordant gene expression signatures using an updated rank-rank hypergeometric overlap approach. Sci Rep. 2018;8:9588.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Daft JG, Ptacek T, Kumar R, Morrow C, Lorenz RG. Cross-fostering immediately after birth induces a permanent microbiota shift that is shaped by the nursing mother. Microbiome. 2015;3:17.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Treichel NS, Prevoršek Z, Mrak V, Kostrić M, Vestergaard G, Foesel B, et al. Effect of the nursing mother on the gut microbiome of the offspring during early mouse development. Microb Ecol. 2019;78:517–27.

    Article  PubMed  Google Scholar 

  64. Daoust L, Choi BS-Y, Lacroix S, Rodrigues Vilela V, Varin TV, Dudonné S, et al. The postnatal window is critical for the development of sex-specific metabolic and gut microbiota outcomes in offspring. Gut Microbes. 2021;13:2004070.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Boukthir S, Aouididi F, Mazigh Mrad S, Fetni I, Bouyahya O, Gharsallah L, et al. Chronic gastritis in children. Tunis Med. 2007;85:756–60.

    PubMed  Google Scholar 

  66. Yu Y, Su L, Wang X, Wang X, Xu C. Association between Helicobacter pylori infection and pathological changes in the gastric mucosa in Chinese children. Intern Med. 2014;53:83–8.

    Article  PubMed  Google Scholar 

  67. Strati F, Cavalieri D, Albanese D, De Felice C, Donati C, Hayek J, et al. New evidences on the altered gut microbiota in autism spectrum disorders. Microbiome. 2017;5:24.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Sharon G, Cruz NJ, Kang D-W, Gandal MJ, Wang B, Kim Y-M, et al. Human gut microbiota from autism spectrum disorder promote behavioral symptoms in mice. Cell. 2019;177:1600–18.e17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Desbonnet L, Clarke G, Shanahan F, Dinan TG, Cryan JF. Microbiota is essential for social development in the mouse. Mol Psychiatry. 2014;19:146–8.

    Article  CAS  PubMed  Google Scholar 

  70. Hsaio EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T, et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell. 2013;155:1451–63.

    Article  Google Scholar 

  71. Hayes LN, Kyongman A, Carloni E, Fangze L, Vincent E, Trippaers C, et al. Prenatal immune stress blunts microglia reactivity impairing neurocircuitry. Nature. 2022;610:327–34.

    Article  CAS  PubMed  Google Scholar 

  72. Castillo-Ruiz A, Cisternas CD, Sturgeon H, Forger NG. Birth triggers an inflammatory response in the neonatal periphery and brain. Brain Behav Immun. 2022;104:122–36.

    Article  CAS  PubMed  Google Scholar 

  73. Dodiya HB, Lutz HL, Weigle IQ, Patel P, Michalkiewicz J, Roman-Santiago CJ, et al. Gut microbiota-driven brain Aβ amyloidosis in mice requires microglia. J Exp Med. 2019;219:e20200895.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank all the members of the Bilbo lab, past and present, for their helpful discussions and feedback. We would also like to thank the MGH Next-Generation Sequencing Core and the Duke Center for Genomic and Computational Biology for their assistance with RNA and 16S sequencing, and Lucas Li and Laura Dubois of the Duke Proteomics and Metabolomics Core Facility for conducting metabolite analyses. We thank the animal care staff at MGH and Duke University for their excellent animal care. This work was supported by R01 ES025549 to SDB, R01 ES033056 to SDB, F32 ES029912 to CJS, K99 ES033278 to CJS, and by the Robert and Donna Landreth Family Foundation.

Author information

Authors and Affiliations

Authors

Contributions

CJS and SDB designed the study. CJS, DNR, MAK, KEM, DMN, JJT, MJC, LB, JHZ, KC, and MSI conducted experiments and analyzed data. DNR, BAD, RMR, MC, and RIS assisted with sequencing data analysis. CJS and SDB wrote the manuscript. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Staci D. Bilbo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, C.J., Rendina, D.N., Kingsbury, M.A. et al. Microbial modulation via cross-fostering prevents the effects of pervasive environmental stressors on microglia and social behavior, but not the dopamine system. Mol Psychiatry 28, 2549–2562 (2023). https://doi.org/10.1038/s41380-023-02108-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-023-02108-w

Search

Quick links