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Genome-wide association studies (GWAS) of Alzheimer’s disease are predominantly carried out in European ancestry individuals
despite the known variation in genetic architecture and disease prevalence across global populations. We leveraged published
GWAS summary statistics from European, East Asian, and African American populations, and an additional GWAS from a Caribbean
Hispanic population using previously reported genotype data to perform the largest multi-ancestry GWAS meta-analysis of
Alzheimer’s disease and related dementias to date. This method allowed us to identify two independent novel disease-associated
loci on chromosome 3. We also leveraged diverse haplotype structures to fine-map nine loci with a posterior probability >0.8 and
globally assessed the heterogeneity of known risk factors across populations. Additionally, we compared the generalizability of
multi-ancestry- and single-ancestry-derived polygenic risk scores in a three-way admixed Colombian population. Our findings
highlight the importance of multi-ancestry representation in uncovering and understanding putative factors that contribute to risk
of Alzheimer’s disease and related dementias.
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INTRODUCTION
Alzheimer’s disease (AD) is a complex genetic disorder with a
range of deleterious variants across multiple genes attributed to
both early and late-onset forms of sporadic AD [1]. The strongest
genetic risk factor for late-onset AD is APOE-e4, yet it has been
estimated that there may be anywhere from 100 to 11,000
variants that also contribute to risk of late-onset AD [2, 3]. Large-
scale genome-wide association studies (GWAS) in European
ancestry populations have identified over 75 loci that are
associated with AD and related dementias (ADD) [4]. However,
genetic research in ADD that focuses solely on European
populations limits additional discoveries afforded by studying
diverse cohorts. Including non-European populations in genetic
research provides new opportunities to uncover ancestry-specific
risk variants and loci, increase statistical discovery power, improve
fine-mapping resolution to identify putative causal variants,

and identify loci with heterogeneous effects across ancestry
groups [5–7].
Implementing existing ancestry-aware or heterogeneity pena-

lizing meta-regression approaches have proven powerful at
deconvoluting the genetic architecture of other phenotypes
across populations [8–18]. We leveraged such techniques, layering
existing diverse data on top of more extensive European-derived
data, to facilitate discovery of novel ADD risk loci. Here we report
the results of our multi-ancestry genome-wide meta-analysis of
the largest publicly available ADD GWAS from individuals of
European, East Asian, and African American ancestry, and an
additional GWAS of Caribbean Hispanic individuals using pre-
viously reported genotype data since those summary statistics
were not available. Using a meta-regression approach implemen-
ted in MR-MEGA, we demonstrate improved fine-mapping at
several known ADD loci and estimate the extent to which
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heterogeneity at these loci is attributable to genetic ancestry. This
study highlights the utility of multi-ancestry analyses to further
our understanding of disease biology and reduce health
disparities in research by nominating novel loci and characterizing
genetic differences across populations.

RESULTS
Data included in this study
Our multi-ancestry meta-analysis included a total of 54,233 AD
cases, 46,828 proxy AD and related dementia (proxy-ADD) cases,
and 543,127 controls (Fig. 1 and Table S1). Detailed information
about the existing GWAS summary statistics used in this report are
described elsewhere [4, 6, 19]. In brief, the most recent publicly
available ADD GWAS includes 39,106 clinically diagnosed AD
cases, 46,828 proxy-ADD cases (defined as having a parent with
AD/dementia) and 401,577 controls of European ancestry [4].
FinnGen data from Release 6 includes 7329 AD cases and 131,102
controls free of any neurological disorder. We also included the
largest publicly available AD GWAS of African American (2748
cases and 5222 controls) [6] and East Asian (3962 cases and 4074
controls) [19] populations and an additional GWAS including 1095
cases and 1179 controls of Caribbean Hispanic ancestry. Select
SNPs from the Gwangju Alzheimer’s & Related Dementias (GARD)
East Asian cohort (1119 cases and 1172 controls) were used to
assess East Asian risk at our novel loci post-hoc since these SNPs
were not present in the discovery East Asian dataset from
Shigemizu et al. used in our meta-GWAS [20]. In this study, we
considered significant variants as passing the standard p value
threshold of 5 × 108, consistent with most GWAS meta-analyses
and used previously in other multi-ancestry studies [21–23]. Our
analysis included only variants that passed quality control and
with a minor allele frequency >1% in a minimum of three datasets
to accurately quantify heterogeneity, effectively reducing the
number of potential haplotypes and tests.

Meta-GWAS
Association summary statistics from all five datasets, representing
four super populations, were aggregated via fixed and random
effects models implemented in PLINK v1.9 [24] and a multi-
ancestry meta-regression implemented in MR-MEGA [25]
(Table S1). A fixed effect analysis was conducted in conjunction
with random effects in PLINK as it is the standard choice for many
GWAS meta-analyses. Since the fixed effect analysis did not
identify any additional novel loci, we focused on the random
effects and MR-MEGA results as these methods are generally
more appropriate for multi-ancestry studies. In particular, MR-
MEGA was specifically designed for multi-ancestry meta-analyses
and random effects models penalize heterogeneity in their
construction of effect estimates, allowing these estimates to be
more generalizable across global populations. We did not observe
any genomic inflation in these analyses after excluding rare
variants (MAF < 1% per study) and correcting for case-control
imbalance (Table S1 and Fig. S1). Chromosome 19 was also
excluded from genomic inflation estimates to avoid bias from the
APOE region. Association results from the random effects and MR-
MEGA meta-analyses were moderately concordant for SNPs
without heterogeneity (I2= 0, R2= 0.6). Our study also demon-
strated that MR-MEGA is advantageous for SNPs with hetero-
geneous allelic effects (Fig. S2). Results from all meta-analyses
(MR-MEGA, random effects, and fixed effect) can be found in
Table S2a–c.
A total of 68 loci reached genome-wide significance (P < 5 ×

10−8) in the fixed effect, random effects or MR-MEGA meta-
analyses. While most of these loci overlapped all analyses, 1 was
only significant using MR-MEGA (JAZF1), 1 using random effects
(KANSL1), and 5 using the fixed effect model (ADAMTS1, MAF,
PLEKHA1, TSPOAP1, and UMAD1) (Table S2a–c). 66 of these loci
overlapped previously established genomic regions associated
with ADD (see “Defining associated loci” in the “Online Methods”).
Our analysis may have been underpowered to detect the

Fig. 1 Study Design. Outline of multi-ancestry meta-analysis procedure and downstream analysis.
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remaining loci without the replication summary statistics from
Bellenguez et al. as only the discovery phase statistics from that
study were available.
We additionally identified two independent ADD risk loci on

chromosome 3 near TRANK1 (rs9867455; PRE= 3.49 × 10−8,
βRE=−0.0424, I2= 0) and VWA5B2 (rs9837978; PRE= 3.75 ×
10−8, βRE=−0.0526, I2= 0) that are outside of the maximal
linkage disequilibrium (LD) boundary for any known AD risk loci
(Fig. 2). These two loci were identified using both the fixed and
random effects models. These loci also showed similar P values
using MR-MEGA, but did not reach genome-wide significance
using this method (Table 1). The association signals are primarily
driven by the European-focused study by Bellenguez et al., where
they were also sub-significant (P-values of 6.95 × 10−7 for TRANK1
and 1.17 × 10−6 for VWA5B2, respectively). We did not identify any
additional novel loci using MR-MEGA (Fig. S12a).
Since the lead SNPs for these potential novel loci were absent in

the East Asian dataset from Shigemizu et al. used for initial
discovery [19], we attempted to test these SNPs in an independent
East Asian ancestry dataset [20]. Genome-wide data for this cohort
was not available to include in the meta-analysis at the time of
publication. We observed an association at P < 0.05 at VWA5B2-
rs9837978 (P= 0.048, β= 0.204) in the GARD cohort (n= 2,291).
The direction of effect was not consistent with the direction seen
in the other populations included in the discovery GWAS,
suggesting the effect of this locus may be heterogeneous across
populations, but more extensive testing in East Asian populations
must be performed for confirmation. We were unable to test the
association at TRANK1-rs9867455 in the GARD replication cohort
since this SNP was not included in their GWAS and an LD proxy
SNP was not available.

Gene prioritization for novel loci
Using public expression quantitative trait locus (eQTL) evidence
from Open Targets [26] and multi-ancestry brain eQTL summary
data [27], we assessed whether TRANK1-rs9867455 and VWA5B2-
rs9837978 are associated with the expression of nearby genes.
Open Targets reported rs9867455 as a significant eQTL (P < 1 ×
10−6) for LRRFIP2, ITGA9, GOLGA4, MLH1, and TRANK1 across blood
or other tissues. LRRFIP2, GOLGA4 and TRANK1 were also
nominated in the multi-ancestry brain eQTL data. Open Targets
reported rs9837978 as a significant eQTL for AP2M1, ABCF3,
VWA5B2, ALG3, ABCC5, DVL3, and CLCN2. AP2M1, as well as two
additional genes (EIF2B5 and ECE2) were nominated in the multi-
ancestry brain eQTL data.
To prioritize susceptibility genes with expression effects on ADD

risk, we performed summary-based Mendelian Randomization
(SMR) to infer whether expression of the eQTL-nominated genes is
causal for AD. More details regarding the purpose and methods
used to perform SMR can be found in the “Functional inferences”
section of the “Online Methods”. At the TRANK1-rs9867455 locus,
TRANK1, LRRFIP2, GOLGA4, and ITGA9 were significant in our SMR
results for affecting AD risk via expression across multiple tissue
types. The strongest associations in cortex tissue were seen with
TRANK1 and LRRFIP2. The GWAS signal at the TRANK1-rs9867455
locus colocalized most strongly with TRANK1 expression in cortex
tissue (R2= 0.52; Fig. S3). At the VWA5B2-rs9837978 locus,
VWA5B2, AP2M1, ABCF3, ALG3, EIF2B5, DVL3, CLCN2, ABCC5 were
significant in our SMR results. The strongest associations in brain
tissues were seen in ABCF3, ALG3 and EIF2B5, although colocaliza-
tion between the GWAS signal and these eQTLS were not very
strong (R2 < 0.5; Fig. S4). For more details on directionality of these
associations, see Table S3.

Fig. 2 Summary of multi-ancestry meta-analysis. a The Manhattan plot for the random effects meta-analysis P values, truncated at
−log10(P) < 50. An orange dot indicates that the lead SNP at a locus reached a P value < 5 × 10-8, while a red dot indicates a P value < 5 × 10−9.
b, c The corresponding local association plots for the two loci of interest and forest plots summarizing the effect estimates per ancestry group
for lead SNPs at the two loci of interest. Lead SNPs from both novel loci were absent in the East Asian dataset by Shigemizu et al. used for
discovery. Abbreviations - MR MR-MEGA, RE Random effects, FE Fixed effect, EUR European, EUR (FIN) Finnish European, AFR African American,
CAR HISP Caribbean Hispanic.
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Fine-mapping
A total of nine loci outside of the APOE, MAPT, and major
histocompatibility complex (MHC) regions were fine-mapped to a
credible set of ≤ 2 SNPs with a combined posterior probability (PP)
of 99% (Table 2 and Figs. S5, 6). The MHC and MAPT regions were
excluded from fine-mapping due to a complex haplotype
structure across populations [28, 29] and known haplotype
inversions [30], respectively. Five of these loci were previously
fine-mapped with PP > 0.8 in large GWAS of European populations
(Fig. S5; BIN1-rs6733839; INPP5D-rs10933431; ECHDC3-rs7912495;
APH1B-rs117618017; ABCA7-rs12151021) [31, 32]. Four additional
ADD loci with 1–2 variants in their 99% credible sets have not
been previously fine-mapped (Fig. S6a-b, d-e; RHOH-rs2245466;
CTSB-rs1065712; FAM157C/PRDM7-rs56407236; GRN-rs5848). Inter-
estingly, GRN is also a candidate risk locus for frontotemporal
dementia (FTD) [33] and Parkinson’s disease (PD) [34, 35]. More
than 70 pathogenic variants in GRN have been linked to familial
FTD [33]. While GRN mutations do exist in sporadic forms of FTD,
we were unable to find publicly available FTD GWAS summary
statistics with a significant association at this locus. Using publicly
available PD GWAS summary statistics [34], we compared the
regional genetic correlations between PD and ADD at both GRN
and CTSB, another candidate risk locus for PD. LocusCompare plots
show low genetic correlation between ADD and PD at both loci
(GRN, R2= 0.36; CTSB, R2= 0.0048), which may indicate that
distinct causal variants drive the associations (Fig. S7). One
additional locus with a credible set size >2 was fine-mapped to
a single SNP with PP > 0.8 (Fig. S6c; SLC24A4-rs12590654, PP=
0.91, n= 32 in 99% credible set). In addition, two SNPs with a
PP ≥ 0.3 were annotated as missense variants (Fig. S8; MS4A6A-
rs7232, PP= 0.54, n= 4 in 99% credible set; SHARPIN-rs34674752,
PP= 0.30, n= 5 in 99% credible set). Notably, our fine-mapping
analysis did not replicate SORL1-rs11218343, which has been
previously fine-mapped with a PP > 0.999 in two large European
studies [31, 32], likely due to a different regional architecture in
the East Asian population as has been previously reported (Fig. S9)
[36]. All 99% credible sets are provided in Table S4.

Heterogeneity analysis
We observed significant heterogeneity (I2 > 30%) at 19 of the 48
loci that reached genome-wide significance (P < 5 × 10−8) in MR-
MEGA (Table S2a), which does not include the additional loci
(including 2 novel) identified by the fixed and random effects
analyses (Table S2b, c). Several factors can account for the
observed heterogeneity, such as differences in study design,
geographical region, and diagnostic accuracy. We estimated the
proportion of heterogeneity that is attributable to genetic
ancestry using MR-MEGA (see “Assessment of allelic effect
heterogeneity” in the “Online Methods”) and observed that at
least 50% of the heterogeneity was attributable to genetic
ancestry at 10 of these loci (Figs. 3 and S10). We also assessed
heterogeneity at lead SNPs from the most recent European GWAS
[4] and found that 37% of the lead SNPs tested presented
significant heterogeneity (I2 > 30%), of which 48% were primarily
attributable to ancestry (Table S5). Five of the fine-mapped SNPs
also showed significant heterogeneity (I2 > 30%), of which only
SLC24A4 showed heterogeneity that was primarily attributable to
genetic ancestry (Table 2).
The genetic polymorphisms rs7412 and rs429358 that form the

APOE e2/e3/e4 alleles presented very different allelic heterogene-
ity. Consistent with previous studies [7, 37], we observed an
attenuated signal at APOE-rs429358, which determines the APOE-
e4 allele, among the cohorts of African Americans and Caribbean
Hispanics (Fig. S11a). APOE-rs429358 had the highest hetero-
geneity (I2= 96.54) of the SNPs tested with ~42% attributable to
genetic ancestry, although these polymorphisms were not
available to test in the most recent European-ancestry AD GWAS
[4]. In contrast, APOE-rs7412, which determines the APOE-e2 allele,Ta
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did not present any heterogeneity (Fig. S11b; I2= 0). Comple-
mentary to standard GWAS association tests, we also generated
P values representing heterogeneity of effect estimates attribu-
table to genetic ancestry in the multi-ancestry meta-regression
and observed the strongest signal near APOE (Fig. S12). Addition-
ally, we observed strong evidence of ancestry-related hetero-
geneity (PHET < 1e−6) near SORL1, as well as PAPOLG, AC026202.5,
and snoU13 which did not meet genome-wide significance in the
association results. LocusZoom and beta-beta plots of these loci
suggest that non-European populations primarily drive these
association signals, and there are likely discordant effects across
populations (Fig. S13).

Polygenic risk scoring
We tested the performance of the multi-ancestry fixed and
random effects models and each of the GWAS from single
ancestral populations in a Colombian cohort of AD cases (n= 281)
and neurologically normal controls (n= 87). This cohort is an
admixture of three ancestral populations, with European sub-
structure making up the highest proportion of global ancestry
(mean of 64%, SD= 15%), followed by Indigenous American
(mean of 27%, SD= 11%), and African (mean of 9%, SD= 11%).
Colombian samples were used to test PRS applicability as they
were a population not represented in the meta-analyses. While
the Caribbean Hispanic cohort included in the meta-analyses is
also three-way admixed, this cohort likely has a lower Indigenous
American proportion and higher African ancestry proportion than
the Colombian cohort [38]. Single-ancestry PRS performed worse
than multi-ancestry random-effects-derived PRS in terms of area
under a receiver operating characteristic curve (AUC). We
observed maximal AUCs of 79% and 68% including and then
excluding APOE variants in this population, and 75% and 63% for
the European-derived PRS (Fig. 4; Table S6). Non-European AUCs
tended to improve with increasing sample size (Fig. 4), suggesting
that the composite score, combining ancestry-specific PRS by
population weights, may have performed as well or better than
the random-effects-derived PRS if the component GWASs from
underrepresented populations were better powered.

DISCUSSION
We performed a large, genome-wide meta-analysis of ADD across
five datasets, representing four super-populations. By leveraging
data from multiple ancestry groups, we replicated 66 known ADD
loci and identified two novel risk loci on chromosome 3
(Tables S2a–c). These novel loci reached genome-wide signifi-
cance using the fixed and random effects models, but were sub-
significant using MR-MEGA as this model is not as well-powered to
detect loci with homogenous allelic effects [25].
The first novel locus identified in this study is near TRANK1,

which encodes tetratricopeptide repeat and ankyrin repeat
containing 1. TRANK1 is associated with DNA- and ATP-binding
and DNA repair and is highly expressed in brain tissue [39, 40].
Previously, TRANK1 has been cited as a robust risk locus for both
schizophrenia (SZ) [41–43]. and bipolar disorder (BD) [39, 44, 45],
although subtype analyses suggest that this signal is primarily
driven by the most heritable subtype, BD I, which is genetically
correlated with SZ [46]. Notably, BD has also been shown to
increase risk for AD, with the two sharing significant genetic
overlap [47]. LocusCompare plots show a modest correlation
between our random effects meta-analysis of ADD with BD I
(R2= 0.46) and SZ (R2= 0.23) GWAS at this locus (Figs. S14 and
15). We also observed moderate LD (R2= 0.44, 1000 Genomes
EUR) between the lead SNP identified in our study (rs9867455)
and the lead SNP identified in the BD I GWAS (rs9834970),
indicating potential cross-disease overlap for this locus.
Previous SMR analysis of the TRANK1 region in BD suggested

that both TRANK1 and GOLGA4 may be susceptibility genes [48].Ta
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TRANK1 expression is decreased in both BD and AD, and
decreased expression of TRANK1 was found to alter the expression
of genes related to neuronal development and differentiation [47].
Altered neurogenesis has been implicated in human AD brains
and AD rodent models [48]. Previous studies have suggested that
TRANK1 may be involved in blood brain barrier permeability
changes and neuroinflammation, both of which may be relevant
to neurodegeneration [48, 49]. Interestingly, Kunkle et al. nomi-
nated TRANK1 through a gene-based analysis conducted in an
African American population, but not through the single SNP
association testing included in this study [6]. A combination of
eQTL and SMR nominated TRANK1, LRRFIP2, GOLGA4, and ITGA9 as
potential genes underlying this SNP association, with the
strongest associations in cortex tissue seen with TRANK1 and
LRRFIP2 (Table S3). LRRFIP2 encodes LRR binding FLII interacting
protein 2, which regulates Toll-like receptor 4 (TLR4) and can
downregulate the NLRP3 inflammasome. TLR4 can induce micro-
glial amyloid-β clearance in the brain in early stages of AD but can

later induce an inflammatory response, suggesting that disrup-
tions to LRRFIP2 may affect AD pathology in patients [50].
The second locus is nearest to VWA5B2, which encodes von

Willebrand factor A domain-containing protein 5B1. Von Will-
ebrand factor (VWF) is a glycoprotein that facilitates blood clotting
at areas of injury. High VWF is associated with short-term risk of
dementia, possibly due to the increased risk of blood clots
restricting blood flow in the brain [51]. Interestingly, VWA5B2 was
found to be downregulated in AD patients, and other variants in
VWA5B2 have been linked to decreased mean hemoglobin
concentration [12, 52]. Low hemoglobin, or anemia, has been
linked to an increase in risk for AD [53]. This information seems to
further implicate the involvement of the vasculature system with
AD, complementing previous studies such as those investigating
traumatic brain injury [54]. Whether VWA5B2 has biological
implications on risk for AD needs to be further investigated. The
lead variant rs9837978 does not lie within any of the nearby genes
at this locus, but eQTL and SMR evidence for this variant

Fig. 4 Graphical summary of genetic risk scores. These genetic risk scores were derived from multi-ancestry and ancestry-specific risk
estimates, then applied to an admixed Colombian cohort to evaluate significance and predictive power. The European-based (EUR) PRS was
derived from a fixed effect meta-analysis of the summary statistics from Bellenguez et al. and FinnGen used in the meta-GWAS. a, b The
maximal AUCs for each genetic risk score with color coding to delineate the source of the risk estimates for scores excluding and then
including APOE-e4 variants. P value thresholds that correspond to the maximal AUCs are shown in Table S6.

Fig. 3 Graphical summary of heterogeneity at ADD genetic risk loci. Lead SNPs were derived from MR-MEGA using maximal LD blocks,
apart from APOE rs429358 and rs7412. Both APOE SNPs were absent in summary statistics from the most recent European-ancestry ADD
GWAS. Aggregate effects were estimated using a random effects model since MR-MEGA assumes that effects differ across populations. Allelic
effect heterogeneity that is attributable to genetic ancestry was estimated using Cochran’s Q statistics for ancestral and residual heterogeneity
from the meta-regression (“Online Methods”).
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nominated eight nearby genes including VWA5B2 (Table S3). The
strongest SMR association in brain tissue is seen with ABCF3. The
ABCF3 protein is a member of the ATP-binding cassette (ABC)
superfamily, all of which transport a variety of substrates across
intra- and extracellular barriers [55]. Members of the ABC A
subfamily, such as ABCA7 and ABCA1, have previously been
nominated as AD risk genes [4]. ABCF3 is a unique family member
in that it lacks a transmembrane domain but has been nominated
as a candidate of TLR signaling, similar to LRRFIP2 [56]. In addition
to inducing inflammatory responses, TLRs can affect microglial
activity, synaptic plasticity, and tau phosphorylation, providing
additional evidence to their potential importance in AD pathology
[57]. Additionally, downregulation of ABCF3 has been associated
with an increase in viral load after infection by a flavivirus,
specifically the West Nile virus which has been linked to long-term
neurological problems and dementia [58, 59]. It’s plausible that in
the presence of viral infection, changes in ABCF3 expression may
affect immune response and inflammation, two processes that
play a role in the amyloid cascade hypothesis [60].
Future studies will be required to further disentangle the

potential roles of the nominated genes in the context of ADD risk.
Although genome-wide summary statistics were unavailable for
replication, we attempted to replicate the lead SNP VWA5B2-
rs9837978 in a small East Asian cohort [20]. However, this SNP
demonstrated an opposite direction of effect and the replication
dataset was underpowered to detect an association (Fig. S16).
Assuming a disease prevalence of 2%, MAF of 0.1642 (gnomAD
v3.2.1 East Asian), and a nominal significance threshold of 0.05, we
had ~80% power to detect genotype relative risks ≥1.245 but our
odds ratio for this allele, which is generally an overestimate of risk
[61], was 1.05. Replication in larger and more diverse cohorts is
warranted in future studies. Further, the disparity seen at points
between the results on Open Targets, which consists of largely
European data, and the multi-ancestry eQTL results for nominated
genes also highlights the need for more multi-modal reference
data including diverse ancestries. However, it is also possible that
there could be different mechanisms underlying disease risk
conferred by the implicated loci across different populations.
Our study highlights the utility of multi-ancestry datasets at

uncovering putative mechanisms that contribute to ADD. Fine-
mapping at several known ADD loci was better resolved using the
multi-ancestry meta-regression compared to previous efforts in
European populations. For example, fine-mapping near RHOH,
CTSB and FAM157C/PRDM7 nominated variants that are located in
untranslated regions that were not well-resolved in European-
focused studies. Variants in the 3′UTR region can impact
translation or protein stability, and transcription binding can be
impacted by variants in the 5′UTR region. Additionally, GRN-rs5848
is associated with circulating progranulin levels and decreased
GRN expression has been implicated in several neurodegenerative
diseases, including AD and FTD [35, 62, 63]. In contrast to previous
studies in European populations, the SORL1 locus was not resolved
to a single putative causal SNP. Lead SNPs in both the European
(SORL1-rs11218343) and East Asian (SORL1-rs117807585) GWAS
are more common among East Asians compared to all other
populations in the Genome Aggregation Database v2.1.1
(rs11218343: AFEAS= 0.30, AFEUR= 0.039; rs117807585: AFEAS=
0.22, AFEUR= 0.020). It is possible that alternative fine-mapping
approaches that allow for multiple causal variants per locus will
provide greater insight into the SORL1 locus.
At the MS4A gene cluster, multi-ancestry fine-mapping resolved

the signal to a credible set of five variants, with a common
missense variant (rs7232, PP= 0.54) and an intergenic variant
nearest MS4A4A (rs1582763, PP= 0.45) that are in moderate LD
(R2= 0.55, 1000 Genomes all populations) having the highest
probability of causality (Fig. S8). MS4A4A and/or MS4A6A modulate
soluble TREM2 (sTREM2) in cerebrospinal fluid (CSF), which is
correlated with AD progression. Previous studies have shown that

rs7232 is associated with MS4A6A gene expression and CSF
sTREM2 [64, 65], while rs1582763 is a cis-eQTL for MS4A4A and
MS4A6A [66]. Conditional analysis of CSF sTREM2 levels in this
region have pointed to two independent signals represented by
rs1582763 and rs6591561 (MS4A4A p.M159V) [66]. Therefore, a
fine-mapping approach that allows for multiple causal variants
may be more appropriate for this region.
In addition to highlighting genetic risk factors that are shared

across populations, our results also highlight ADD loci with
significant heterogeneity that may reflect variation in effect sizes,
allele frequencies or interaction(s) with environmental risk factors
that vary by ancestral group. For example, we observed the
strongest evidence of heterogeneity at APOE-rs429358. Around 42%
of the heterogeneity at this allele was attributable to genetic
ancestry, while the remaining heterogeneity may reflect other
sources of variation such as imputation accuracy since this allele is
rarely assayed successfully on genotyping arrays. At JAZF1-
rs67250450 and CLU-rs1532276, we observed the strongest
evidence of ancestry-related heterogeneity, both of which are most
common among individuals of East Asian ancestry and showed the
strongest effects in this population (Fig. 3). We also observed
significant ancestry-related heterogeneity at SORL1 and TREM2,
which have been previously shown to harbor population-specific
risk variants [67, 68]. Given that our analyses focused on common
variation, the effects of rare heterogeneous variants (e.g. ABCA7-
rs115550680, which has comparable effects to APOE-rs429358
among African Americans [69]) may not have been fully captured.
While this study marks progress towards assessing genetic risk

of ADD across multiple populations, we acknowledge several
limitations. First, we recognize that the magnitude of clinical and
pathological diversity among ADD cases is extensive. The
diagnostic inaccuracy rate of AD likely differs across studies and
populations [70, 71] both early-onset forms of AD and other
pathologies such as frontotemporal and lewy body dementias.
This clinicopathological heterogeneity is further exacerbated by
the inclusion of proxy-ADD cases in the Bellenguez et al. study, a
study which comprised the majority of European samples
included in our analysis. While proxy-ADD cases may introduce
more variability than a clinical or pathological diagnosis of AD,
prior studies have demonstrated strong genetic correlation
between proxy-ADD and AD (rg = 0.81), further supporting the
use of this data [72]. Additionally, despite the phenotypic
heterogeneity in the Bellenguez et al. study, the utility of ADD
GWAS are supported by genes with well-defined involvement in
relevant molecular pathways. For example, the APP locus was first
identified at genome-wide significance in Bellenguez et al.
(P= 1.02 × 10−9) and we found a stronger level of significance
in our random effects meta-analysis (P= 8.1 × 10−12, I2= 0.79).
This locus is likely driven by underlying AD pathology due to its
role in the formation of amyloid-β and its previous implications in
both LOAD and EOAD [73, 74]. Although disease subtype-specific
conclusions that can be made from our analysis are limited by the
diagnostic criteria of the included GWAS, similar analyses can be
applied as larger datasets with high phenotypic specificity
become available.
Additionally, although MR-MEGA is a useful tool for fine-

mapping and ancestral heterogeneity estimation, the software
requirements of population overlap (K > 3) often result in reduced
variant sets after study level quality control. This can bias fine-
mapping results as we reduce the potential resolution on local
haplotypes, and usually necessitates the inclusion of at least one
of the larger European-focused studies. In our case, previous
European and Finnish studies served as the backbone of our meta-
GWAS. We did not replicate previous fine-mapping at NCK2,
TREM2 and RNF223 from European-focused studies since study
level quality control included filtering for common (MAF > 1%),
biallelic SNVs due to potentially poor imputation and general low
power for rare variants across ancestral groups. We acknowledge
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that variants with a minor allele frequency <1% in one or more
populations, as well as indels and structural variants, may
contribute to the observed associations. While less stringent QC
may have allowed us to detect more variants, we used a more
conservative approach to accommodate the smaller sample size of
non-European GWAS and the need for MR-MEGA SNPs to be
present in at least four studies. Future work should include
imputation using diverse reference panels from long read
sequence data specific to ADD to improve genomic coverage
and provide insights into structural variation that may be
population specific.
In addition, the number of axes of genetic variation (T) in MR-

MEGA is restricted to T ≤ K-2, where K is the number of input
GWAS. The East Asian GWAS from Shigemizu et al. used in our
meta-GWAS tested less than half as many SNPs as the others
(Table S1), limiting the meta-regression to a single axis of genetic
variation (PC0) at SNPs that overlap the remaining GWAS (K= 4).
Including a larger number of input GWAS from underrepresented
populations will likely improve the heterogeneity estimates
outlined in this study and are worth pursuing when such data
become available.
While our study is inclusive, due to data availability and the

European-dominated nature of genetic research, European-
ancestry individuals make up approximately 85% of cases and
the discovery efforts here maintain a baseline level of Eurocentric
bias. Despite this bias, our random-effects-derived PRS including
APOE variation achieved a higher maximal AUC of 79% in an
independent admixed Colombian cohort compared to 75%
achieved by the European-based PRS. Additionally, while our
novel method of creating a composite PRS model that leverages
admixture percentages is a potentially promising approach for
assessing ADD risk across ancestrally heterogeneous and/or
admixed cohorts, its performance relies on sufficient sample sizes
and global genetic representation. As larger scale GWAS for
multiple continental “super populations” continue to become
available, we believe this method of tuning PRS to an individual’s
genetic admixture could have utility in a precision medicine
context. Reducing the Eurocentric bias in AD genetics research will
require the harmonization and refining of diagnosis in non-
European research sites that serve communities with unique
cultural and logistic concerns for participation in research. Overall,
our study provides a critical framework for future ADD meta-
analyses. It is our hope to improve representation in ADD genetic
studies in the future, increasing the balance between European
and well-powered non-European cohorts.

ONLINE METHODS
Existing GWAS studies
Summary statistics from Bellenguez et al. 2022 were accessed
through the National Human Genome Research Institute-European
Bioinformatics Institute GWAS catalog under accession number
GCST90027158 in May 2022. Summary statistics from FinnGen
Release 6 were accessed at https://www.finngen.fi/en/access_results
in April of 2022. Summary statistics from Kunkle et al. [6] were
accessed through NIAGADS (https://www.niagads.org/) under acces-
sion number NG00100 in April of 2022. Summary statistics from
Shigemizu et al. [19] were accessed through the National Bioscience
Database Center (NBDC) at the Japan Science and Technology
Agency (JST) at https://humandbs.biosciencedbc.jp/en/ through
accession number hum0237.v1.gwas.v1 in April of 2022. All
summary statistics were aligned to GRCh37 and cleaned to remove
indels, multi-allelics and rare variants (MAF < 1%) prior to multi-
ancestry analysis.

Caribbean Hispanic GWAS
Data from the Columbia University Study of Caribbean Hispanics
and Late Onset Alzheimer’s disease were accessed via application

to dbGaP accession number phs000496.v1.p1 in April of 2022.
Samples were filtered to keep unrelated individuals without
missing values for AD affection status, age, study category,
education, and a missing call rate <0.02. Principal component
analysis was performed on a combined dataset of study subjects
and HapMap was used as a reference to identify potential outliers.
Controls with a family history of dementia were removed to
ensure that potential proxy-ADD cases were not present in the
control group. Variant QC included exclusion filters for mono-
morphic SNPs, variants with MAF <1%, missingness rates >2%, sex
differences in allelic frequency ≥0.2 and heterozygosity >0.3,
duplicate SNPs, Hardy–Weinberg Equilibrium (HWE) P value <1 ×
10−4, and >1 discordant calls or Mendelian errors. All variants with
a significant frequency mismatch (χ2 > 300) with the TOPMed
reference panel were removed prior to imputation.
As increasing age is the most significant risk factor for ADD, age

matching is commonly used to control for differences in age
distributions between cases and controls. While we did not
perform case-control age matching to maximize sample size, the
distribution of ages between cases and controls largely overlaps
and we include age as a covariate in our GWAS analysis. A
demographic summary table detailing age, APOE-e4 status, sex for
the Caribbean Hispanic cohort is provided in Table S7.
Using PLINK v1.9 [24], we evaluated the association between AD

and imputed genotypes via logistic regression on allele dosages
with imputation quality >0.3, adjusting for sex, age (age at disease
onset for cases, age at last evaluation for controls), education,
study category, and the first 10 principal components (PCs). Study
category denotes subcategories within the Caribbean Hispanic
dataset (individuals are from the United States, Puerto Rico and
the Dominican Republic) and is included to account for potential
batch effects.

Meta-analysis and fine-mapping
Meta-analysis. Three models were used to conduct multi-
ancestry meta-analyses. Fixed effect and random effects models
were performed using PLINK v1.9, while a separate analysis was
performed using MR-MEGA v0.2 [25]. PLINK v1.9 was preferred
over METAL due to its capacity to perform fixed and random
effects analyses in parallel. A random effects model provides a
more conservative framework which allows each study to have
unique effects, as can be expected in different populations. MR-
MEGA was also employed since it is well-powered to detect
associations at loci with allelic heterogeneity. MR-MEGA models
allelic effects as a function of axes of genetic variation that are
derived from the input GWAS summary statistics. This method can
result in reduced variant sets since it requires that variants have
sufficient overlap between the input datasets (K > 3), where K is
the number of input GWAS, in contrast to both the fixed and
random effects models implemented in PLINK v1.9 which were
limited to K > 2 to accurately quantify heterogeneity.
The European and Finnish European GWAS were included

separately in all multi-ancestry meta-analyses to account for finer-
scale differences in allele frequencies. To determine the optimal
number of PCs needed to distinguish cis- and multi-ancestry ADD
summary statistics using MR-MEGA, we visually inspected pairwise
PC plots generated using all five GWAS referenced in Table S1. We
observed adequate separation between the Caribbean Hispanic,
European, African American, and East Asian GWAS using the first
two meta-regression PCs (Fig. S17). To increase the variant set, we
also ran MR-MEGA separately for each combination of four input
GWAS. A single axis of genetic variation (T= 1) was included in
this analysis since this is the maximum allowable given the
constraints of the model (T ≤ K−2). Summary statistics were
aggregated to maximize the effective sample size for each variant.

Defining associated loci. FUMA was used to find maximal
LD blocks around loci that reached P < 5 × 10−8 in the specified
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multi-ancestry meta-analysis. LD blocks of independent significant
SNPs (R2 > 0.3, 1000 Genomes all populations) were merged into a
single genomic locus if the distance between LD blocks was less
than 250 kb. These loci were compared to the previous GWAS by
Bellenguez et al. [4] and Open Targets to assess whether these
regions were known to be associated with ADD. These genomic
intervals were also used as inputs for fine-mapping as
described below.

Fine-mapping. Fine-mapping was performed using approximate
Bayes’ factors in favor of association from the meta-regression
model implemented in MR-MEGA. Posterior probabilities (PP) were
calculated using single-SNP Bayes factors and credible sets were
generated for each locus (with genomic intervals defined as
described above) until the cumulative PP exceeded 99%. All SNPs
in the 99% credible sets were annotated with VEP (http://
grch37.ensembl.org/Homo_sapiens/Tools/VEP) using default cri-
teria to select one block of annotation per variant (Table S4).

Assessment of allelic effect heterogeneity
Allelic effect heterogeneity between studies was assessed for all
lead SNPs reaching genome-wide significance (P < 5 × 10−8) in the
meta-regression, implemented in MR-MEGA. The meta-regression
model derives axes of genetic variation from pairwise allele
frequency differences between the input GWAS. Heterogeneity is
then partitioned into (1) ancestry-related heterogeneity that is
correlated with the axes of genetic variation and (2) residual
heterogeneity that is likely due to other factors such as diagnostic
accuracy, study design (e.g. covariate adjustments, phenotype
definition, imputation quality, inclusion of proxy-ADD cases) and/
or geographical region. Total heterogeneity at each index SNP was
quantified using the I2 statistic in PLINK v1.9 to avoid bias due to
sample size for SNPs not tested in the large European studies. The
I2 statistic describes the proportion of variation in effect estimates
that is due to heterogeneity. We considered SNPs with an I2 > 30%
as having significant heterogeneity since this suggests at least
moderate variation in allelic effects [75]. The percentage of this
heterogeneity that is attributable to genetic ancestry was then
calculated using Cochran’s Q statistics for ancestral and residual
heterogeneity from the meta-regression (Eq. 1; ANC: ancestry,
RESID: residual).

% HeterogeneityANC ¼ QANC=ðQRESID þ QANCÞ ´ 100% (1)

Functional inferences
To prioritize genes underlying the two novel loci, we first looked at
public eQTL data to determine whether the GWAS-identified lead
variants are eQTLs for nearby genes. This allowed us to cast a wide
net of potential regional genes of interest. We employed Open
Targets for this effort, which shares eQTL results for variants from
blood, brain, and a wide array of tissues from multiple public eQTL
datasets [26]. We additionally investigated a multi-ancestry brain
eQTL dataset [27] which was not available on Open Targets at the
time of publication. We considered the lead variants as significant
eQTLs for a gene if they passed the significance threshold of P < 1
× 106, which has been shown to correspond to a genome-wide
false discovery rate (FDR) of 5%, although we do acknowledge this
may be overly conservative in our regional analyses [76].
Once we had nominated potential genes for which our lead

variants were significant eQTLs, we used summary-based Mende-
lian Randomization (SMR) to make functional inferences as to
whether the disease risk SNPs in these regions mediate gene
expression. We integrated summary-level data from the most
recent ADD GWAS [4] with data from multiple eQTL studies in
different tissues using the SMR method [77]. SMR uses summary
statistics to determine if an exposure is associated with a trait

through a shared casual variant. MR can be used to mimic a
randomized controlled trial, as having a variant that increases or
decreases expression of a gene may be comparable to life-long
treatment with a drug targeting the encoded protein of that gene.
[78] For example, if SNP A affects gene B expression (the
exposure), and SNP A is also associated with ADD risk (the
outcome), you can infer the causal effect of the expression of gene
B on ADD risk.
We limited our results to the genes that were prioritized by our

eQTL search and considered a gene significant for expression
effect on a disease if it passed an FDR-adjusted SMR significance
threshold of P < 0.05 and a HEIDI threshold of P > 0.01. Filtering for
a HEIDI P-value of this magnitude helps to remove associations
that are likely due to polygenicity and have violated the central
assumptions of SMR. Finally, we assessed the colocalization
between the SMR-nominated genes in brain tissues and the
multi-ancestry random effects GWAS using LocusCompare [79].

Polygenic risk scoring
PRS application cohort. Whole genomes from the Colombian
population were accessed from “The Admixture and Neurode-
generation Genomic Landscape” (TANGL) study and quality
controlled as previously described [67]. The TANGL cohort was
further quality controlled in PLINK v1.9 to remove carriers of
pathogenic variants for mendelian forms of dementia, as well as
related individuals for a final cohort of 281 cases and 87 controls.

Pre-PRS variant alignment. Base summary statistics were pruned
with the MungeSumStats R package [80] to remove multiallelic
variants, align reference alleles to build GRCh37, and adjust
weights for the appropriate reference alleles. The target TANGL
cohort was also filtered to keep only biallelic variants and aligned
to the same reference using PLINK v2.0.

PRS method. Polygenic risk score (PRS) analyses can be used to
estimate an individual’s genetic liability to a phenotype by
calculating the sum of risk allele effect size weights for an
individual. Weights for the PRS were obtained from β estimates
generated from multi-ancestry fixed and random effects meta-
analyses as well as from individual ancestry summary statistics.
PRS analyses were conducted using PRSice v2.3.5 including
variants with minor allele frequency >5%, genotype missingness
<10%, sample missingness <10%, and HWE P value <1 × 10−6. The
APOE region (with ranges defined by FUMA as described
previously) was excluded prior to variant clumping. For PRS
analyses including APOE, the genetic polymorphisms rs7412 and
rs429358 were added to the QC’d summary statistics prior to
variant clumping. β estimates for the APOE polymorphisms were
not available in the Bellenguez et al. summary statistics [4] and
therefore European-ancestry estimates were taken from another
recent ADD GWAS by Schwartzentruber et al. [32].
Variants were clumped in each 500 kb window with the index

SNP at the center, an r2 threshold of 0.3, and a clump P value
threshold of 1. Sex, age, and the first 5 PCs were used as covariates
in the PRS analysis. PCs were generated from non-imputed
genotype data using FlashPCA [81]. Variants with a MAF <1%,
genotype missingness <10%, sample missingness <10%, and HWE
P values <5 × 106 were excluded using PLINK v1.9. The remaining
variants were pruned with a 1000-kb window, a 10-SNP shift per
window and an r2 threshold of 0.02 prior to PC calculation. PRS
analysis was performed at select P-value thresholds to determine
the best fit model (P= 5 × 1010, 5 × 10−9, 5 × 10−8, 5 × 10−7, 5 ×
10−6, 5 × 10−5, 5 × 10−4, 5 × 10−3, 5 × 10−2). To assess the
performance of each model, receiver operator characteristic
curves were created using the pROC library in R for the best fit
model from each analysis as shown in Table S6. Since MR-MEGA
does not provide standard effect estimates per SNP, an additional
“composite” ROC curve was generated through a linear

J. Lake et al.

3129

Molecular Psychiatry (2023) 28:3121 – 3132

http://grch37.ensembl.org/Homo_sapiens/Tools/VEP
http://grch37.ensembl.org/Homo_sapiens/Tools/VEP


combination of each super population to provide a comparison to
the conservative random-effects-based PRS model. Each PRS was
weighted by its associated admixture population percentage,
previously determined in the TANGL cohort for each individual
(Eq. 2; AFR: African American, EUR: European (including Finnish),
EAS: East Asian, NAT: Native American) [67]. Given the population
history and similarities in haplotype structure between the East
Asian and Native American populations, Native American admix-
ture proportions were used to weight the East Asian PRS [82, 83].

PRScomposite;i ¼ PRSAFR;i ´%AFR;i þ PRSEUR;i
´%EUR;i þ PRSEAS;i ´%NAT;i

(2)

DATA AVAILABILITY
Summary statistics from this study will be available to browse and download via our
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