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Marijuana is a widely used psychoactive substance in the US and medical and recreational legalization has risen over the past
decade. Despite the growing number of individuals using marijuana, studies investigating the association between epigenetic
factors and recent and cumulative marijuana use remain limited. We therefore investigated the association between recent and
cumulative marijuana use and DNA methylation levels. Participants from the Coronary Artery Risk Development in Young Adults
Study with whole blood collected at examination years (Y) 15 and Y20 were randomly selected to undergo DNA methylation
profiling at both timepoints using the Illumina MethylationEPIC BeadChip. Recent use of marijuana was queried at each
examination and used to estimate cumulative marijuana use from Y0 to Y15 and Y20. At Y15 (n= 1023), we observed 22 and 31
methylation markers associated (FDR P ≤ 0.05) with recent and cumulative marijuana use and 132 and 16 methylation markers at
Y20 (n= 883), respectively. We replicated 8 previously reported methylation markers associated with marijuana use. We further
identified 640 cis-meQTLs and 198 DMRs associated with recent and cumulative use at Y15 and Y20. Differentially methylated genes
were statistically overrepresented in pathways relating to cellular proliferation, hormone signaling, and infections as well as
schizophrenia, bipolar disorder, and substance-related disorders. We identified numerous methylation markers, pathways, and
diseases associated with recent and cumulative marijuana use in middle-aged adults, providing additional insight into the
association between marijuana use and the epigenome. These results provide novel insights into the role marijuana has on the
epigenome and related health conditions.
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BACKGROUND
Marijuana is one of the most commonly used psychoactive
substances in the US, with an estimated 49% of adults having ever
used marijuana, including 19% within the past year, and 12%
within the past month [1]. The prevalence of marijuana use has
risen over the past several decades and its use is expected to
increase as more states legalize marijuana [2–5]. Medically,
marijuana may help treat chemotherapy induced nausea and
vomiting [6], chronic neuropathic pain [7], inflammatory condi-
tions [8, 9], Parkinson’s disease symptoms [10], and epilepsy [11].
Despite these therapeutic benefits, marijuana use may have
adverse effects on health including short-term (e.g., impaired
short-term memory and motor coordination, altered judgment,
and psychotic symptoms) and long-term use (e.g., addiction,
altered brain development, neurocognitive impairment, and
cardiovascular and respiratory disease) [12, 13]. Additionally,
marijuana use has been associated with increased risk of
psychiatric disorders [14–16]. Due to the expected rise in use
coinciding with legalization, studies investigating the association
between marijuana use and molecular or epigenetic mechanisms
may provide novel insights into the short- and long-term impacts
of marijuana on health-related outcomes.

DNA methylation, one of the most-studied epigenetic modifica-
tions, is a regulatory process that affects gene expression (without
altering the genomic sequence) through the addition or removal of
methyl groups [17]. These modifications can be induced by
environmental and lifestyle factors [18, 19], which may serve as
blood-based biomarkers for recent and cumulative exposures.
Additionally, the modifiable nature of DNA methylation allows for
the investigation of exposure-induced changes to the epigenome
and its variability across time, potentially leading to the identifica-
tion of dynamic and/or stable biomarkers [20, 21]. These methyla-
tion changes may serve as biomarkers for recent and cumulative
marijuana use, and subsequently, may further our understanding of
the acute and additive influences of marijuana on molecular and
biological processes influencing downstream health conditions.
Despite the growing use of marijuana, a limited number of

studies have examined epigenome wide biomarkers associated
with marijuana use. Previous studies have identified differentially
methylated DNA signatures associated with marijuana, including
markers located in AHRR, ALPG, CEMIP, and MYO1G [22, 23]. These
biomarkers, however, were limited to a single time point and did
not examine both recent and cumulative marijuana use. Studies
examining the relationship between recent and cumulative
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marijuana use and epigenetic factors in a diverse population
across time with repeated measurements may provide novel
insights. Therefore, the purpose of this study was to investigate
the association between recent and cumulative marijuana use and
repeated genome-wide DNA methylation patterns measured in
middle aged adults.

MATERIALS AND METHODS
Study population
The study design, recruitment, and follow-up of CARDIA were previously
described [24]. Briefly, CARDIA is a population-based cohort study that
recruited 5115 Black and White participants aged 18–30 from four centers
across the US from 1985–1986. Participants were followed over time and
underwent in-person examinations at baseline (year [Y] 0), Y2, Y5, Y7, Y10,
Y15, Y20, Y25, Y30, and currently participating in Y35.

Marijuana Use Measurements
At baseline (Y0) and each follow-up examination, study participants were
asked “Have you ever used marijuana?”, “About how many times in your
lifetime have you used marijuana?”, and “During the last 30 days, on how
many days did you use marijuana?” For this analysis, we considered two
continuous variables measuring recent and cumulative use of marijuana at
both Y15 and Y20. For recent use, the number of days of marijuana use in
the last 30 was used for analyses. For cumulative use, we calculated
‘marijuana-years’ from Y0 to Y15 and Y20 separately as previously
described [25]. Assuming marijuana use in the last 30 days represents
use throughout the year and between examinations, we summed the total
number of days of marijuana use at Y0 to Y15 and Y20 separately and
divided by 365 yielding marijuana-years, where a marijuana-year is
equivalent to marijuana use once a day for a year.

DNA methylation profiling
Details of blood sample collection and DNA processing have previously been
described [26–28]. Briefly, a random sample of 1200 participants with
available whole blood at both Y15 and Y20 underwent DNA methylation
profiling using the Illumina MethylationEPIC BeadChip. Data process and
quality control of the DNA methylation datasets were performed using the
default settings in the R package Enmix [29]. Low quality methylation
measurements were defined as markers with a detection P < 1E−06 or less
than 3 beads. A total of 6209 markers with a detection rate <95% and
87 samples with methylation measurements of low-quality >5% or extremely
low intensity of bisulfite conversion probes (defined as less than 3 times the
standard deviation of the intensity across samples below the mean intensity)
were removed from further analysis. Additionally, 95 samples were identified
as extreme outliers as determined by the average total intensity value
[intensity of unmethylated signals (U) + intensity of methylated signals (M)]
or β value [M/(U+M+ 100)] across all markers and Tukey’s method [30].
Model-based correction was applied using ENmix and dye bias correction
was conducted using RELIC [31]. M or U intensities for Infinium I or II probes
underwent quantile normalization separately, respectively. Low-quality
methylation markers and β value outliers, as defined by Tukey’s method,
were set to missing. After applying these criteria, 1042 and 957 samples at
Y15 and Y20 remained for downstream analysis, respectively.

Single time point and longitudinal analyses
We conducted single time point epigenome-wide association studies
(EWASs) among CARDIA study participants with available DNA methylation
and marijuana data at Y15 (n= 1023) and Y20 (n= 883). Linear regression
was performed to analyze the association between DNA methylation levels
for the 841,639 autosomal CpG sites modeled as the dependent variable and
recent and cumulative marijuana use modeled as the independent variables
at both timepoints (main EWAS). All models were adjusted for age, sex, self-
reported race, study center, education, tobacco smoking status, physical
activity, and alcohol consumption, as well as technical biases and leukocyte
cell-type subpopulations. Principal component analysis was performed on
intensity data for non-negative internal control probes and the top 8
principal components (PCs) were included as covariates. We used the
Houseman’s method [32] to infer the proportion of leukocyte subpopula-
tions (B cells, CD4+ T cells, CD8+ T cells, granulocytes, monocytes, and
natural killer cells) and were included as covariates. Epigenomic control
inflation factors [33] and quantile-quantile (Q-Q) plots were generated to

assess for proper control of uncorrected technical biases and population
stratification. CpG sites with a false-discovery rate (FDR) P value ≤ 0.05 at
either Y15 or Y20 were considered statistically significant. We further
investigated the longitudinal association between the change in marijuana
use from Y15 to Y20 (Δmarijuana) and the change in methylation of
marijuana associated CpGs from Y15 to Y20 (Δmethylation). Δmarijuana was
estimated as the difference between recent and cumulative marijuana use at
Y20 and Y15 and Δmethylation was estimated from the residuals in a linear
model between Y20 and Y15 methylation levels, adjusted for the 8 PCs at
both timepoints. The same linear regression EWAS model was performed
with Δmethylation as the dependent variable and Δmarijuana as the
independent variable, adjusting for the same covariates at both Y15 and
Y20. All statistical analyses were performed using R 4.1.1 [34].

Stratified analyses by sex, self-reported race, and tobacco
smoking status
To further investigate observed recent and cumulative marijuana use
CpGs, we performed stratified analyses at both timepoints by sex (Y15
[nfemale= 521, nmale= 502] and Y20 [nfemale= 453, nmale= 430]), self-
reported race (Y15 [nBlack= 414, nWhite= 609] and Y20 [nBlack= 366,
nWhite= 517]), and tobacco smoking status (Y15 [nnon= 644, nformer= 174,
ncurrent= 205] and Y20 [nnon= 540, nformer= 171, ncurrent= 172]) for
significant CpGs at Y15 and Y20. Models were adjusted for the same
covariates as the main EWAS, except sex, self-reported race, and tobacco
smoking status were excluded during the respective stratified analyses.

Genotype imputation and methylation quantitative trait loci
To evaluate whether single nucleotide polymorphisms (SNPs) are
associated with DNA methylation levels, we performed methylation
quantitative trait loci (meQTL) analyses for significant recent and
cumulative marijuana CpGs. Details on genotype imputation in CARDIA
have previously been described [28]. Briefly, participants were genotyped
using the Affymetrix Genome-Wide Human 6.0 array and untyped
genotypes were imputed using the 1000 Genomes Project Phase 3
Integrated Release Version 5 reference panel using the programs SHAPEIT
[35, 36] and Minimac3 [37]. After merging datasets, 182 and 160 Black
participants and 485 and 408 White participants had both methylation and
genotype data at Y15 and Y20, respectively. Analyses were performed
separately by self-reported race at both examinations, adjusting for the
same EWAS model covariates, using the program mach2qtl [38, 39]. We
defined cis-meQTLs as SNPs within ±500,000 base pairs of the index CpG
and cis-meQTLs with P value ≤ 2.82E−08 were considered statistically
significant. Mapped trait information from NHGRI-EBI GWAS catalog was
extracted and summarized for significant cis-meQTLs [40].

Differentially methylated regions
To identify additional epigenetic loci associated with recent and
cumulative marijuana use, we extended our analyses to examine
differentially methylated regions (DMRs) using comb-p [41]. Previously,
comb-p was found to have the highest sensitivity and control for false-
positives compared to other DMR identification methods [42]. Analyses
were ran using parameters previously identified to achieve the greatest
performance, i.e., seed <0.05 and dist = 750 [42]. Associated DMRs were
defined as having at least 3 probes and a Šidák corrected P value ≤ 0.05.

Pathway and disease analyses
We performed pathway and disease analyses to examine the combined
epigenetic associations of recent and cumulative marijuana use on pathways
(KEGG and Reactome) and diseases (Disgenet, GLAD4U, and OMIM) using
WebGestalt [43]. Due to the limited number of loci identified during single
CpG analyses, probes were annotated to gene symbols according to the
human genome assembly (hg19) [44] and the top 1000 annotated genes
were included in overrepresentation enrichment analyses for recent and
cumulative marijuana use at Y15 and Y20 separately. Pathways and diseases
with an FDR P value ≤ 0.05 were considered statistically significant and the
top five pathways and diseases were reported.

RESULTS
Study characteristics
Table 1 presents descriptive characteristics for participants who
underwent DNA methylation profiling at Y15 and Y20 by recent
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marijuana use. Among study participants, 71.9% and 70.1%
reported having ever used marijuana and 13.7% and 12.8%
reported using marijuana in the last 30 days at Y15 and Y20,
respectively. Participants who recently used marijuana exhibited
higher cumulative marijuana use at both Y15 and Y20 (P < 0.001),
with an average ± standard deviation of 4.8 ± 3.8 and 6.1 ± 5.3
marijuana-years compared to 0.4 ± 0.9 and 0.5 ± 1.3 marijuana-
years among those who did not recently use, respectively.
Additionally, those who recently used marijuana were more likely
to be current tobacco smokers compared to those who did not
recently use, at both examination years (P < 0.001), i.e., 47.1% vs
15.7% at Y15 and 43.4% vs 16.0% at Y20.

Methylation markers of recent and cumulative marijuana use
Epigenomic control inflation factors were moderate (λ =
1.03–1.08) and inspection of the Q-Q plots (Supplementary Fig. 1)
did not show deviation of the observed P values from the null,
except at the extreme tails. These findings suggest proper control
of technical biases and population stratification.
Figure 1 displays circular Manhattan plots of the epigenome-wide

FDR P values for recent and cumulative marijuana use at Y15 and
Y20. In total, 201 methylation markers were associated (FDR
P value≤ 0.05) with marijuana across the two examination years. At
Y15, recent and cumulative marijuana use were associated with 22
and 31 methylation markers, respectively (Supplementary Table 1). At
Y20, recent and cumulative marijuana use were associated with 132
and 16 methylation markers, respectively (Supplementary Table 2).
Intersection sets of recent and cumulative markers at Y15 identified 7
markers and 11 markers at Y20, with cg05575921 located in AHRR
the only marker observed in all four analyses (Supplementary Fig. 2).
Table 2 summarizes the top 10 methylation markers for each

analysis. Among the top CpGs, 6 were annotated to AHRR,

including 3 out of the 4 most significant CpGs. Additional top loci
associated with recent and cumulative marijuana use at Y15
include MYO5C, SCN11A, and NOX4, and BMF, PLEKHH2, and
FAM222A, respectively. At Y20, PP1CB, GTF2H3, and MEX3D,
and TFEB, KCNJ9, and DUSP12 were top loci associated with
recent and cumulative marijuana use, respectively.

ΔMarijuana use vs. Δmethylation analysis
Of the 22 and 132 methylation markers associated with recent
marijuana use at Y15 and Y20, 13 and 124 markers yielded
consistent direction of associations during Δmethylation and
Δmarijuana analyses (r= 0.756; P= 4.72E−05 and r= 0.861;
P < 2.20E−16, respectively; Supplementary Table 3; Supplemen-
tary Fig. 3A). Of the 31 and 16 methylation markers associated
with cumulative marijuana use at Y15 and Y20, 20 and 16 markers
yielded consistent direction of associations during Δmethylation
and Δmarijuana analyses (r= 0.679; P= 2.69E−05 and r= 0.933;
P= 1.39E−07, respectively; Supplementary Table 4; Supplemen-
tary Fig. 3B).

Stratified analysis by sex
At Y15, 17 and 50 markers of the 53 total identified markers
remained associated among Female and Male participants, respec-
tively (Supplementary Table 5). The Y15 regression coefficients for
recent and cumulative marijuana use were highly correlated
between Female and Male participants (r= 0.945; P= 3.82E−11
and r= 0.975; P < 2.20E−16) (Supplementary Fig. 4). At Y20, 26 and
112 markers of the 148 total identified markers remained associated
among Female and Male participants, respectively (Supplementary
Table 6). The regression coefficients between Female and Male
participants were highly correlated (r= 0.846; P < 2.20E−16 and
r= 0.952; P= 1.41E−08) (Supplementary Fig. 5).

Table 1. Study sample characteristics by recent marijuana use.

Year 15 Year 20

No Recent Use Recent Use P No Recent Use Recent Use P

N 883 (86.3) 140 (13.7) 770 (87.2) 113 (12.8)

Female, n (%) 467 (52.9) 54 (38.6) 0.002 413 (53.6) 40 (35.4) <0.001

Race, n (%) 0.122 0.061

Black 349 (39.5) 65 (46.4) 310 (40.3) 56 (50.0)

White 534 (60.5) 75 (53.6) 460 (59.7) 57 (50.0)

Age, mean (SD), years 40.4 (3.5) 40.5 (14.1) 0.716 45.4 (3.5) 45.4 (3.6) 0.887

Education, mean (SD), years 15.2 (2.5) 14.1 (2.4) <0.001 15.1 (2.5) 14.3 (2.4) 0.002

Center, n (%) 0.004 <0.001

Birmingham, AL 228 (25.8) 23 (16.4) 192 (24.9) 17 (15.0)

Chicago, IL 200 (22.6) 22 (15.7) 181 (23.5) 13 (11.5)

Minneapolis, MN 224 (25.4) 50 (35.7) 190 (24.7) 42 (37.2)

Oakland, CA 231 (26.2) 45 (32.2) 207 (26.9) 41 (36.3)

Smoking status, n (%) <0.001 <0.001

Nonsmoker 595 (67.4) 49 (35.0) 497 (64.5) 43 (38.0)

Former Smoker 149 (16.9) 25 (17.9) 150 (19.5) 21 (18.6)

Current Smoker 139 (15.7) 66 (47.1) 123 (16.0) 49 (43.4)

Physical activity, mean (SD), intensity score 336.2 (270.1) 425.9 (288.7) <0.001 337.9 (270.4) 418.5 (305.3) 0.009

Weekly alcoholic drinks, mean (SD), drinks 3.9 (7.3) 10.9 (15.6) <0.001 4.1 (8.0) 11.5 (22.0) <0.001

Day of marijuana use in last 30 days, mean
(SD), days

0 (0.0) 11.1 (9.7) <0.001 0 (0.0) 10.4 (9.9) <0.001

Marijuana years, mean (SD), years 0.4 (0.9) 4.8 (3.8) <0.001 0.5 (1.3) 6.1 (5.3) <0.001

All statistics shown are mean and standard deviation (SD), except for number of participants, sex, self-reported race, center, smoking status, which are shown
as number of participants and percentages.
Recent use is defined as use of marijuana within the last 30 days.
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Stratified analysis by self-reported race
Of the 53 total identified methylation markers at Y15, 26 and 48
markers remained associated among Black and White participants,
respectively (Supplementary Table 7). Additionally, the regression
coefficients for recent and cumulative marijuana use at Y15 were
highly correlated between Black and White participants (r= 0.950;
P= 1.40E−11 and r= 0.928; P= 6.27E−14) (Supplementary Fig. 6).
Of the 148 total identified methylation markers at Y20, 65 and 64
markers remained associated among Black and White participants,
respectively (Supplementary Table 8). The regression coefficients
between Black and White participants were highly correlated
(r= 0.930; P < 2.20E−16 and r= 0.959; P= 4.44E−09) (Supple-
mentary Fig. 7).

Stratified analysis by tobacco smoking status
To determine whether associations of identified CpGs differed
by tobacco smoking status, we investigated these CpGs by strata
of tobacco use. At Y15, 25, 18, and 20 markers of the 53 total
identified markers remained associated among nonsmokers,
former smokers, and current smokers, respectively (Supplemen-
tary Table 9). The regression coefficients for recent and
cumulative marijuana use at Y15 were highly correlated across
tobacco smoking status (r range: 0.837–0.939) (Supplementary
Figs. 8, 9). At Y20, 51, 19, and 26 markers of the 148 total markers
remained associated among nonsmokers, former smokers, and
current smokers, respectively (Supplementary Table 10). The
regression coefficients were highly correlated across tobacco
smoking status at Y20 (r range: 0.730–0.934) (Supplementary
Figs. 10, 11).

Replication of previously reported marijuana CpGs
We evaluated the associations of previously reported marijuana
methylation markers. Overall, 31 CpGs were identified from
previous studies (Supplementary Tables 11–12). After applying a
Bonferroni correction (0.05/31= 0.0016), 8 and 6 CpGs were
associated with recent marijuana use and 8 and 7 CpGs were
associated with cumulative marijuana use at Y15 and Y20,
respectively, including markers in AHRR, MYO1G, ALPG, F2RL3,
and RARA.

Cis-methylation quantitative trait loci analyses and GWAS
catalog mapping
To determine whether genetic markers influence methylation
levels, we examined SNPs within ±500,000 base pairs of the
identified CpGs. A total of 27 and 350 cis-meQTLs were associated
with recent and cumulative marijuana use in Black and White
participants at Y15, respectively (Supplementary Table 13). Spe-
cifically, 27 cis-meQTLs were associated with cg18110140 among
Black participants and 345 and 5 cis-meQTLs were associated with
cg18110140 and cg18880190 among White participants, respec-
tively. Additionally, 261 cis-meQTLs were associated with
cg19414984 for recent marijuana use at Y20 among White
participants (Supplementary Table 14). Mapping these cis-meQTLs
to the NHGRI-EBI GWAS Catalog identified 120 unique traits for 71
cis-meQTLs including blood pressure, brain measurements, coffee
consumption, cortical surface area, immunological factors, multi-
site chronic pain, self-reported educational attainment, and
smoking status (Supplementary Table 15).

Differentially methylated regional analysis
To pursue additional epigenomic regions not identified during
single marker analysis, we performed DMR analyses for recent and
cumulative marijuana use at Y15 and Y20. A total of 47 and 54
DMRs were observed to be associated with recent and cumulative
marijuana use at Y15, respectively (Supplementary Tables 16, 17).
Additionally, 53 and 44 DMRs were associated with recent and
cumulative marijuana use at Y20, respectively (Supplementary
Tables 18, 19). DMRs annotated to the nearest gene identified 8
overlapping genes for both recent and cumulative marijuana use
at Y15 and Y20. An intersection set of all DMRs identified 6 loci:
GNG12-AS1, HOXB-AS3, MYO1G, RNF39, SDHAP3, and ZNF578.

Pathway and disease analyses
Table 3 presents the top 5 KEGG and Reactome pathways from
WebGestalt statistically associated with recent and cumulative
marijuana use at Y15 and Y20. At Y15, the top pathways associated
with recent marijuana use are related to MAPK signaling, diseases of
signal transduction, and the neuronal system; the top pathways
associated with cumulative use include Rho GTPase, cell

Fig. 1 Circular Manhattan plots for CpGs associated with recent and cumulative marijuana use at Y15 and Y20. Recent and cumulative
marijuana use association results correspond to the inner and outer circles at A Y15 and B Y20, respectively. The x-axis corresponds to
epigenomic positions, and the y-axis shows the -log10 FDR. The horizontal dotted blue line denotes a significance threshold of FDR ≤ 0.05. The
top 10 significant loci from each analysis are labeled in each plot.
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proliferation and apoptosis, and depolarization. At Y20, the top
pathways associated with recent marijuana use are related to
dopamine synapses, diseases of signal transduction, transcription,
human papillomavirus infection, and oxytocin signaling; the top
pathways associated with cumulative use include diseases of signal

transduction, transcription regulation by RUNX2, WNT signaling,
human papillomavirus infection, and oxytocin signaling.
Table 4 presents the top 5 diseases statistically associated with

recent and cumulative marijuana use at both examination years.
At Y15, the top diseases associated with recent marijuana include

Table 2. Top ten CpGs associated with recent and cumulative marijuana use at Y15 and Y20.

CpG Chr BP Genomic Region β P FDR Gene

Y15 Recent Use

cg18110140 15 75350380 – −1.10E−02 7.39E−09 3.26E−03 –

cg21171274 15 52539081 Body −3.81E−03 7.75E−09 3.26E−03 MYO5C

cg17218147 3 38995416 TSS1500 −5.11E−03 1.88E−08 5.26E−03 SCN11A

cg12438576 11 89232216 5’UTR 8.91E−03 3.28E−08 6.90E−03 NOX4

cg15627771 2 192111084 5’UTR −4.91E−03 9.50E−08 1.42E−02 MYO1B

cg18880190 15 40399609 5’UTR −5.01E−03 1.01E−07 1.42E−02 BMF

cg19857151 1 235985454 Body 5.66E−03 1.91E−07 2.29E−02 LYST

cg13444775 11 124546591 TSS1500 −1.29E−02 2.30E−07 2.42E−02 SIAE

cg05575921 5 373378 Body −3.37E−02 3.38E−07 2.77E−02 AHRR

cg15607642 6 107391589 Body 5.62E−03 3.57E−07 2.77E−02 BEND3

Y15 Cumulative Use

cg05575921 5 373378 Body −8.51E−02 1.18E−09 9.93E−04 AHRR

cg18880190 15 40399609 5’UTR −1.30E−02 2.00E−08 8.40E−03 BMF

cg07064251 2 43948676 Body 1.26E−02 6.89E−08 1.32E−02 PLEKHH2

cg23932689 12 110173904 5’UTR 1.52E−02 7.95E−08 1.32E−02 FAM222A

cg25189904 1 68299493 TSS1500 −3.81E−02 8.16E−08 1.32E−02 GNG12

cg13179084 12 116638602 Body 1.34E−02 9.46E−08 1.32E−02 MED13L

cg06326914 15 35280920 TSS1500 1.73E−02 1.10E−07 1.32E−02 ZNF770

cg12510044 22 22115473 3’UTR −1.40E−02 1.82E−07 1.79E−02 MAPK1

cg18387338 7 26591438 – −2.01E−02 2.08E−07 1.79E−02 –

cg04742550 16 31366429 TSS200 −2.98E−02 2.12E−07 1.79E−02 ITGAX

Y20 Recent Use

cg21161138 5 399360 Body −9.22E−03 3.33E−10 2.80E−04 AHRR

cg05575921 5 373378 Body −3.41E−02 3.57E−09 1.50E−03 AHRR

cg06581729 2 29004756 Body 4.11E−05 9.61E−09 2.70E−03 PPP1CB

cg26867465 3 119399324 – 4.03E−03 1.40E−08 2.94E−03 –

cg01372788 12 124122424 5’UTR 1.04E−03 3.84E−08 6.47E−03 GTF2H3

cg19569686 19 1555141 3’UTR 1.18E−03 7.89E−08 9.25E−03 MEX3D

cg17456749 12 111807011 TSS200 −1.58E−03 8.06E−08 9.25E−03 FAM109A

cg00761236 13 107305783 TSS1500 −1.72E−03 8.80E−08 9.25E−03 LINC00443

cg09607178 6 29978432 Body 1.95E−03 1.06E−07 9.90E−03 NCRNA00171

cg02337960 19 17378645 5’UTR −7.34E−04 1.66E−07 1.03E−02 C19orf62

Y20 Cumulative Use

cg05575921 5 373378 Body −6.94E−02 5.00E−09 4.21E−03 AHRR

cg21161138 5 399360 Body −2.15E−02 2.17E−08 7.37E−03 AHRR

cg09040721 6 41658881 Body 5.42E−03 2.63E−08 7.37E−03 TFEB

cg13552867 1 160053689 5’UTR −9.97E−03 8.81E−08 1.85E−02 KCNJ9

cg09825346 1 161718614 TSS1500 1.23E−02 1.34E−07 2.25E−02 DUSP12

cg21263605 1 166818686 Body 6.78E−04 3.75E−07 3.76E−02 POGK

cg26003997 9 96395832 Body −1.23E−03 4.13E−07 3.76E−02 PHF2

cg24976193 4 100685228 – −1.22E−02 4.24E−07 3.76E−02 –

cg00785657 19 35168593 1stExon 1.38E−03 4.24E−07 3.76E−02 ZNF302

cg02646643 3 184026751 3’UTR 2.24E−03 4.71E−07 3.76E−02 PSMD2

Beta coefficient represents the change in DNA methylation level (i.e., M value) for each additional day of recent marijuana use or additional marijuana year.
Results are adjusted for age, sex, self-reported race, study center, education, tobacco smoking status, physical activity, and alcohol consumption, PC1-PC8, and
leukocyte cell-type subpopulations.
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Table 3. Top five KEGG and Reactome pathways associated with recent and cumulative marijuana use at Y15 and Y20.

Pathway Observed/Total Genes P FDR

Y15 Recent Use

MAPK Family Signaling Cascades 28/293 2.37E−07 5.05E−04

MAPK1/MAPK3 Signaling 25/254 6.02E−07 8.55E−04

RAF/MAP Kinase Cascade 24/248 1.36E−06 1.29E−03

Diseases of Signal Transduction 30/378 4.41E−06 3.75E−03

Neuronal System 29/368 7.27E−06 5.63E−03

Y15 Cumulative Use

Signaling by Rho GTPases 36/444 3.73E−07 1.27E−03

Rho GTPase Cycle 18/138 4.49E−07 1.27E−03

G alpha (12/13) Signaling Events 13/79 1.25E−06 2.59E−03

Phase 0—Rapid Depolarization 10/46 1.52E−06 2.59E−03

NRAGE Signals Death through JNK 11/59 2.31E−06 3.27E−03

Y20 Recent Use

Dopaminergic Synapse 18/131 1.91E−07 5.43E−04

Diseases of Signal Transduction 32/378 5.93E−07 1.26E−03

Generic Transcription Pathway 68/1169 1.27E−06 1.80E−03

Human Papillomavirus Infection 29/339 1.61E−06 1.89E−03

Oxytocin Signaling Pathway 18/152 1.78E−06 1.89E−03

Y20 Cumulative Use

Diseases of Signal Transduction 36/378 5.57E−09 3.72E−05

Transcriptional Regulation by RUNX3 17/96 8.74E−09 3.72E−05

Beta-Catenin Independent WNT Signaling 20/145 3.70E−08 1.03E−04

Human Papillomavirus Infection 32/339 4.85E−08 1.03E−04

Oxytocin Signaling Pathway 20/152 8.24E−08 1.40E−04

Table 4. Top five diseases associated with recent and cumulative marijuana use at Y15 and Y20.

Disease Observed/Total Genes P FDR

Y15 Recent Use

Schizophrenia 67/1041 3.17E−08 2.20E−04

Mental Disorders 53/757 6.70E−08 2.20E−04

Bipolar Disorder 41/516 7.75E−08 2.20E−04

Adhesion 51/766 5.52E−07 8.55E−04

Substance-Related Disorders 16/115 7.12E−07 8.66E−04

Y15 Cumulative Use

Disease Susceptibility 61/970 4.16E−07 1.27E−03

Mental Disorders 48/757 5.90E−06 6.67E−03

Autistic Disorder 23/252 7.05E−06 6.67E−03

Genetic Predisposition to Disease 57/966 7.05E−06 6.67E−03

Adhesion 48/766 8.08E−06 6.88E−03

Y20 Recent Use

Mental Disorders 57/757 1.91E−09 1.63E−05

Schizophrenia 67/1041 3.91E−08 1.66E−04

Short Stature 40/545 1.00E−06 1.70E−03

Brachydactyly 15/125 1.08E−05 6.85E−03

Spastic Tetraparesis 5/12 2.13E−05 7.73E−03

Y20 Cumulative Use

Schizophrenia 62/1041 1.71E−06 7.80E−04

Drug Interaction with Drug 35/494 9.89E−06 2.48E−03

Genetic Predisposition to Disease 55/966 2.39E−05 4.15E−03

Disease Susceptibility 55/970 2.68E−05 4.38E−03

Liver Cirrhosis, Experimental 44/767 1.32E−04 1.46E−02
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schizophrenia, mental disorders, bipolar disorder, and substance-
related disorders; the top diseases associated with cumulative use
include disease susceptibility, mental disorders, autistic disorder,
and genetic predisposition to disease. At Y20, top diseases
associated with recent marijuana use include mental disorders,
schizophrenia, short stature, brachydactyly, and spastic tetrapar-
esis and the top diseases associated with cumulative marijuana
use include schizophrenia, drug-drug interaction, genetic predis-
position to disease, disease susceptibility, and liver cirrhosis.

DISCUSSION
In this multiple timepoint epigenome-wide association study of
middle-aged adults, we observed 201 methylation markers
associated with recent and cumulative marijuana use across time.
We replicated 8 previously reported methylation markers asso-
ciated with marijuana use. We also observed 638 cis-meQTLs
associated with several marijuana-methylation markers, as well as
198 differentially methylated regions. During pathway and disease
analyses, marijuana-associated genes were statistically overrepre-
sented in numerous pathways and diseases. While replication of
these findings in independent cohorts is warranted, our results
provide novel insights into the association between recent and
cumulative marijuana use and the epigenome and related
biological processes, which may serve as a mechanism of early-
stage disease associated with marijuana use.
We identified numerous methylation markers associated with

recent and cumulative marijuana use. Of these, cg05575921 in
AHRR was associated with recent and cumulative marijuana use at
both timepoints, including the single most-associated methylation
marker for two of the four analyses. This methylation marker has
previously been associated with heavy cannabis use among
tobacco users [22], tobacco use [45–47], and is 1 of 172 CpGs
included in the estimation of a DNA methylation surrogate for
pack-years of smoking (DNAmPACKYRS) for GrimAge, a measure
of biological age associated with lifespan [48]. The association of
this epigenetic marker with both tobacco and marijuana use may
suggest common modulating effects on DNA methylation and
may represent a nondiscriminatory smoke related biomarker,
irrespective of tobacco or marijuana use. Additionally, cg05575921
has been associated with psychiatric disorders [49, 50]. The top
methylation marker associated with recent marijuana use at Y15,
cg18110140, is located on chromosome 15 in an ‘open sea’ region
of the epigenome. This marker was recently found to be
associated with smoking status [51–53]. Several top epigenomic
loci have also previously been associated with tobacco smoking,
including BMF and MYO1B [52], and may provide additional
measurable biomarkers for tobacco and marijuana exposure.
Moreover, numerous epigenomic loci have been reported to have
potential therapeutic benefits via the endocannabinoid system.
NOX4 is a member of the NADPH oxidase family and an enzyme
that synthesizes reactive oxygen species (ROS) and cannabidiol
(CBD), one of the most common cannabinoids, has been reported
to attenuate ROS formation and enhance expression of NOX4 [54].
Similarly, TFEB is associated with the autophagy-lysosomal path-
way and may aid in reducing inflammation and cognitive
impairment via the cannabinoid receptor type II [55]. Although
the effect estimates for the observed associations are relatively
small, the magnitude of the beta coefficients are consistent with
previous EWAS studies [22, 28] and further studies investigating
the cumulative effect of these individual CpGs (e.g., polyepige-
netic risk score) may yield greater biological, and potentially
clinical, relevance. We also replicated several previously reported
marijuana loci, i.e., AHRR, ALPG, F2RL3, and MYO1G [22], in this
mixed sex and self-reported race study sample, although
additional studies in more diverse populations are needed to
further evaluate previously associated epigenetic markers. Addi-
tionally, we observed differential DNA methylation levels by self-

reported race and tobacco smoking status. While regression
coefficients were highly correlated during stratified analyses, these
findings provide insight into the interactive roles of self-reported
race and tobacco smoking on marijuana associated methylation
markers. For example, recent and cumulative marijuana use
tended to exhibit greater hypomethylation of cg05575921 among
Black participants and nonsmokers compared to White partici-
pants and former and current smokers, respectively. For the latter
finding, the hypomethylation of cg05575921 during pooled and
stratified analyses by tobacco smoking status suggests marijuana’s
association with methylation may be consistent and independent
of tobacco smoking. Our results highlight the interactive
influences of biological and environmental factors on methylation
signatures and provide insight into the differing impact of
marijuana on the epigenome by population strata. These findings
may serve as potential biomarkers to identify recent and long-
term marijuana use and molecular targets for further investigation.
The epigenome is dynamic and responsive to environmental

and lifestyle factors throughout the lifespan. Due to the ever-
changing nature of the epigenome, evaluating differences in
methylation patterns across time not only enables the temporal
(and, potentially, causal) assessment of a phenotype and
epigenetic changes in the context of the natural history of a
disease, but also permits examination of intra- and inter-individual
variability and trajectories in methylation patterns over time [56].
Additionally, longitudinal epigenetic studies will allow for the
examination of the impact of interventions on epigenetic changes.
For example, longitudinal examination of smoking-induced DNA
methylation patterns identified dynamic and stable markers across
time and also observed reversal of smoking induced methylation
changes after smoking cessation [57, 58]. Using repeated
measures of DNA methylation and marijuana use, we cross-
sectionally identified numerous marijuana associated epigenetic
markers associated at one time point but not the other (i.e.,
dynamic), including 6 (e.g., BEND3 and GNG12) and 10 (e.g., PHF2
and PSMD2) loci associated with both recent and cumulative
marijuana use at Y15 and Y20, respectively. Additionally, one
stable epigenetic marker, cg05575921, was associated with both
marijuana variables across the examination years with consistent
effect estimates (recent use: βY15=−3.37E−02 vs βY20=−3.41E
−02; cumulative use: βY15=−8.51E−02 vs βY20=−6.94E−02).
We also performed longitudinal analyses to investigate changes
in methylation and marijuana use across the examinations and
identified 12 CpGs that varied with change in marijuana use,
including markers in AHRR, COL11A2, and TFEB. Together, these
results suggest a majority of the observed marijuana associated
epigenetic associations are dynamic, although stable epigenetic
patterns maybe observed with marijuana use. Furthermore, the
identification of dynamic markers across time suggests both
recent and cumulative marijuana use may modulate epigenetic
changes differently during the aging process. A possible
explanation for the observation of different CpGs, as well as
biological pathways and diseases, across the timepoints may
relate to the pharmacokinetic properties influenced by age. For
example, reductions in hepatic and renal clearance can increase
the bioavailability of marijuana metabolites with prolongation of
its half-life and subsequently, may impact molecular and cellular
processes differently by age [59]. Consistent with our findings,
dynamic epigenetic markers are more likely to be identified
compared to stable markers during longitudinal analyses [60].
However, further studies investigating the modulatory effects of
marijuana on the epigenome on different age groups may
provide additional insight. Moreover, changes in marijuana use
may alter DNA methylation signatures, which may serve as
biomarkers to evaluate continued or ceased marijuana use.
Although additional studies are needed to evaluate these
markers, our findings demonstrate marijuana may induce
dynamic and stable epigenetic signatures that may have utility

D.R. Nannini et al.

2578

Molecular Psychiatry (2023) 28:2572 – 2582



as biomarkers for recent and cumulative marijuana use
across time.
The impact of lifestyle factors and behaviors on health is

complex and often involves an integrative approach to elucidate
the underlying biological processes. By investigating genetic
contributions to methylation markers associated with marijuana
use, we identified 650 cis-meQTLs, including 56 cis-meQTLs that
mapped to traits in the NHGRI-EBI GWAS Catalog. Among the
mapped traits, we observed consistent terms related to
immunological factors, cardiovascular traits, and brain measure-
ments. Marijuana use has been associated with alterations in
white blood cell counts [61], blood pressure [62], and brain
structures [63]. We found the most significant mapped cis-meQTL
has previously been associated with coffee consumption.
Caffeine is the most consumed psychoactive substance in the
world and induces dopamine release in the nucleus accumbens,
a brain structure mediating pleasure and reward processing [64].
Analogously, marijuana exerts similar effects on the nucleus
accumbens via the endocannabinoid system [65], suggesting the
pleasure and reward of caffeine and marijuana use share the
same reward center. Additionally, we identified 198 DMRs
associated with recent and cumulative use of marijuana at Y15
and Y20. Among the top DMRs, several regions have previously
been associated with cognitive function, psychiatric disorders,
and immune function. RNF39 was the most significant DMR in
two of the four analyses and has previously been associated with
general cognitive function [66] and bipolar and major depressive
disorders [67]. TRIOBP is the most significant DMR associated with
recent marijuana use at Y20 and has been associated with
general cognitive function [66, 68], schizophrenia [69], and
basophil count [70]. Similarly, SH3RF3 has been associated with
general cognitive ability [66], schizophrenia [71], and eosinophilia
[72]. Lastly ZFP57 has been associated with general cognitive
ability [66, 68], schizophrenia [73], autism [74], and rheumatoid
arthritis [75]. In sum, these findings suggest marijuana use shares
common genetic and epigenetic pathways associated with
immunological factors, cognitive function, and brain structures
and may regulate similar molecular mechanisms and biological
processes. These insights could help lead to the development of
new preventive and predictive tools for marijuana-associated
health outcomes.
As a psychoactive substance, marijuana may modulate path-

ways and diseases associated with homeostasis and health
outcomes. Our pathway analysis revealed differentially methylated
markers overrepresented in pathways associated with cellular
proliferation, hormone signaling, and infection. The MAPK
signaling cascades are signaling pathways that regulate cellular
proliferation, differentiation, and apoptosis; studies have sug-
gested potential therapeutic benefits of CBD on cancer treatment
via these pathways [76, 77]. With regard to hormones, the
endocannabinoid system modulates dopaminergic neurons and
acute use of tetrahydrocannabinol (THC) increases dopamine
release and neuron activity, whereas long-term use has been
associated with diminishing of the dopamine system [78]. THC has
also been shown to modulate oxytocin and areas of the brain
associated with reward and addiction behaviors [79]. Moreover,
cannabinoids have been reported to promote progression of
human papillomavirus positive head and neck squamous cell
carcinoma, primarily through MAPK activation [80]. Notably, a
previous genome-wide DNA methylation study of marijuana
identified the latter two pathways during pathway analysis [22].
In addition to these biological pathways, differentially methylated
genes associated with marijuana use were overrepresented in
psychiatric diseases and spasticity. Marijuana use has been
associated with several psychotic disorders including schizophre-
nia [81, 82], bipolar disorder [83, 84], autism [85], and psychosis
[86], as well as substance-related disorders [87, 88]. Additionally
THC [89] and smoked marijuana [90] have been shown to reduce

spasticity among patients with multiple sclerosis and spinal cord
injuries. Additionally, connections between the top marijuana
associated pathways and diseases have been previously reported.
For example, abnormalities in the MAPK signaling [91] and
dopamine pathways [92] have been associated with schizophre-
nia, as well as the use of oxytocin for treatment of substance
related disorders [93]. Collectively, we identified pathways and
diseases overrepresented with marijuana-associated methylation
markers, suggesting common epigenetic regulations which could
serve as potential diagnostic and therapeutic targets for these
related traits.
The current CARDIA study leveraged repeated methylation

levels and marijuana data to examine the association of marijuana
use on DNA methylation. The availability of genetic data enabled
the examination of potential genetic modulation of methylation
markers associated with marijuana via meQTL analyses. Moreover,
compared to other countries where residents use a mixture of
marijuana and tobacco, CARDIA is a US-based cohort where
mixing of marijuana and tobacco is less prevalent, allowing for a
more complete examination of the independent associations of
marijuana and tobacco smoking on DNA methylation [94]. This
study, however, is not without limitations. Although we identified
biologically relevant epigenetic loci and replicated previously
reported methylation markers, we were unable to replicate our
findings in an independent study, and as such, the findings
presented warrant validation. Residual confounding from addi-
tional factors, e.g., use of other or co-drug use and social support,
may partially explain the observed associations. As marijuana use
was considered illegal for most yearly examinations in CARDIA,
use may have been underreported. However, at each examination,
marijuana use was self-reported (as opposed to interviewer
obtained), collected at a research site (rather than an employer),
and participants’ responses were confidential [95]. The route of
administration of marijuana can also affect the onset, intensity,
and duration of the psychoactive effects, as well as organ systems
[96]. Investigations into marijuana use via other routes of
administration (e.g., edibles, pills, vaping) may provide novel
additional insights, including the latter, which was not present
during the timepoints in the current study but is becoming more
widely used. Additionally, this study examined acute exposure to
marijuana (within the last 30 days), compared to hyperacute
exposure (within hours) and investigations into DNA methylation
changes due to hyperacute exposure may provide further insight
into the acuity of exposure on epigenetic factors. And lastly,
although CARDIA is a diverse cohort, Black and White participants
were sampled from four centers across the US. As such, additional
studies from more diverse populations across different geogra-
phical locations will enable for better generalizability of the
findings presented here.

CONCLUSION
In conclusion, we observed significant associations between
recent and cumulative marijuana use with DNA methylation
markers across time. We also observed cis-meQTLs and DMRs
associated with marijuana use and biologically relevant path-
ways and diseases, suggesting potential shared genes between
marijuana use and cellular proliferation, hormone signaling, and
mental disorders. Additional studies are needed to replicate and
verify the observed associations presented here. With the
greater number of states legalizing marijuana for medical and
recreational use, as well as the expected rise in its use,
examining the association between marijuana and the epigen-
ome may aid in elucidating the molecular and biological
processes influencing downstream health conditions and may
serve as potential biomarkers to identify recent and long-term
marijuana use and intervene in the early stages of their related
health outcomes.
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