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Alzheimer’s disease (AD) is considered to have a large genetic component. Our knowledge of this component has progressed over
the last 10 years, thanks notably to the advent of genome-wide association studies and the establishment of large consortia that
make it possible to analyze hundreds of thousands of cases and controls. The characterization of dozens of chromosomal regions
associated with the risk of developing AD and (in some loci) the causal genes responsible for the observed disease signal has
confirmed the involvement of major pathophysiological pathways (such as amyloid precursor protein metabolism) and opened up
new perspectives (such as the central role of microglia and inflammation). Furthermore, large-scale sequencing projects are starting
to reveal the major impact of rare variants – even in genes like APOE – on the AD risk. This increasingly comprehensive knowledge
is now being disseminated through translational research; in particular, the development of genetic risk/polygenic risk scores is
helping to identify the subpopulations more at risk or less at risk of developing AD. Although it is difficult to assess the efforts still
needed to comprehensively characterize the genetic component of AD, several lines of research can be improved or initiated.
Ultimately, genetics (in combination with other biomarkers) might help to redefine the boundaries and relationships between
various neurodegenerative diseases.
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INTRODUCTION
Understanding the genetic component of Alzheimer’s disease (AD)
has been and still is a major research challenge. The main goal is to
understand the pathophysiological mechanisms involved, and the
characterization of themutations responsible for monogenic forms of
AD illustrates the scale of this challenge perfectly. The discovery of
pathogenic mutations in the APP, PSEN1 and PSEN2 genes in the
1990s [1–3] led to the amyloid cascade hypothesis, which has greatly
influenced the AD research field for more than three decades [4].
However, the amyloid cascade hypothesis was prompted by studies
of a specific, small subset of patients (representing less than 1% of
cases) and is now being called partly or wholly into question by the
failure of most of the therapeutic approaches developed on this basis
[5]. Even though the amyloid cascade hypothesis has been regularly
modified to take account of developments in our knowledge of AD
[6, 7], it now appears to be too simplistic and does not encompass the
complexity and diversity of the pathophysiological processes
involved in the common forms of the disease. Defining the genetic
component of these common forms is one way of gaining a better
understanding of the fundamental disease processes.
In 1993, the first genetic risk factor for common forms of AD

was discovered: the ε4 allele of the apolipoprotein E (APOE) gene
was found to be associated with a 3- to 4-fold increase in the AD
risk [8]. A year later, it was reported that the APOE ε2 allele was
associated with a two-fold decrease in that risk [9] – confirming

the major role of the APOE gene in AD. Despite numerous efforts,
our knowledge of the genetic component of common forms of AD
did not extend much beyond APOE between 1993 to 2009, due to
methodological and technological problems [10]. Eventually, the
advent of genomic approaches (including genome-wide associa-
tion studies (GWASs) and next-generation sequencing) boosted
our characterization of the genetics of AD.
Here, we review the latest advances in our knowledge of the

genetic landscape of AD, discuss the limitations and issues we are
facing, and consider the potential consequences of these genetic
findings for research on AD and related forms of dementia.

The last decade has uncovered a new genetic landscape for
AD
Following the discovery of APOE as a major genetic risk factor for
AD, more than 350 genes were selected from 1993 to 2009 on the
basis of their potential implication in pathophysiological processes,
and were tested in small-scale case-control association studies [11].
SORL1 and ACE are the only well-established genetic risk factors for
AD [12, 13] to have emerged from this candidate gene phase. This
strategy was thus mostly unsuccessful (due to methodological and
technological problems) and generated highly untrustworthy and
confusing information for the AD research community [10].
Fortunately, AD genetics research has since greatly benefited

from the advent of GWAS techniques. The results of first two
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seminal GWAS papers were published in 2009, with the identifica-
tion of three new loci close to or within the CLU, CR1 and PICALM
genes [14, 15]. As with many multifactorial diseases, the AD GWAS
field has since incorporated (i) meta-analysis methodologies for the
facilitated merger of independent GWAS results [16]; (ii) larger
numbers of samples (with the International Genomics of Alzheimer
Project (IGAP) meta-analysis in 2013 as a milestone [17]; (iii)
increasingly powerful reference population panels, which consider-
ably improve the imputation quality of common/rare variants as
well as their number for analyses; and (iv) proxy-AD cases in the UK
Biobank (UKB, based on self-reports of a family history of AD-related
dementia) that has increased the statistical power of the AD GWASs
since the end of the 2010s [16, 18–26]. The combination of these
various advances ultimately led to a recent publication by the
European Alzheimer & Dementia Biobank (EADB) consortium, which
reported in addition to APOE the association of 75 loci with AD risk,
of which 42 were newly identified at that time [27]. In the GWAS
catalog, there are currently 97 entries for a locus having a significant
genome-wide association with the AD risk in populations of
European ancestry (Supplementary Table 1). We have classified
these loci as tier 1, tier 2, tier 3, or “not validated”, depending on the
strength of the association in the six main GWASs performed in
populations of European ancestry and published since 2019
[20–23, 26, 27] (see the additional note for a complete description
of the criteria used). We classified 27, 41, 22 and 7 loci as tier 1, tier 2,
tier 3 and “not validated”, respectively (Supplementary Table 1 and
Fig. 1). Some of the tier 3 signals (especially those just below the
genome-wide significance threshold) might be false positives, and
so further validation will be required. However, it is important to
bear in mind that the significance threshold is arbitrary – even
though it initially corresponded to a Bonferroni correction. Hence, a
number of signals of potential interest located just below this
threshold have received little attention.

GWASs in populations of non-European ancestry
The great majority of published GWASs in the field of AD were
performed in populations of European ancestry, and the few
performed in populations of non-European ancestry comprised
limited numbers of cases and controls. Hence, comparisons are
complicated by (i) the imbalance in statistical power between
studies of populations of European ancestry and studies of
populations of non-European-ancestry, and (ii) the risk of false
positives and false negatives in small studies.
The results of the first (small) GWAS of a population of African-

American ancestry were published in 2011 [28], and a GWAS
comparable in size to the European studies published in 2009 was
performed in 2013 [29]. The latter study found a significant,
genome-wide association between a common ABCA7 variant
(which is rare in populations of European ancestry) and the AD
risk. This finding emphasized the value of studying genetic
diversity in populations with different ancestries, in order to
capture additional information. The results of an updated GWAS
with a 37% increase in the sample size (but only 826 new AD
cases, in fact) were published in 2021. The study confirmed the
association between the ABCA7 variant and the AD risk, found a
new signal with genome-wide significance (Supplementary
Table 1), and detected nominal associations for six GWAS loci
previously identified in populations of European ancestry [30].
In populations of Caribbean ancestry, few GWASs have been

conducted and a small case-control study gave negative results [31].
In fact, most studies of these populations are based on linkage
analyses of AD families [32]. A few case-control studies are available
in central and South American countries with admixed populations
[33–35]. However, many initiatives are being developed.
Lastly, although many small case-control studies of populations

of East Asian ancestry have been conducted with the attempt to
replicate known loci, the results of the first large GWASs of

Fig. 1 Ideogram of the 90 loci with genome-wide significance extracted from the GWAS catalog and classified as tier 1, tier 2 or tier 3. For
each locus, the figure shows the P-value categories for the association with AD in the six main GWASs published since 2019 (IGAP2, PGC1,
IGAP2+ UKB, GR@ACE, PGC2, and EADB, [20–23, 26, 27]): P ≤ 5 × 10−8, P ≤ 1 × 10−4, P > 1 × 10−4, or NA (not available). See the additional note
for details of the methods.
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populations of East-Asian ancestry were only published in 2021:
respectively four, two and two new potential loci were identified
in Chinese, Japanese and Korean populations (Supplementary
Table 1)[36–38].

Next-generation sequencing: a new horizon?
Human genetic variability is primarily due to rare and very rare
variants. It was soon suggested that most of the heritability of
multifactorial diseases was associated with rare variants. In contrast,
GWASs facilitate the analysis of variants that are frequent in the
general population (those with a minor allele frequency >1%). Some
genotyping chips have been specifically developed to study rare
variants [39], and improved imputation panels have also facilitated
this research. However, imputation tools are not effective for the vast
majority of very rare variants in general and singleton variants in
particular. Fortunately, the advent of next-generation sequencing and
the marked fall in its cost over the last ten years have enabled the
application of this technique to study rare variants in multifactorial
diseases, for which large numbers of samples are required.
In 2012, the first applications of whole-exome sequencing (WES)

and whole-genome sequencing (WGS)) to AD revealed that very
rare/singleton mutations in the SORL1 gene were associated with
familial early-onset forms of the disease [40]. The combination of
WES/WGS with imputed GWAS data identified an association
between the AD risk and the R47H variant in TREM2 (in 2013)
[41, 42] and rare variants in ABCA7 (in 2015) [43]. Since then, the
associations with these rare variants in SORL1, TREM2 and ABCA7
have been systematically validated and extended as the number of
individual sequences has grown [44]. In 2019, the Alzheimer’s
Disease Sequencing Project published results of WES for 5740 cases
of late-onset AD and 5096 cognitively normal controls [45]. Rare
variants in several genes were found to be potentially associated
with the AD risk. However, the signals observed in this study were
not replicated by the Alzheimer Disease European Sequencing
(ADES) consortium in the latest and most recent WES study in AD to
date (with 12,652 AD cases and 8693 controls in stage one of the
study) [46]. Along with ABCA7, TREM2 and SORL1, the ADES study
found AD risk signals for rare variants in two new genes (ABCA1 and
ATP8B4). It is noteworthy that a suggestive signal was also observed
for ADAM10. Several important conclusions can be drawn from this
work: (i) rare, damaging variants in these genes have a large effect
on the AD risk; (ii) unsurprisingly, these variants are enriched in
early-onset AD; (iii) all these genes with rare variants have been
associated with the AD risk in GWASs of common variants.
Furthermore, suggestive evidence of association was also reported
with rare, damaging variants in the GWAS-identified genes RIN3,
CLU, ZCWPW1, and ACE [46]. This is a remarkable convergence
between signals from common variants and signals from rare
variants, and so the genes concerned are likely to be of importance
in understanding pathophysiological processes in AD; (iv) many of
the genes with significant or suggestive signals present very rare
loss-of-function mutations associated with a particular high risk of
developing AD that is of particular interest at the biological level.
For instance, the association observed with loss-of-function
mutations in TREM2 suggests that the missense TREM2 R47H variant
associated with an increased AD risk negatively impairs the protein’s
biological function.

We are still learning about APOE
As mentioned above, the association between the APOE gene and
the AD risk was first reported in 1993 [8]. It has been estimated
that at the age of 85, the lifetime risk of AD is 51% for APOE44
male carriers, 60% for APOE44 female carriers, 23% for APOE34
male carriers, and 30% for APOE34 female carriers. At the same
age and without reference to the APOE genotype, this lifetime risk
is 11% in males and 14% in females [47].
Many studies have been designed to determine which genetic

factors (if any) can protect against or accentuate the risk linked to

carriage of the APOE ε4 allele [48, 49]. WES studies have identified
many novel potential associations of burden of rare variants with
AD risk in individuals carrying APOE e4 alleles [50]. Some
researchers reported that polygenic risk scores and genetic risk
scores based on common variants associated with AD modify the
disease risk and the age at onset of AD in APOE ε4 carriers
[22, 51, 52].
In-depth analyses of the APOE locus itself have also revealed

complex genetic patterns. However, these analyses are complicated
by the strength of the association between APOE and the AD risk
and the complex linkage disequilibrium in the APOE region. In the
late 1990s, it had already been suggested that the APOE locus
association was more complicated than a simple association
between the ε2/ε3/ε4 alleles and the risk of developing AD. Several
common variants in this locus have been proposed to modify APOE
expression and promote an imbalance between APOE3 expression
and APOE4 expression [53–55]. Similarly, differential regulation of
APOE expression related to different ancestral genomic background
around the locus might account for the differences in risk between
populations of various ancestries [56–59]. More recently, sequen-
cing studies have characterized two rare variants (V236E and R251G,
in complete linkage disequilibrium with the ε3 and ε4 alleles,
respectively) associated with a substantially lower risk of developing
AD [60–62]. The V236E APOE3 mutation has been shown to reduce
APOE aggregation, enhance APOE lipidation in human brains, and
reduce amyloid pathology and neuritic dystrophy in an AD-like
mouse model [63]. Lastly, two copies of the APOE3 R136S mutation
were suggested to have delayed the development of AD by several
decades in an individual carrying a PSEN1 mutation [64].

How have the results of the genetic studies influenced our
knowledge of the pathophysiological processes in AD?
Integrating biological and GWAS data is essential for a better
understanding of the pathophysiological processes involved. To
this end, the first (and still the most popular) tool was enrichment
pathway analysis. This is based on the postulate whereby a
relevant pathway must be enriched in genetic risk factors for the
disease in question. The results of the first attempts to apply this
approach in AD were published in 2010; two studies of
independent GWAS datasets highlighted the involvement of the
immune system in AD for the first time [65, 66]. This observation
was always confirmed as increasingly large GWASs were
conducted. Enrichments in pathways involved in lipid metabolism
and endocytosis also gave consistent results from one GWAS to
another, while pathways directly involved in APP metabolism and
Tau-related proteins became the most strongly associated path-
ways in the latest GWAS analyses [21, 27]. These latest findings are
reassuring and underpin the major roles of the two main
hallmarks of AD in the brain notably by establishing that the
genetic factors implicated in common forms of AD also point to
APP metabolism as a culprit. Importantly, APP and ADAM10 (whose
corresponding protein is responsible for α-secretase activity in the
brain) are both genetic risk factors for common forms of AD
[22, 27]. However, it should be borne in mind that new genetic risk
factors are often first evaluated in the context of known pathways.
This approach may lead to circular reasoning and thus to an
artificial enrichment in specific processes.
Giving biological meaning to data from GWASs and enrichment

pathway analyses has some intrinsic limitations. Firstly, a large
number of human genes have never been studied in a biological
context; in some cases, their biological function is still deduced simply
by sequence homology. Even for genes that have been studied,
information on pleiotropy and/or function in the brain is not always
available. Secondly, and even though the functional variant
responsible for the GWAS signal can be assigned to a non-
synonymous, deleterious variant in a few cases, the functional variant
is usually located in an intergenic region and probably modulates the
expression of the disease-causing gene. This causal gene is usually
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close to the sentinel/functional variants [67]. However, the presence
of several genes in a locus and/or complex linkage disequilibrium
patterns that include the sentinel variant make it difficult to
determine which gene is responsible for the observed association.
In order to characterize functional variants and genes, several

statistical approaches have been developed. The objective is to
prioritize disease-associated variants or genes in complex loci by (i)
the combination of fine-mapping with methods that leverage
enrichments in functional genomic annotations [26, 68]; (ii) co-
localization analyses, based on the postulate whereby a GWAS
signal that colocalizes with a quantitative trait locus is more likely to
be functional [69, 70], and (iii) transcriptome-wide-association
studies that identify gene–trait associations by integrating datasets
from GWASs and gene expression studies [71]. These approaches
were initially based on transcriptomic data but have been now
extended to data on splicing, methylation, and protein quantitative
trait loci [72–74]. Given the growing number of databases (for an
entire organ or by cell type), scores of varying complexity can be
used to prioritize genes of interest. However, to calculate these
scores, weights have to be assigned subjectively to each level of
information. In the latest AD GWAS, this approach prioritized 31
genes in the 42 novel loci associated with the AD risk [27].
Generating biological information to prioritize genes in complex

GWAS loci and/or to define the genes pathophysiological roles is
also challenging. As reported for other diseases in the post-GWAS
era [75], our mechanistic understanding lags far behind the
discovery of new AD risk loci in GWASs. Naturally, research efforts
tend to shift towards “star” genes that feature damaging, non-
synonymous, causal variants because they are easier to study.
However, as mentioned above, most of the variants responsible for
GWAS signals probably modulate the expression of the genes of
interest in subtle ways; this complicates the analysis. Furthermore,
the definition of phenotypes of interest in specific cell types in order
to functionally characterize a gene of interest is a prerequisite that
can lead to the development of hypothesis-driven approaches.
Thus, the vast majority of post-GWAS functional studies have been
based on aspects of the amyloid cascade hypothesis (the
metabolism of APP, and the production and/or the toxicity of
amyloid peptides) for a specific gene [76–78] or in systematic
screens [79–82] (for a review, see ref. [83]). To a lesser extent, similar
approaches have assessed the impact of GWAS-defined genes on
Tau toxicity/accumulation [84–87]. Here, it is worth noting the
remarkable convergence between BIN1 and Tau: (i) BIN1 modulates
Tau toxicity in Drosophila and in mouse models [88, 89]; (ii) BIN1
interacts directly with Tau in a phosphorylation-dependent manner
[90]; (iii) BIN1 AD risk variants are associated with increased
neurofibrillary tangles and higher Braak stages [88, 91, 92]; and
(iv) BIN1 AD risk variants are associated with levels of Tau/p-Tau (but
not of Ab1-42) in cerebrospinal fluid (CSF) [93] and Tau-PET results
(but not amyloid-PET results) in the brain [94, 95].
In addition to the specific case of BIN1, the most notable success

in the genomic/post-GWAS era is undoubtedly the identification
of microglia as a cornerstone in the pathophysiology of AD. In
2013, it was found that rare, non-synonymous variants in TREM2 (a
gene almost only expressed in microglia) were associated with a
significant elevation of the AD risk [41, 42]. On the genetic level,
the importance of the microglia has since been reinforced by the
discovery of rare, non-synonymous variants in PLCG2 and ABI3 –
both of which are particularly expressed in microglia [39].
According to the GWAS results, AD risk alleles are specifically
enriched in active enhancers of monocytes, macrophages and
especially microglia [96, 97]. Consequently, many AD risk loci may
be mediated through gene expression or splicing in microglia [98].
Many researchers have sought to link microglia, genetic risk
factors (mainly TREM2) and Aβ peptides together through their
impact on amyloid plaque formation/compaction [99–101],
toxicity, and synapse pruning [102]. In animal models, GWAS-
defined genes appear to determine the microglial response to Aβ

but not to Tau pathology [103, 104]. However, Aβ-activated
microglia might control the seeding/spreading and accumulation
of Tau pathology [105–107]; hence, the AD genetic risk would be
downstream of the amyloid pathway but upstream of the Tau
pathology pathway [104]. Accordingly, it has been suggested that
the P522R PLCG2 variant reduces AD progression in patients with
mild cognitive impairment by mitigating Tau pathology in the
presence of amyloid pathology [106].
In conclusion, the biological data produced by genomic studies

have not only reinforced the roles of APP metabolism and Tau
pathology in the etiology of AD but have also opened up a new
field of investigation concerning the immune system in general
and the microglia in particular. AD is no longer seen as a linear
process defined by the amyloid cascade; in fact, it appears to be
an increasingly complex phenomenon resulting from pathophy-
siological processes with many entry points that can trigger the
disease or interact to speed up or slow-down disease progression.
In view of this new paradigm for AD and the complexity
suggested by the new genetic data, several new, non-exclusive
hypotheses have been put forward. For example, the “cellular
phase” hypothesis postulates feedback and anticipation reactions
between all the various cell types in the brain [108]. The
“genetically driven synaptic failure” model is based on changes
in the focal adhesion pathway and the related cell signaling [83].

Although much progress has been made, how many genetic
factors have yet to be identified?
Between 2009 and 2022, the number of risk loci for AD (apart from
APOE) rose from 3 to more than 75. These discoveries have
impacted our knowledge of pathophysiological processes, which
is starting to be used in translational research on potential
diagnostic/prognostic tools. One can legitimately wonder (i) how
many genetic risk factors remain to be identified and (ii) how
valuable will be a polygenic risk score (PRS). To that end, some
researchers have tried to estimate the “missing heritability” in AD.
In fact, the estimates of AD’s heritability vary greatly from one

study to another. The highest values have been provided by twin
studies (from 48% to 79% on the liability scale, denoted h2twins).
Intermediate values have been obtained in analyses of individual-
level GWAS data from unrelated individuals (from 24% to 55%,
denoted h2SNP). Lastly, the lowest estimates were based on
summary statistics from GWASs (from 2% to 42%, denoted
h2summary)(Supplementary table 2). These differences are not
unexpected, since heritability is a population-dependent measure.
Differences between twin studies can also be explained by the
rather small sample sizes considered, which lead to large
confidence intervals for the estimates. However, all the h2twins
estimates are quite broad, and a meta-analysis of twin studies
estimated the heritability of dementia in AD to be 62.7% [109]. As
has been observed for many complex diseases or traits,
intermediate heritability values have been estimated in analyses
of individual-level GWAS data from unrelated individuals. There
are several explanations for this observation, including poor
tagging of causal variants in GWAS data (for example rare causal
variants), or the over-estimation of heritability in twin studies due
to a common environment, gene-gene interactions, or gene-
environment interactions [110–112]. More generally, the genomic
heritabilities h2SNP and h2summary are specific to the variant set
considered. Filtering on the minor allele frequency is usual, sex
chromosomes are excluded, and h2summary is computed after
removing the major histocompatibility complex region (which
contains a genetic risk factor for AD) and loci with large effects
(such as APOE); this leads to underestimation of the heritability.
Furthermore, the restricted maximum likelihood method (used to
compute h2SNP for AD) reportedly underestimates the heritability
of binary traits in case-control studies, and, like the linkage
disequilibrium score regression (LDSC) approach (used to com-
pute h2summary) [113], can provide biased estimates in the
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presence of strong non-genetic risk factors (such as age, for AD)
[114, 115]. Variability in h2SNP and h2summary is due in part to the
difference in the prevalence values considered (from 2% to 33%).
The prevalence varies greatly with age but also with sex and has a
large impact on the estimation of heritability. Hence, an increase
in the prevalence from 2% to 33% means that h2SNP rises from
24% to 55% [116, 117]. The h2summary values are lower than the
h2SNP values and range from 2% (with a prevalence of 5%) to 25%
(with a prevalence of 17%), although one of the studies
considered had a small sample size and estimated an outlying
value of h2summary of 42%. However, h2summary is commonly
computed with the LDSC approach, and considering linkage
disequilibrium in an external reference panel rather than in the
study sample, which biases the estimates [118, 119]. Furthermore,
LDSC reportedly underestimates heritability when a major
mutation (such as APOE) explains a high proportion of the
heritability [120]. h2summary is most often computed from GWAS
meta-analysis results and tends to decrease with the size of the
meta-analysis sample. This phenomenon has been observed for
other diseases and traits and might be due to inter-study
heterogeneity with regard to LD and characteristics of the study
populations (such as age and APOE status), the accuracy of
diagnoses, and the use of unscreened controls in the largest AD
meta-analyses [119, 121–123]. In particular, the largest AD meta-
analyses included some proxy-AD cases and thus assessed the
genetics of AD and related dementias rather than AD alone.
Furthermore, some studies do not take account of proxy-cases
correctly when computing heritability, which leads to under-
estimated values [117]. Lastly, varying levels of ascertainment in
meta-analyzed studies can also result in underestimation if it is not
appropriately accounted for [124].
Overall, estimating the heritability of AD remains methodolo-

gically challenging. From a conceptual point of view, many of the
inherent assumptions in the statistical models used to estimate
heritability are not appropriate for a disease as complex as AD.
This raises the question of whether estimates of the “missing
heritability” are meaningful [111, 125].

How can we improve our knowledge of the genetics of AD?
The difficulty of understanding the genetics of AD is clearly
illustrated by the fact that some researchers suggest that AD is an
oligogenic disease involving around 100 common causal variants
[120], while others favor a polygenic model with up to 11,000
common causative variants [126]. Consequently, it is reasonable to
consider prudently that new loci have yet to be identified and that
known loci require further characterization in AD.
Of course, it will always be necessary to increase the sample size

(whether of European ancestry or multiple ancestries) in classical
GWASs and sequencing analyses, in order to capture the genetic
information carried respectively by common and rare variants. It will
also be necessary to analyze all the types of variations in the genome.
Structural variants (SVs i.e. changes larger than 50 bp) have been
poorly studied in AD. SVs and (especially) copy number variations are
major sources of genomic variation; although two individuals may
differ genetically by 0.1% when considering single nucleotide
variations, the difference increases to 1.5% when SVs are also taken
into account [127–129]. However, apart from gene duplications
leading to monogenic forms of neurodegenerative diseases
[130–132], this field that has been poorly studied in common AD
and the few available studies of GWAS addressing SV association with
AD data lack consistency [133–137]; this might be attributable to
various technical biases (e.g. different genotyping and sequencing
platforms), batch effects, and a lack of statistical power. Nevertheless,
methodological and technical progress (especially long-read sequen-
cing) will probably make SVs easier to detect [138, 139].
Along with the ability to fully capture the variability in the

human genome, it is also important to exploit this knowledge
through a wide range of approaches to characterize the genetic

component of AD. Fine-mapping approaches are needed to better
understand the real importance of a given gene/locus: the risk
conferred by a gene/locus can be underestimated if one is
unaware of the existence of several independent causal variants,
as observed for BIN1 [26]. Heterogeneous or even hidden genetic
signals (e.g. those that depend on the APOE genotype, sex, or early
versus late onset) can also be assessed in interaction and
stratification analyses. At another level of complexity, pangenomic
searches for gene-gene or gene-environment interactions can be
developed [140–142]. These approaches nevertheless require
significant computing power and can generate false positives
through multiple statistical testing. For gene-environment inter-
actions more specifically, the question of statistical power arises
because the longitudinal studies performed to date (e.g. the
CHARGE consortium) included some tens of thousands of
individuals. However, this limitation is being lifted by the creation
of large biobanks (such as the UKB) in which the number of cases
diagnosed will increase as the study population ages. Lastly, the
implementation of increasingly large GWASs of many AD-related
endophenotypes [93, 143–146] and the GWAS datasets’ integra-
tion with other “omics” databases (e.g. systems biology) should
make it possible to characterize key elements of AD genetics and
related pathways. Importantly, the move towards systematic,
detailed integration of the available data will make it difficult to
validate results obtained independently. It will therefore become
essential to demonstrate the biological relevance of genetic
results (some of which will be generated by artificial intelligence)
in appropriate cellular and/or animal models.
Lastly, many methodological issues related to heterogeneity in

the generation of summary statistics can impact the results of
GWASs and complicate comparisons and subsequent analyses. For
example, analyses of proxy-AD cases require a correction factor,
which can differ across studies, different covariates are used to
adjust statistical models, and different imputation panels are used.
Since the IGAP’s results were published, AD GWASs have been

carried out by the meta-analysis of shared and (potential hetero-
genous) summary statistics and many findings might be driven by
the IGAP summary statistics. Further, the number of controls has
increased more quickly than the number of patients, following access
to the very large population-based biobanks; this has led to
stagnation in the number of novel loci characterized (Fig. 2).
The EADB was set up against this background. The biobank’s

main objective was to double the number of new, clinically
diagnosed cases of AD available for analysis; this probably
explains why the number of detected loci increased markedly
(Fig. 2). Furthermore, the EADB shared raw data from the existing
European GWASs, which enables the data to be checked for
potential sample overlaps. It also facilitates the use of the same
imputation panel (TOPMed), the application of the same quality
control procedures, and the implementation of similar statistical
models for homogeneous summary statistics prior to meta-
analysis. Overall, sharing raw data improves and speeds up GWAS
meta-analysis. Unfortunately, although the USA has a remarkable
data sharing policy to be commended and encouraged, the
European Union’s General Data Protection Regulation (a legitimate
effort to protect individual data) restricts data sharing outside
Europe (and even into Europe).

Will genetics impact the definition of AD and related
dementias?
In addition to the inherent methodological issues of GWASs, the
diagnosis of AD can also be questioned and debated. The
definition of around 40,000 to 50,000 proxy-AD cases in the UKB
can be criticized because it is based on self-reports of a family
history of AD dementia. Although the large number of proxy-AD
cases increases the statistical power of the AD GWAS, and the
genetic correlation between AD and proxy-AD is high (above 0.65)
[20, 23, 25, 117], this “virtual diagnosis” might lead to the inclusion
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of misdiagnosed individuals. In addition, even when studying
clinically diagnosed cases, it is estimated that around 10–20% of
diagnoses are incorrect. These points have prompted some
experts to even consider that the detection of the same genetic
signals for several neurodegenerative diseases could be artefac-
tual; because of these misdiagnoses and the size of the AD
GWASs, these GWASs were also statistically powerful enough to
detect signals corresponding to the pathologies associated with
these misdiagnoses.
To circumvent this problem, the selection of individuals on the

basis of post-mortem pathology assessments is obviously the best
option for establishing a definitive diagnosis. However, this
approach is still strongly limited by the lack of access to large
collections of brain samples – especially for age-matched controls
[91, 147, 148]. Another option would be to use biomarker profiles
to distinguish between AD cases, controls, and individuals with
other neurodegenerative diseases. However, generalization of the
recently developed amyloid/Tau/neurodegeneration (A/T/N) clas-
sification is limited by the cost of CSF biomarker assays and
imaging [149]. Furthermore, the biomarker field is evolving
rapidly, with the discovery of novel targets (e.g. p-Tau 217 and
p-Tau 231) with potentially high diagnostic/prognostic value
[150, 151]. These biomarkers might lead to a refinement of the
diagnostic profile for AD and related disorders and therefore the
corresponding genetic studies. However, these approaches might
also lead to the over-selection of cases that are not representative
of AD and the latter’s complex relationship with the neurodegen-
erative landscape in real life.
Indeed, the postulate whereby detection of the same genetic

signal in two different neurodegenerative diseases results from
misdiagnosis is probably too simplistic and does not fully take
account of important data from genetics and, above all, brain
pathology markers. Firstly, in GWASs of clinical frontotemporal
dementia, TMEM106B variants achieved only modest p-values and
odds ratios for the behavioral subtype of frontotemporal dementia
[152], and the associations were dependent on GRN mutations
[153]. It is unlikely that this clinical subpopulation alone could
drive a genome-wide, significant signal in an AD GWAS. Secondly,
and even though a locus can be common to several diseases, it

appears that signals (and thus functional variants) can differ – as
observed for the IDUA locus in AD and in Parkinson’s disease. This
may indicate that a common locus does not necessarily have the
same pathological consequences in different neurodegenerative
diseases. Thirdly, patients with AD often have other (concomitant)
neurological diseases, which are potential “partners in crime”
[154]. For instance, GRN and TMEM106B are reportedly involved in
defective endosome/lysosome trafficking/function – a defect that
is also observed in AD [155, 156]. GRN protects against amyloid-β
deposition and toxicity in AD mouse models [157]. This is also
illustrated by the association between BIN1 and the risk of
developing Lewy body dementia, as observed in a large sample of
autopsy-confirmed and clinically probable cases [92]. This BIN1
signal (like that observed in AD) was significantly associated with
increased neurofibrillary tangles, as also observed in AD brains
[90, 91]. Given the many observations linking BIN1 to Tau-related
endophenotypes [93, 94] and pathological processes [89, 90], the
identical genetic signal for BIN1 in two diseases pathologies
suggest that similar Tau-related pathological processes are
operating.
In general, one can argue that the initial and/or subsequent

localization and development of concomitant diseases can trigger
or favor AD. In other words, the interplay between pathophysio-
logical processes in different pathologies might prompt the
detection of a common genetic locus. The presence of common
causal variants in the same gene might indicate a shared
pathological role, whereas the presence of different causal
variants in the said gene might indicate specific mechanisms or
cell-type-specific expression. Common genetic risk factors in
neurodegenerative diseases might have thus several important
implications and do not necessarily reflect misdiagnosis in GWASs.
In combination with other biomarkers, genetic markers could
perhaps redefine the boundaries and relationships between
neurodegenerative diseases (i.e. a hypothetical continuum).
Hence, the inclusion of this information may be particularly useful
for better defining AD and concomitant diseases in real life. For
example, the development of PRSs might help to integrate this
heterogeneity into pathophysiological processes for a given case –
even when this case has been diagnosed as AD. This may be of

EADIGERAD

CHARGE

GERAD+ADGC
IGAP1

IGAP1+UKB

PGC1

IGAP2

IGAP2+UKBGR@ACE

PGC2

EADB

0

20

40

60

80

0 200,000 400,000 600,000 800,000 1,000,000
Sample size

N
u

m
b

er
 o

f 
lo

ci

EADIGERAD

CHARGE

GERAD+

ADGC

IGAP1
IGAP1+UKB

PGC1
IGAP2

IGAP2+UKB GR@ACE

PGC2

EADB

0

20

40

60

80

0 50,000 100,000 150,000
Effective sample size

Proxy cases No Yes

Fig. 2 Number of loci identified in the different GWASs. Number of loci identified as a function of the sample size (left) or the effective
sample size (right) (cases and controls) in the main GWASs published since 2009 (EADI, GERAD, CHARGE, GERAD+, ADGC, IGAP1, IGAP1+UKB
(2017), IGAP1+ UKB (2018), PGC1, IGAP2, IGAP2+ UKB, GR@ACE, PGC2, and EADB [14–27]. The colors indicate the presence or absence of
proxy cases in the GWAS. The effective sample size was computed per study included in the meta-analyses, and then summed across studies
[124]. The effective sample size for the proxy UKB study was computed by dividing the raw number of proxy cases and proxy controls by four
[24, 117].

J.-C. Lambert et al.

2721

Molecular Psychiatry (2023) 28:2716 – 2727



particular importance when developing drugs potentially target-
ing shared genes/pathways and the development of an efficient
precision medicine.

Development of a tool for the diagnosis and prognosis of the
common forms of AD
Translating new genetic knowledge into clinical practice (e.g. to
identify individuals at risk of progression to dementia) is
challenging, for many reasons. Researchers have designed PRSs
that reflect an individual’s overall genetic burden for a given
disease [158–161]. The PRS provides a cumulative effect score
summarizing the small information distributed across the
individual susceptibility variants. To construct a PRS, an effect
estimate has to be assigned to each variant included in the PRS;
this estimate is obtained from the summary statistics derived from
large GWASs and meta-analyses thereof [162]. This large GWAS
dataset is considered to be the “training” dataset from which the
effect estimators are obtained and used to build an informative
PRS using an independent dataset called validation or test dataset.
In this regard, the constant increase in sample size in GWASs has
contributed significantly to the identification of genuine risk
variants for diseases and has improved the effect estimates for
each risk variant. All this information helps to better calibrate PRSs
[163] for the assessment of at-risk individuals and the scores’
translation into strategies for better diagnosis and (eventually)
early intervention and prevention. PRS methodologies have been
improved by the availability of genomic information on linkage
disequilibrium dependencies between variants; this enables better
definition of a single tagging variant for a defined locus and
avoids redundant information and falsely inflated results
[160, 164].
The potential value of PRSs in the context of AD has been

emphasized by studies in which an AD-derived PRS was
associated with the clinical diagnosis [165], cortical thickness
[166], memory, hippocampal volume, cognitive decline [167],
disease progression [168], and post-mortem confirmed cases
[169]. However not everything has been “hunky-dory” with PRS
because results from studies using an AD-derived PRS, incorporat-
ing all or part of the GWAS signals, have been inconclusive with
regard to disease progression and clinical diagnosis [170, 171].
Thus, these contradictory results cast some doubts on the strategy
used to compute the PRS. Consequently, several studies have
focused on determining the best overall way to compute a PRS
(for a more detailed review see [172]).
The term “PRS” is used liberally to refer to scores that include

various number of SNPs. Current methods for PRS computation
are designed to reduce the signal-to-noise ratio by selecting a
small number of the most informative SNPs [173]. This specific
selection of SNPs in the final model follows different selection
criteria such as significance thresholds or a priori selection by
researchers. This selection generally includes only common SNPs
(minor allele frequency 5%) using a model that assumes only
additive effects for these variants, and do not account for
additional components like SNPxSNP interactions and dominance
[174, 175]. Besides, rare variants (minor allele frequency <1%) or
copy number variations are normally left out of a PRS as they are
not included in the genetic data derived from GWAS. Thus, these
inclusion criteria may restrict the genomic information included in
the model leading to the inability of PRS to completely capture
the genomic landscape of the selected trait [176, 177]. Other
important aspects of PRS calculation are subject to debate: the
best way to model APOE within a PRS, the p-value threshold for
including SNPs, and the comparison of PRSs for independent
cohorts [173, 178, 179]. As mentioned above, and although it is
clear that several genes are involved in the AD process, there is
still debate as to whether AD is polygenic or oligogenic [120, 165].
Resolving these issues will have a major impact on the strategy
used to build a PRS in AD. Interestingly, a recent GWAS of human

height (a strongly polygenic and heterogeneous trait) in over 5
million participants appeared to reach a plateau for the
identification of genetic variants [180]. The investigators con-
cluded that substantially increasing the sample size of GWAS
might largely resolve the heritability attributed to common
variation by identifying a finite set of SNPs [180].
While most of the debate concerning PRS has focused on

selecting SNPs from a single summary statistic dataset, less
attention has been paid to the fact that AD is a complex,
heterogeneous phenotype [181]. As previously indicated, the
pathophysiological processes in AD are diverse, and not all will be
present and operating at the same time in a given patient. Hence,
two patients with AD will present different subsets of the
pathophysiological processes. Moreover, the various pathogenic
processes and endophenotypes associated with AD might be
driven by different genetic variants – ones that are not necessarily
involved in the susceptibility to AD identified by case-control
GWAS. In support of this hypothesis, GWASs using CSF levels of
the hallmark biomarkers of AD (i.e. amyloid beta and tau) have
identified a handful of genetic variants involved also in the
susceptibility to AD [93, 182]. These studies also suggest that the
genetics driving each of the biomarker’s levels in CSF are
independent of each other – except for the APOE locus. On the
same lines, GWASs of cognitive performance in more than 300,000
cognitively healthy individuals also reported a handful of genome-
wide significant signals in regions overlapping with loci respon-
sible for susceptibility to AD [183]. This finding suggests that the
genetic factors identified in case-control GWASs will only partly
explain the variance observed in the AD phenotype. Hence, a
simple PRS derived from case-control summary statistics might
not explain the total genetic risk in an AD patient. As discussed
above, some of the genetic drivers of AD are probably also
involved in other types of dementia. Accordingly, a PRSs
encompassing the genome-wide significant SNPs identified by
the EADB consortium was consistently associated with progres-
sion to dementia in various cohorts of patients with mild cognitive
impairment (prodromal dementia) and cognitively healthy indivi-
duals [27]. These findings underscore the contribution of the
identified genetic variants to the progression of cognitive decline
along the continuum of AD and may be also to related diseases,
though this latter suggestion needs further research.
In conclusion, while PRS has been seen as a path to

personalized medicine, the use of PRS in medicine is not exempt
from limitations. PRS informs about the probability and not a
destiny of a person based on the genetic burden of a particular
disease. Hence, whether or not a PRS translates into pathology will
not be reported by the PRS itself but from dynamic markers
showing the ongoing pathology. This, however, also states the
question of whether using PRS for age-related diseases in young
populations may have any impact on prevention. However, our
PRSs will become increasingly accurate as our knowledge of the
genetics of susceptibility to AD improves. A PRS that provides
information on the genetics of susceptibility to AD and on the
related underlying endophenotypes would be especially useful.
Likewise, strategies based on hazard ratios (rather than risk scores)
might also improve our predictive ability and could ultimately lead
to the “holy grail”, i.e., a score for identifying cognitively healthy
young individuals at risk of developing dementia. Identification of
the pathways affected in each individual at risk would open up
many opportunities, such as the development of personalized
prevention strategies.

CONCLUSION
The AD genetic community has a clear responsibility for
accelerating and fostering the generation of biological and
clinically relevant results. The characterization of the genetics of
multifactorial diseases like AD has a major impact on the research
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in the fields and therefore the development of treatments. By way
of an example, human genetic evidence supported two-thirds of
the drugs approved by the US Food and Drug Administration in
2021 [184]. In view of this major responsibility, geneticists must
ask themselves essential questions about their research practices
and the resulting publications. This implies an appropriate
understanding of the various biases in the results, how these
biases should be taken into account, and how the results should
be published. Geneticists must also be prepared to correct their
mistakes, given the inherent risk of generating false positives in
genetic studies.
Over the last ten years, we have made remarkable progress in

understanding the genetics of AD but considerable additional
efforts are still needed. Nevertheless, one can assume that the most
obvious genetic factors/loci have already been identified; the
remaining research efforts and investments will have to define new
factors/loci with restricted impact – even though rare variants can
still have a moderate impact on the AD risk. Regardless of how
much of the genetic variability in AD remains to be discovered,
knowledge of AD genetics has already had a considerable impact
on (i) our understanding of the pathophysiology of AD (e.g. the
central role of microglia), (ii) the definition of sub-populations at risk,
and (iii) the interplay between AD and other neurodegenerative
diseases. These genetics-related advances are especially important
because few genetic risk factors have been studied in detail after
their initial identification as being associated with the AD risk. We
can therefore legitimately be optimistic and assume that the growth
in post-GWAS research (such as the MODEL-AD project [185]) will
enable to make rapid progress in the years to come.
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