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The difference between chronological age and the apparent age of the brain estimated from brain imaging data—the brain age
gap (BAG)—is widely considered a general indicator of brain health. Converging evidence supports that BAG is sensitive to an array
of genetic and nongenetic traits and diseases, yet few studies have examined the genetic architecture and its corresponding causal
relationships with common brain disorders. Here, we estimate BAG using state-of-the-art neural networks trained on brain scans
from 53,542 individuals (age range 3–95 years). A genome-wide association analysis across 28,104 individuals (40–84 years) from
the UK Biobank revealed eight independent genomic regions significantly associated with BAG (p < 5 × 10−8) implicating
neurological, metabolic, and immunological pathways – among which seven are novel. No significant genetic correlations or causal
relationships with BAG were found for Parkinson’s disease, major depressive disorder, or schizophrenia, but two-sample Mendelian
randomization indicated a causal influence of AD (p= 7.9 × 10−4) and bipolar disorder (p= 1.35 × 10−2) on BAG. These results
emphasize the polygenic architecture of brain age and provide insights into the causal relationship between selected neurological
and neuropsychiatric disorders and BAG.
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INTRODUCTION
Over the last decade, brain age has emerged as a promising
measure of overall brain health [1, 2]. To estimate brain age,
machine learning models are applied to brain imaging data to
learn visual patterns characteristic of different ages [3, 4]. The
difference between predicted brain age and chronological age is
termed the brain age gap (BAG) and indicates deviation from a
normative trajectory, a potential health indicator. Earlier studies
have found a large variation in the predicted brain age of
individuals with the same chronological age, and that these
interindividual variations correlate with neurological and mental
disorders [5–7], such as dementia [6, 8], schizophrenia (SCZ)
[9, 10], major depressive disorder (MDD) [11], and also mortality
[7, 12]. In addition, biological, environmental, and lifestyle factors
associated with these disorders have been reported to correlate
with BAG, for example, infections [13, 14], smoking [5], physical
activity [15], and education level [16].
Genetic differences have been shown to explain a sizeable

portion of interindividual variation in BAG. Twin-based heritability
for BAG has been estimated to be as high as 0.66 [17], and single
nucleotide polymorphism (SNP)-based heritability estimates are
also relatively high—around 0.2 [6, 18]. Earlier gene-discovery
efforts investigating genetic associations with BAG have found

and examined two genomic loci in detail: one on chromosome 1
containing the potassium channel gene, KCNK2, and one in the
chromosome 17 inversion region (17q21.31) [18, 19]. Genetic
variants in these two regions together explain a negligible fraction
of estimated SNP-heritability [18]. These results suggest that
existing GWAS were potentially underpowered to fully character-
ize the genetic architecture, supported by studies using a
conditional false discovery rate-based models yielding a larger
set of associations [6]. Furthermore, Smith et al. [20] found a rich
set of associations when investigating different facets of a
multimodal brain age, suggesting that the interplay between
genetic variants is complex.
Although BAG has been frequently associated with clinical

conditions and health-related phenotypes and behaviors, the
underlying genetic basis for the observed associations has
seldom been investigated, possibly due to incomplete knowl-
edge of the genetic architecture of the former. Furthermore, the
causal relationships between BAG and brain disorders remain
untapped. Mendelian randomization (MR) has become an
attractive tool to interrogate cause-effect relationships between
risk factors and disorders [21]. Two-sample MR models have been
used to infer causal relations between hundreds of traits or
diseases [22]. However, MR analyses targeting the causal relations
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between BAG and brain disorders and associated traits have been
lacking [23].
In the present work, we improve the yield of genetic associations

for BAG using three strategies: First, we estimate brain age using a
state-of-the-art deep neural network architecture (SFCN-reg) trained
on one of the largest samples assembled to date [5]. Then we
perform a GWAS for BAG on out-of-sample predictions for a portion
of the UK Biobank v3 data containing 28,104 unrelated individuals,
about eight thousand more than earlier studies. Finally, we use two-
sample MR to assess the genetic and causal relations between BAG
and SCZ, bipolar disorder (BIP), Alzheimer’s disease (AD), MDD, and
Parkinson’s disease (PD).

METHODS
Sample
All datasets used in the present study have been obtained from previously
published studies that have been approved by their respective institutional
review boards, research ethic committees, or other relevant ethic
organizations.
We used UK Biobank imaging data (UKB, accession number 27412)

released in 2019 in combination with a pre-compiled dataset from various
sources (Supplementary Table S1) for brain age model training and
estimation. For the downstream genetic analyses, we started with the
initial 40,330 UKB participants that had undergone at least one brain scan
(using baseline scans where more were available). We excluded those with
recorded brain injury or neurological or psychiatric conditions, those failing
standard image quality checks [5]. To quality check the genetic data, the
protocol developed by the NealeLab (nealelab.is/uk-biobank) was strictly
followed, in addition to participants who withdrew consent. After
removing samples with failed image and genetics quality check, 28,104
unique participants remained.

Brain age estimation
A minimal preprocessing protocol was applied to all raw T1-weighted brain
MRI images before brain age estimation [5]: The auto-recon pipeline from
FreeSurfer 5.3 [24] was used to remove nonbrain tissue. The resulting
volumes were reoriented to the standard FSL [25] orientation using
fslreorient2std, and linearly registered to the 1mm FSL (version 6.0)
MNI152 template using FLIRT [26], with 6 degrees of freedom. For
efficiency, during model fitting, we cropped a central cube spanning the
voxels 6:173, 2:214, and 0:160 in the sagittal, coronal, and axial dimensions,
respectively. Before modeling, all voxel intensities were normalized by a
constant factor to produce values in the range [0, 1].
The data from all sources (Supplementary Table S1 and UKB) were split

into five equally-sized and disjoint folds with comparable age ranges and
sex distributions. Four of these folds were used for fitting the brain age
model, and out-of-sample estimates were computed for the remaining
fold. This procedure was repeated five times, resulting in out-of-sample
brain age estimates for all participants. Next, BAG was calculated by
subtracting chronological age from estimated brain age. The subsequent
analyses were performed on the out-of-sample estimates of the UKB data
(Supplementary Table S2).

Genome-wide association study
Imputed genotypes for the 28,104 participants were obtained from UKB
(Category 100314, for further details see [27]). We excluded SNPs based on
missing rate (>0.02), the Hardy-Weinberg Equilibrium test (p < 10-6) and
minor allele frequency (MAF; < 0.01). In total, ≈8.6 million SNPs were
analyzed. Since we have observed apparent differences in predicted brain
age across folds (Supplementary Fig. S1), a GWAS was performed on each
hold-out fold separately using PLINK 1.90 beta [28]. The additive genetic
model was assumed, and chronological age, sex and the top ten principal
components were included as covariates, accounting for population
structure. Association results for each hold-out fold of UKB along with
distributions of BAG are shown in Supplementary Figure S1. These
association results were then meta-analyzed using the inverse variance
weighted model implemented in PLINK to identify SNPs that are
associated with BAG. Supplementary Figure S2 shows the association QQ
plot which indicated no noticeable genomic inflation.

Associated regions and genes
Association results were ‘clumped’ by the FUMA [29] web-service using the
linkage disequilibrium (LD) structure from the 1000 Genomes projects
phase 3 EUR dataset (1KGp3), with parameters –clump-p 5e-8 –clump-2 1e-6
–clump-r2 0.1. The standard 250 kilo-bases (kb) were used as the inter-
region distance threshold. Genes whose genomic coordinates located
within the boundaries of each region were assigned to the corresponding
region. SNPs with the smallest association p values were taken as the lead
SNPs for the corresponding regions. In addition, the gene that is closest to
each lead SNP by genomic position was annotated using the Ensembl tool
VEP [30] (Table 1).
Associated regions were fine-mapped using the FINEMAP [31] program.

The LD structure from 1KGp3 was also used in this analysis. The default
settings of FINEMAP were used, which compares causal models assuming
one causal variant in each region to that assuming two, based on the
estimated posterior probabilities (PP_1 versus PP_2). FINEMAP ranks all
possible configurations in each model presented as 95% credible sets. The
confidence of a variant belonging to a set was evaluated by posterior
probabilities of inclusion (PPI). In the case of assuming one causal variant,
each single variant was assigned a PPI. In the two causal variants cases,
each pair of variants was assigned a PPI.

Post-GWAS annotations
Both FUMA and Garfield [32] were used for annotating associated SNPs.
First, SNPs were assigned to genic elements (e.g., exon, intron, 3′ and 5′
untranslated regions, intergenic regions, etc.), and the enrichment of this
assignment was tested by hypergeometric test (FUMA) or logistic
regression models (Garfield). Expression levels of annotated genes to the
associated SNPs were inspected in each of the 54 tissue types from the
GTEx v8 dataset [33]. To further test if the identified variants affect
expression levels of these genes the GTEx v8 eQTL portal (gtexportal.org)
was searched. Data in this portal include the association statistics of SNPs
with gene expressions in 49 different tissues. We took a conservative
significant threshold to claim the existence of evidence as p <= 0.05/
49*8= 1.3 × 10−4. Moreover, detailed biological functions for proteins
coded by these genes were manually searched in the NCBI Entrez Gene
database [34] and the UniProtKB database [35].

Table 1. Genomic loci associated with BAG.

Locus Lead SNP POS Gene A1 A2 Beta I2 P

Chr3:183892867-183975709 rs73185796 183975709 CAMK2N2/ECE2 T G −0.29 0.0 2.53 × 10−8

Chr4:38591172-38779512 rs13132853 38680015 KLF3 G A 0.23 0.0 2.34 × 10−18

Chr5:78388694-78451813 rs79107704 78388694 BHMT2 A G 0.63 0.0 1.65 × 10−8

Chr6:45407654-45511945 rs2790102 45432214 RUNX2 A G −0.15 0.0 8.92 × 10−9

Chr8:124661974-124682971 rs7461069 124669029 KLHL38 A G −0.17 0.0 1.57 × 10−8

Chr10:134544247-134597265 rs4880424 134584577 INPP5A T C 0.16 64.95 3.69 × 10−8

Chr14: 88391116-88556525 rs17203398 88449847 GALC C G −0.16 40.97 1.42 × 10−10

Chr17: 43101281-44863413 rs2106786 43919096 MAPT G A 0.29 0.0 1.87 × 10−23

Eight independent genomic loci significantly associated with brain age gap (BAG). Lead SNP rs-number, genomic position (in hg19 coordinates), effective allele
(A1), the other allele (A2), effect size (Beta), meta-analysis heterogeneity (I2), association strength (P value, P).
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Genetic correlations between BAG and disorders
GWAS summary data for four disorders (SCZ [36], BIP [37], MDD [38], and
AD [39]) were obtained from the Psychiatric Genomics Consortium (PGC,
https://med.unc.edu/pgc/download-results). For each GWAS, the associa-
tion results for European ancestral samples excluding samples from
23andMe were used (SCZ: n case=67,390, n control = 94,015; BIP: n case =
41,917, n control = 371,549; MDD: n case = 59,851, n control = 113,154;
AD: n case = 71,880, n control = 383,378). The PD GWAS results were
obtained from the fixed-effect meta-analysis performed by the Interna-
tional Parkinson Disease Genomics Consortium (IPDGC, n case = 33,674, n
control = 449,056) [40].
Before post-GWAS analysis we processed the results from all GWAS

using a standard protocol. Specifically, SNPs having a MAF < 0.05, or
imputation INFO < 0.5, or ambiguous allelic coding (A/T, or C/G) were
removed from subsequent analyses. The LD score model (ldsc) [41] was
applied to estimate SNP-heritability and genetic correlations between
BAG and disorders. Only high-quality SNPs published in the
HapMap3 dataset were used for estimation. The LD score derived from
the 1KGp3 was used as input to ldsc. The Benjamini-Hochberg False
Discovery Rate (FDR) procedure was used to correct for multiple testing
across disorders (FDR-corrected p < 0.05 was considered statistically
significant).
To visualize polygenic enrichment, conditional QQ plots [42, 43] were

made for BAG versus each disorder. In these plots, the QQ curves for
the association statistics (-log10 P values) for BAG were stratified by the
corresponding association strength for the conditioned disorder. As
the association strength to the conditioned disorder increases, a successive
leftward deflation in these curves indicates polygenic enrichment.
Similarly, conditional QQ for each disorder versus BAG shows polygenic
enrichment in the reverse direction.

Two-sample Mendelian randomization
To study the cause-effect relations between BAG and the five disorders,
two sets of MR analyses were performed. The first set, using standard
models, included the inverse-variance weighted model (IVW) [44],
weighted median (wMed) [45], Egger regression (Egger) [46], and MR-
PRESSO (PRESSO) [47]. For these analyses, only genome-wide significant
SNPs (p < 5×10−8) to the exposure traits or disorders were used as
potential instruments. The PLINK program and the LD structure of 1KGp3
dataset were used to select instruments with the following parameters,
--clump-kb 500 kb, --clump-p1 5×10−8, and --clump-r2 0.01. The TwoSam-
pleMR package [19] was used for data harmonization and causal inference
for the IVW, wMed, and Egger models. The same harmonized datasets
were used as input to the MR-PRESSO software to assess outliers that may
artificially affect MR estimates, i.e., SNPs that show horizontal pleiotropy to
both BAG and disorders. Harmonized instrumental SNPs are shown in
Supplementary Tables S6–S15.
The second set of models included the robust adjusted profile score

(RAPS) [48] and the CAUSE models [49]. These models can make use of
SNPs that show a suggestive level of association (p < 10-3) with exposure
to increase statistical power without incurring weak instrument bias in
estimation. Although both models control for horizontal pleiotropy,
CAUSE directly tests for a shared (correlated horizontal pleiotropy)
versus a causal model for each relation [49]. The same instrument
selection procedures used in the first set of models were used here,
except that 10-3 was taken as the cut-off for selecting instruments, i.e.,
–clump-p1 10-3.
As each of the six MR models has different assumptions that are difficult

to verify in real data, a majority vote ensemble scheme was used to make
conclusions for the existence of cause-effect relations: specifically, only
when four or more models indicated a cause-effect relation (FDR adjusted
P < 0.05) was such a relation considered causal.
In addition to applying multiple MR models, GWAS results for height

measured for European samples [50] (n= 253,288; https://
portals.broadinstitute.org/collaboration/giant/), for AD diagnosed in a
Japanese sample [51] (n case= 3962 and n control = 4047) and an
African sample [52] (n case = 2784 and n control=5 222) and for BIP
diagnosed in a Japanese sample [53] (n case = 2964 and n control =
61,887) were used to corroborate MR findings. As commonly done in
genetic studies, height was used as a negative exposure control to test if
population stratification could generate spurious causal effects [54]. The
non-European GWAS data were used to test if any observed causal effects
generalize across ancestry groups, although with significantly smaller
sample sizes.

RESULTS
We obtained accurate brain age estimates; mean absolute errors
(MAEs) in each of the five disjoint folds were consistently below
2.5 years (Supplementary Table S2). This was consistent when we
split the dataset into different subsets based on covariates
(MAE= 2.40 in females compared to 2.53 in males; 2.40 in the
youngest half compared to 2.52 in the oldest), although we
observed a slight age bias (Supplementary Fig. S1). Based on the
meta-analyzed GWAS results, we estimated a SNP heritability of
0.27 (standard error (SE)= 0.036) for BAG (Methods section). Our
estimate is comparable to or higher than the two previously
reported estimates (0.26, SE= 0.044 [6]; 0.19, SE= 0.02 [18]).
We identified eight independent genomic loci significantly

associated with BAG (Fig. 1a, b and Table 1). Associations of lead
SNPs in these regions to BAG are highly consistent in directions
and effect sizes across the five folds (Supplementary Table S3).
Among these loci, the one in the inversion region on chromosome
17 (lead SNP rs2106786), including the MAPT gene, has been
previously reported [18, 19], although indexed by a different SNP
(rs2435204). This SNP was also highly significant in our analysis
(p= 5.4 × 10−21, beta = 0.27 years, effective-allele = G). The locus
containing the RUNX2 gene (lead by rs2790102: p= 8.92 × 10−9,
beta=−0.15 years, effective-allele=A), which showed suggestive
significance in Jonsson et al. [18], was genome-wide significant in
the present study. The RUNX2 gene codes for a master
transcription factor which plays a critical role in skeletal
development [55]. Among the remaining six novel loci, the
rs79107704-A allele showed the largest association with BAG; one
copy of this allele was associated with an average increase in brain
age of 0.63 years (Table 1). This SNP is located 3405 bp
downstream of the Betaine-homocystein S-methyltransferase 2
gene (BHMT2, Fig. 1b), a gene whose product is involved in choline
metabolism during development [56]. Other protein-coding genes
that are closest to the lead SNPs include those involved in calcium
signaling (CAMK2N2 and INPP5A) and metabolism and transcrip-
tion regulation (GALC, KLF3, and KLHL38), both processes are
implicated in biological ageing [57]. In Supplementary Table S5,
we present detailed annotations of biological functions of each
gene.
We further annotated these identified SNPs to nearby genes

and regulatory elements (Methods). Most of the associated SNPs
are in noncoding regions such as intergenic, intron or untrans-
lated regions (Supplementary Figs. S3 and S4). Using the default
parameters in FUMA [29], 54 unique genes were found to be
implied by these significant associations by genomic position. The
expression levels of these genes in the 54 tissue types from the
GTEx v8 project [33] showed three remarkable patterns (Fig. 1c).
The first set of genes expressed highly across almost all 54 tissues;
the second set of genes showed low expression levels in most
tissue types; and the last set, including eight genes, was highly
expressed only in brain tissue (Fig. 1c), for example, MAPT, GFAP,
and the Homeobox protein gene NKX6-2. These results suggest
that BAG encodes coordinated physiological processes implicating
both the brain and the peripheral systems.
To nominate causal variants in each locus we performed

statistical fine-mapping [31] for regions around each lead SNP in
Table 1 (Methods). Except for the locus on chromosome 14 which
was not resolvable, all loci clearly indicated that the 95% credible
sets suggest a causal model with one causal SNP, instead of two,
i.e., the posterior probability for the 1-SNP set were larger than
those of the 2-SNP sets (Supplementary Table S16). Furthermore,
four credible sets indicated that the lead SNPs were also the causal
ones (posterior inclusion probability (PPI_1) > 0.05 and >PPI of the
second most probable SNP(PPI_2)) (Methods; Supplementary
Table 16) but identifying the causal SNP for the remaining were
difficult. For example, the MAPT locus on chromosome 17 and the
RUNX2 locus on chromosome 6 showed two SNPs having almost
equal and small PPIs (i.e., <=0.05), indicating that the true causal
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Fig. 1 Genetic associations for brain age gap. a The Manhattan plot of meta-analyzed association results for brain age gap (BAG).
Chromosome numbers are shown on x axis, -log10 association p values on y axis and lead SNP rs-numbers in the plot. b Region plots for each
of the eight associated regions. Genes located in each region are shown below each figure. Linkage disequilibrium r-squared values are
indicated by colors; and recombination frequences by curves. c Expression levels of the annotated genes across tissues analyzed by the GTEx
v8 study. Colors indicate average log2 transformed expression level in each tissue.
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variants may be some untyped rare ones not investigated in this
study. The clearest signal comes from the regions on chromosome
3 and 5, where the PPIs for the lead SNPs were much larger than
that for the second most probable causal SNPs.
We investigate whether the statistically fine-mapped causal

variants affect BAG through transcriptional regulatory mechanism
using the GETx database (eQTL or sQTL data for 49 tissues;
gtexportal.org; accession date 25 February 2023). Except
rs79107704, the seven SNPs significantly affect the transcription
levels of one or more nearby genes (p < 1.3 × 10−4; Supplemen-
tary Figs. S6–S12 and Tables S17–S22). Of note, rs2790102 and
rs17203398 affect the only gene (RUNX2 and GALC, respectively).
The other five affect the expression of two or more genes,
particularly for rs2106786 that affect 37 unique genes or
noncoding RNAs across all the 49 tissue types. In addition, this
SNP also affects the splicing isoforms for 15 unique genes in the
49 tissue types (Supplementary Table S21-S22). This observed
complex pattern makes it difficult to pin down the genes through
which rs2106786 influences BAG.
We observed nominally significant genetic correlation between

BAG and AD that did not survive FDR-correction (r= 0.23, SE= 0.1,
p= 0.02, FDR adjusted p= 0.13) and no significant associations
with any other of the four disorders (Fig. 2a). SNP heritability
estimates for the five disorders were all significant but varied
greatly; SCZ showed the largest (0.34, SE= 0.01) and AD showed
the lowest (0.01, SE= 0.005) estimates. Bidirectional conditional
QQ plots (Fig. 2b–d; Supplementary Figs. S13 and S14) showed
that there was noticeable genetic enrichment for BIP conditional
on BAG but not in the reverse direction. For AD and PD, both
directions showed clear enrichment, surprisingly for PD that did
not show significant genetic correlation with BAG (r=−0.07,
p= 0.42).
We then performed extensive MR analyses using six different

models to examine the existence of cause-effect relations
between BAG and the five disorders (Methods). Figure 3a shows
that BAG was only causally associated with PD, i.e., four out of the
six MR models showed a negative relation with varying effect sizes
(all with adjusted p < 0.05). One year increase in genetically
predicted BAG was estimated to reduce the risk of PD by a log
odds ratio from 1.4 (by Egger regression) to 0.02 (by MR-RAPS)
(Supplementary Table S23). In the reverse direction (i.e., disorders
as exposure), increased genetic risk for AD and BIP were causally
associated with increased BAG (30 and 55 SNPs used as
instruments, respectively); these estimated causal effects on BAG
were relatively larger for AD than BIP (Fig. 3b; Supplementary
Table S24).
A close investigation into the scatter plots of instrumental SNPs

showed that the causal effect of AD on BAG was primarily driven
by a SNP (rs59007384) in the APOE region, which was not
identified as a horizontal pleiotropic instrument by MR-PRESSO
(outlier test p > 0.05) (Fig. 3c); there were no extreme instruments
identified for the BIP to BAG relation by MR-PRESSO (Fig. 3d) but
Egger-regression indicated existence of horizontal pleiotropy
(Egger intercept test: p= 0.017). The causal effects of BAG on
PD were primarily driven by two SNPs in the inversion region on
chromosome 17, effective alleles of these SNPs were associated
with higher BAG and lower risk of PD (Fig. 3e). SNPs in the same
region also drove the negative causal relation (not significant)
from PD to BAG (Fig. 3f). However, both SNPs were flagged as
horizontal pleiotropic instruments by MR-PRESSO (p < 0.05) and
Egger-regression (Egger intercept test: p= 0.03 and 0.008,
respectively). Therefore, the observed negative relations between
BAG and PD are less likely to be causal.
We used the GWAS results for height of European samples and

cross-ancestry MR analysis to corroborate the identified causal
relations (Methods). We found no causal effect between BAG and
height with any of the MR methods employed (all p > 0.05).
Therefore, our observed AD and BIP to BAG relations are less likely

to be driven by population stratification, i.e., both the exposure
and outcome data originating from the same ancestry group.
There was also no significant cross-ancestral causal effect detected
using AD data from Japanese or African samples (IVW p= 0.74,
0,85, respectively), and BIP data from the Japanese sample to BAG
(beta = 0.10, p= 0.13).

DISCUSSION
Combining the advantages of large samples and advanced
models for brain age prediction, we confirmed that BAG is a
heritable and polygenic trait, and estimated the genetic pleiotropy
and causal genetic relations with major brain and mental
disorders. We identified seven novel loci associated with BAG, in
addition to confirming the previously reported MAPT loci [18, 19].
Although MR indicated that increased genetic risk for AD or BIP
may be causally associated with higher BAG, our results
demonstrate that individual variability and previously reported
case-control differences in BAG only to a marginal degree should
be attributed to the common genetic architecture previously
associated with the respective diseases.
Functional annotation of the genes linked to the identified

loci confirms that deviations in BAG are linked to complex
processes encompassing multiple biological systems [20].
Although earlier work observed this variety when investigating
different multimodal aspects of imaging data linked to brain
age, our findings suggest it also exists when looking at a singular
BAG computed from only T1-weighted MRI data. Our coarse
division of the implied 54 genes into three groups indicates that
only eight genes are specifically expressed in brain tissue. The
remaining genes were either expressed in abundance across all
tissue types tested, including the brain, or expressed at very low
levels across all tissues. Nonetheless, the proteins coded by
these nonbrain-specific genes have been implicated in brain-
related disorders or traits (Supplementary Table S5). For
example, among the genes we found to be expressed across
all tissue types (group 1), mutations in AP2M1 have been linked
to epilepsy, intellectual developmental disorder, and seizures
[58]; among the genes expressed in low levels across tissues
(group 2), STH has been associated with frontotemporal
dementia and 17q21.31 duplication syndrome [59, 60]. More
importantly, we show that our fine-mapped causal SNPs affect
the expression levels of these genes in multiple tissue types,
providing testable molecular mechanisms for these genetic
variants. In addition, although our analysis revealed no
significant pathway enrichment, these 54 genes contribute to
biological functions that include calcium signaling, protein
metabolism, DNA damage repair, and general innate immune
defense. Thus, our analyses highlight the role of these diverse
sets of processes affecting the brain throughout life.
Prior work has shown higher BAG in patients with a multitude of

disorders compared to healthy controls [5, 6, 8, 9, 11], and has
documented partly overlapping genetic associations between
BAG and clinical conditions [6]. However, the causal effects have
remained unclear. Our MR approach suggested that genetically
predicted risks for AD or BIP were causally associated with
increased BAG. However, these relations were only weakly
supported by genetic correlation analysis. One possible explana-
tion for this weaker support from genome-wide signals (genetic
correlation) in contrast to MR (significant associations only) might
be due to heterogeneous genetic correlations across the genome,
i.e., some genomic regions show positive correlations while others
show negative correlations [61, 62]. In such a scenario, the net
genetic correlations between the two traits are expected to be
lower than regional correlations.
The causal effect of genetically predicted risk for AD on BAG

was small but consistent in directions across the six MR models,
four of which were significant after multiple-testing correction. For
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BIP, although four models showed significant effects, the CAUSE
model suggested an opposite direction of effect to the other five
models. Thus, we advise careful interpretation of this result. Our
attempts of testing causal relations across ancestral groups led to
largely null fundings for the AD to BAG relations. We believe these
nonsignificant fundings are largely due to the lack of statistical
power in the non-European GWAS [51–53].

The observed causal relations between genetically predicted
risk of brain disorders and BAG are intriguing. One possible
interpretation is that overt changes in the brain incurred by the
disorders contribute to accelerated aging. Another possibility may
be that lifestyle and health-related behaviors of patients with
clinical conditions such as AD and BIP, e.g., medication [63], may
increase brain age. Yet another is that genetic variation associated

Fig. 2 Polygenic genetic overlap between brain age gap and disorders. a Genetic correlation between brain age gap and disorders
computed by ldsc. SNP heritability and its standard error are indicated. b–d Conditional QQ plot between brain age gap and disorders in both
directions. Colors are used to indicate different association strength to the conditioned traits, i.e., the ones indicated after the vertical bar in
each figure. Dashed diagonal lines indicate expected null distributions. AD Alzheimer’s disease, BIP bipolar disorder, MDD major depression
disorder, PD Parkinson’s disease, SCZ schizophrenia.
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Fig. 3 Causal inference between brain age gap and disorders. a Causal effect of brain age gap (BAG) on risk of disorders; b Causal effect of
genetic risk of disorders on BAG. Colors indicate different models; triangle indicates significant effect after false discovery correction.
Estimated standard errors for each effect are aslo shown. c Scatter plots of SNP effects on AD (x axis) and BAG (y axis). d Scatter plots of SNP
effects on BIP (x axis) and BAG (y axis). e Scatter plots of SNP effects BAG (x axis) and PD (y axis). f Scatter plots of SNP effects on PD (x axis) and
BAG (y axis). Causal effects estimated by the five models (except CAUSE) are shown by fitted lines; slopes of these lines indicate causal effect
sizes. Exceptional SNPs are marked by boxes that include SNP rs-numbers and genome location in the hg19 coordinates. AD Alzheimer’s
disease, BIP bipolar disorder, MDD major depression disorder, PD Parkinson’s disease, SCZ schizophrenia.
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with clinical traits may influence the brain early in life. Given the
comparable sample sizes to the GWAS of AD and BIP and the
widely observed clinical correlations, surprisingly, no genetic nor
causal relations of SCZ and MDD with BAG were found. On the
one hand, this may suggest that previously reported case-control
differences in BAG do not reflect causal relations, but rather a
combination of indirect and confounding factors. For example,
smoking and physical exercise have been associated both with
MDD and SCZ [64–67] and brain age [5, 66]. Alternatively, it has
been shown that both BAG [20] and psychiatric disorders are
highly heterogeneous phenotypes [68, 69], and thus further
identification and characterization of the causal relations may
require even larger, and carefully screened, samples. It is also
worth noting that while the sample sizes for the disorders are
large, our BAG GWAS sample is relatively small. Thus, our null
findings in the direction from BAG to disorders may be due to too
weak instruments [70].
Our initial results showed weak evidence of a causal relation

between BAG and PD, corroborating two recent studies which
reported a weak correlation between BAG and PD [71, 72]. Striking
patterns of enrichment between the two were shown in the
conditional QQ plots and four out of six MR models indicated that
genetically predicted BAG may have protective effect from PD.
However, we found that these relations were completely caused
by the MAPT gene region on chromosome 17: After removing
chromosome 17 from our analyses, no enrichment was observed
in either direction (Supplementary Fig. S15). In addition, instru-
mental SNPs in this region were detected by MR-PRESSO as
horizontal pleiotropic SNPs, i.e., affecting BAG and PD through
independent biological pathways. Reperforming MR analysis
excluding these outlier SNPs confirmed null causal relations. Thus,
we conclude that we found no evidence for causal relations
between genetically predicted risk for PD and BAG. Our analytic
procedures also highlight the importance of triangulation and
converging evidence in causal inference analysis [73].
While the present study advances current knowledge regarding

the genetic architecture of and causal contributions to BAG, the
results should be interpreted with caution. Although we confirm
previously reported genetic associations with BAG, e.g., the MAPT
gene locus [18, 19], our sample overlaps with previous ones—
which were also based on UK Biobank data. We attempted
replicating our findings in three independent but small samples (n
ranges from 321 to 702; Supplementary Analysis and Table S4) but
no clear replications were achieved. Therefore, independent large-
scale samples are needed for replication. We used a simple voting
schema across six different MR models to infer causal relations
between genetically predicted BAG and brain disorders. Further-
more, as only eight independent loci showed significant associa-
tions with BAG, other models [74] that require large number of
genome-wide significant instruments were considered not applic-
able. However, it should be noted our simple voting approach
may not be the most efficient strategy for identifying causal
effects. Formal development of ensemble methods, such as
bagging [75], may provide better grounds for precise interpreta-
tion. Furthermore, our BAG GWAS is still smaller than GWAS
performed for the disorders, which may partly explain the lack of
causal effects of BAG on brain disorders. Another limitation is that
we were unable to obtain independent data to perform three
sample MR analysis, a model that can account for the winner’s
curse bias in two sample MR models. Therefore, to increase our
confidence in the identified relations, large-scale data for BAG, and
replications in independent datasets are needed. Relatedly, our
estimation of brain age was based on cross-sectional samples,
which makes its interpretation nontrivial [76], and studies built on
longitudinal data could help disentangle its complexities. Finally,
although we refer to our brain age estimation in general terms, it
is based on T1-weighted MRI data only. The brain is a complex and
heterogeneous organ, and different imaging modalities are known

to capture different aspects of the naturally occurring variation.
Thus, studies relying on other modalities, either independently or
in combination, could reveal a broader set of associations [77].
In conclusion, the present study increases the yield of genetic

associations with brain age to eight genomic loci; implicated
genes indicate involvement of calcium signaling, DNA damage
repair, protein metabolism, and general innate immune defense.
Our analysis did not provide evidence of a causal relationship
between BAG and the included clinical conditions, and their
interactions remain unclear.
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