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The persistence of drug taking despite its adverse consequences plays a central role in the presentation, diagnosis, and impacts of
addiction. Eventual recognition and appraisal of these adverse consequences is central to decisions to reduce or cease use.
However, the most appropriate ways of conceptualizing persistence in the face of adverse consequences remain unclear. Here we
review evidence that there are at least three pathways to persistent use despite the negative consequences of that use. A cognitive
pathway for recognition of adverse consequences, a motivational pathway for valuation of these consequences, and a behavioral
pathway for responding to these adverse consequences. These pathways are dynamic, not linear, with multiple possible trajectories
between them, and each is sufficient to produce persistence. We describe these pathways, their characteristics, brain cellular and
circuit substrates, and we highlight their relevance to different pathways to self- and treatment-guided behavior change.
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INTRODUCTION
In 2016, Pickard and Ahmed posed the ‘puzzle of choice’ [1]. They
began by considering evidence that people with problematic drug
use can frequently control their behavior and can choose to
abstain under many circumstances. Given this evidence for
controlled drug use, Pickard and Ahmed asked why do these
individuals choose to use despite the portent of negative
consequences from that use?
The apparent insensitivity of drug taking to its adverse

consequences is among the most pernicious features of
addiction. It is responsible for a large part of the human toll
of addiction, contributing directly to the detriments in
health and well-being suffered by individuals, and imposing
substantial burdens upon families and communities. Insensitivity
to adverse consequences is not limited to drug use. It is shared
with other problematic behaviors such as problem gambling
that impose real and significant costs on individuals and the
community.
Given the key role that insensitivity to adverse consequences

plays in the presentation, diagnosis, and impacts of persistent
drug use, as well as evidence that the eventual recognition and
appraisal of these adverse consequences contributes to decisions
to reduce or cease use [2–4], it is not surprising that it has been of
intense interest. However, the most appropriate ways of
conceptualizing this insensitivity remains unclear [5] and some-
times controversial [6, 7]. The diverse conditions under which
insensitivity is observed and heterogeneity in its presentation
imply that it is multifactorial. Yet, often only single mechanism
solutions are presented for this problem [7], and these are
typically presented as linear transitions or trajectories.
Here we argue for three pathways to insensitivity that may

contribute to persistent drug use despite its negative

consequences (Fig. 1)1. A cognitive pathway for recognition of
adverse consequences, a motivational pathway for valuation of
these consequences, and a behavioral pathway for responding to
these consequences. These pathways can operate in the same
individual at different times, they can be independent with
multiple possible trajectories between them, and each is sufficient
to produce insensitivity. These pathways are embedded in
complex backgrounds of intoxication, history of dependence,
acute or protracted withdrawal, and stress. We describe how these
pathways differ from each other and we consider their relevance
for self- and treatment-guided behavior change.

THE ADVERSE CONSEQUENCES OF DRUG USE
Although not all drug use, even when prolonged, has negative
consequences for an individual, prolonged drug use can have
profound deleterious impacts on the health and well-being of
individual users, ranging from acute toxicity to chronic health
conditions [8–10]. Some adverse consequences may be directly,
causally linked to drug use (e.g., overdose, hepatitis, HIV), whereas
others are multifactorial and drug use adds to their risk (e.g.,
psychiatric disorders, cancers). Regardless, the burden of illicit drug
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1We use the terms ‘punishment insensitivity’ and ‘persistence despite
negative consequences’ in preference to the term ‘compulsivity’. The
studies we review operationalize insensitivity to adverse
consequences via punishment procedures and our focus is on how
people and other animals may fail to detect, learn, and respond to
these adverse consequences. The reader is referred to George et al. [5]
for evaluation of use of the term ‘compulsivity’ in addiction
neuroscience.
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use is estimated at 0.8% of global all-cause disability adjusted life
years [9, 11]. The impact of licit substance use is greater still with
alcohol use alone accounting for 5.1% of the global burden of
disease and injury [12]. Adverse effects are not restricted to impacts
on health. Persistent substance use creates and exacerbates
relationship and interpersonal problems and can lead to detri-
mental neglect of familial and occupational responsibilities as well
as direct harm to others. Persistence of use in the face of adverse
impacts is held to distinguish problematic from recreational drug
use. It also forms a key part of formal diagnosis [13, 14].
Non-human animal models of drug use serve an important role

in studying adverse consequences because they allow precise
control over drug history, assessment of individual differences,
and titration of adverse consequences. Indeed, there has been
progress in understanding whether, when, and why laboratory
animals persist in drug self-administration despite adverse
consequences [15]. In a typical experiment, rats or mice are first
trained to self-administer a substance, under simple (e.g., fixed
ratio) or more sophisticated (e.g., ‘seeking-taking’) schedules.
Then, adverse consequences are introduced to punish this
behavior, such as arranging that responding for the substance
also leads to footshock [16–20], conditioned fear [21, 22], air puffs
[23], or adulteration of the substance [24, 25]. The precise
parametric relationship between drug seeking or taking and
punishment varies across studies and these parameters are
important to consider because they constrain and confound
interpretation [19, 26]. In general, though, under these conditions,
some laboratory animals reduce or cease drug self-administration,
showing that drug seeking and taking are sensitive to adverse
consequences. However, despite being subjected to negative
consequences, some laboratory animals persist in seeking and
taking. Such persistence has been observed in laboratory animals
self-administering cocaine [19, 27–31], heroin [32], methamphe-
tamine, and alcohol [24, 33].
This work has identified at least five features of insensitivity to

adverse consequences. First, when low to moderate intensity
punishers are used, only some mice [24] and rats [20, 33] are
insensitive, speaking to individual variability in humans. Second,
factors relating to initial drug use, including preference, intake,
and rate of self-administration, are unrelated to insensitivity
[18, 19, 21, 29, 34, 35]. This shows that insensitivity is separate to
mechanisms governing initial use [36–38]. Third, extended self-
administration and longer access per self-administration session

favor insensitivity [19, 27, 38]. Fourth, propensity to drug seek
under progressive ratio schedules [16, 18–20, 28, 30, 33, 39, 40],
increased responding during extinction [18, 21, 28, 39, 40] or
increased economic demand [41, 42] can predict insensitivity (but
see [29, 35, 43–45]). Fifth, response impulsivity, such as reduced
ability to wait before performing an appropriate response [29, 35]
can predict insensitivity. These features are robust and replicable.
They are important because they speak to, and constrain,
mechanisms for insensitivity. We draw on these features when
considering properties of the three putative pathways to
insensitity to adverse consequences.

COGNITIVE PATHWAYS: RECOGNIZING ADVERSE
CONSEQUENCES
The cognitive pathway to persisting in drug taking despite
negative consequences refers to the knowledge that an individual
has about the consequences of their drug use (Fig. 1). Recognizing
and identifying the negative consequences of drug use are
necessary conditions for those consequences to change behavior.
Yet for many individuals, choices to use a drug often do not
incorporate possible adverse consequences from that use
[3, 4, 46]. To be sure, severe adverse consequences such as
financial, familial, medical, employment, or legal problems can
predict treatment seeking in some people [47, 48]. However,
recognition of the severity of these consequences and their
relationship to drug use is rarely immediate [1]. Recognition that
one’s drug use is responsible for negative consequences often
occurs gradually, with individuals engaging in cognitive appraisals
that can help drive self- or treatment-guided behavior change
[2–4, 49, 50].
Engaging in these reappraisals may be difficult. Counselling

approaches, such as motivational interviewing, capitalize on and
enhance motivation to change [51]. These approaches can be
highly effective for some people [52] but they can be less effective
at creating the initial motivation to change [51, 53]. Reappraisals
start gradually and behavior changes irregularly, often in highly
personalized ways [3, 49]. This individuality has been argued to be
beyond the reach of neuroscience [3], but recent work is
beginning to show why correctly recognizing the negative
consequences of our actions can be difficult.
Experience does not always deliver veridical causal knowledge

about our actions. Humans [54–56] and other animals [57, 58]

Fig. 1 Pathways to insensitivity and their potential resolution. At least three pathways, representing distinct psychological factors, may
each be sufficient to produce insensitivity to punishment and cause persistent, detrimental behavior. Insensitivity can arise from poor
instrumental contingency knowledge (cognitive pathway), distortions in positive and/or negative valuation of consequences (motivational
pathway), and/or alterations in behavioral autonomy (behavioral pathway). These pathways occur against complex backgrounds of
intoxication, history of dependence, acute or protracted withdrawal, and acute as well as chronic stressors that can influence capacity to
detect, appropriately learn about, weight, and respond to negative consequences. These pathways can operate independently but may also
interact. They are underpinned by still poorly understood distinct (as shown in colored) but partially overlapping (as shown in gray) neural
circuitries. These pathways are likely dynamic and non-linear. Each may operate within the same individual at different times. Resolution of
problematic behaviors will depend on which of these factors is contributing at specific times to cause persistence of behavior. dlPFC—
dorsolateral prefrontal cortex, mPFC—medial prefrontal cortex, IC—insular cortex, Thal—thalamus, Str—striatum, DM—dorsomedial striatum,
DL—dorsolateral striatum, V—ventral striatum, Ce—central amygdala, BL—basolateral amygdala complex.
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differ profoundly in what they learn about the consequences of
their actions. These differences in learning can drive pronounced
differences in choice. Some people form correct causal beliefs
about how their actions cause adverse consequences. They can
use this knowledge to choose other behaviors. In contrast, other
people form incorrect beliefs about the causes of adverse
consequences. Their lack of correct awareness leads them to
choose actions with adverse consequences.
For example, Jean-Richard-dit-Bressel et al. [54] used a

conditioned punishment task in young adults that allowed them
to choose between two responses, one earning probabilistic
rewards and one earning probabilistic reward and punishment.
Participants were provided with no information about the specific
punishment contingencies. They had to learn these from
experience. Some readily learned to reallocate behavior away
from the punished behavior, others did not. These differences
were not due to differences in engagement with the task or in
valuation of reward or punishment. Instead, sensitive and
insensitive individuals differed profoundly in what they learned.
Punishment sensitive individuals acquired correct causal beliefs
about their behavior. They learned the correct Action–Punisher
contingencies that they used to avoid further punishment.
Punishment insensitive individuals also learned Action–Punisher
contingencies. However, what they had learned was incorrect.
Insensitive individuals formed incorrect beliefs about the causes of
negative consequences so they could not withhold the specific
action that caused punishment. This same bimodal punishment
sensitivity driven by deficits in accurate instrumental contingency
knowledge is observed in non-human animals [57], suggesting
that it is a core property of learning and amenable to mechanistic
deconstruction.
Lacking awareness or possessing erroneous causal beliefs about

the adverse consequence of a behavior is not always problematic.
In many individuals, lack of awareness or incorrect causal beliefs
can be corrected to change behavior [59]. For example, explicit
information about Action–Punisher contingencies changes the
behavior and beliefs of some insensitive people, causing them to
cease that behavior and avoid further punishment. However, lack
of awareness or incorrect beliefs can sometimes be problematic. In
some insensitive people, behavior resists counterevidence about
why they are being punished, trapping them in a cycle of
repeating negative consequences [59]. This is likely under at least
one condition: when adverse consequences are infrequent [59].
Under this condition, some insensitive individuals discount
veridical counterevidence about the causes of punishment and
detrimental behavior persists [59].
So, insensitivity to adverse consequences can emerge from the

different things that we learn about the negative consequences of
our actions. Three features make the negative consequences of
drug use especially prone to this insensitivity. First, the negative
consequences of drug use are probabilistic, and any experienced
contingencies are typically weak. The probability that any
individual act of drug use will have detectable negative
consequences for the individual is low. This makes learning about
adverse consequences from experience difficult. We underweight
rare, adverse events when making experience-based choices
[55, 60]. Indeed, when individuals do experience adverse
consequences from initial drug use (e.g., nausea in response to
nicotine; flushing in response to ethanol), further use can be
slowed [61–64]. Second, the trajectory of drug-related harms often
involves escalation from minor to more severe, typically over
many years. This trajectory undermines the ability of those
consequences to change behavior. Severe negative consequences
are less effective at changing behavior if they have been preceded
by less severe negative consequences than if they had been
experienced from the outset [65–67]. Third, the negative
consequences of drug use are often temporally removed from
the act of use. This delay between cause and effect further

undermines learning [68, 69] and the capacity of negative
outcomes to shape choices and behavior.
The brain mechanisms underlying this cognitive pathway are

poorly understood. Core features are that valuation and action
control can be intact but individuals differ in correct awareness of
the consequences of their behavior as well as in their willingness
to update beliefs in response to counterevidence. Progress in
understanding may benefit from considering theoretical and
computational advances in the mechanisms of belief updating
[70–73] and their application to neuropsychiatric conditions
[74–76]. This has identified key roles for dopamine [77] and a
network of cortical regions involving dorsolateral prefrontal cortex
and their interactions with medial prefrontal cortex [78, 79].
Interestingly, these mechanisms for belief updating depend on
more than just the prediction error often studied in addiction
neuroscience. For example, they depend on the meaningfulness
of the new information being considered to the belief rather than
on just how surprising or different from expectation that
information is [78]. There is some evidence from laboratory
animal studies that exposure to addictive drugs may alter these
updating processes [76].
Given these pronounced individual differences in what we learn

about the adverse consequences of behavior and in our
willingness to change behavior in response to counterevidence,
we argue that a cognitive pathway to persistent drug use despite
potential negative consequences is more common than appre-
ciated in the addiction neuroscience literature. Correctly recogniz-
ing the adverse consequences of one’s actions is more complex
than simply experiencing or being educated about those
consequences. Sustaining correct recognition may be equally
difficult [75, 76]. These cognitive barriers must be overcome if
negative consequences are to shape future choice and action.

MOTIVATIONAL PATHWAYS: VALUING ADVERSE
CONSEQUENCES
If the negative consequences of drug use have been recognized
and attributed, then a second pathway to persisting in drug taking
despite adverse consequences can be linked to distortions in
value-based choice [6, 80, 81] (Fig. 1). This has emerged from
literature studying drug choice and economic demand
[6, 41, 80, 82, 83] (see [6, 84, 85] for review). It shows that drug
seeking and taking can be strongly linked to the relative value of
the drug which, in turn, is determined by its relevance to the
users’ current desires and needs. Drugs can be chosen when their
expected benefits exceed those of other behaviors, and they
exceed any expected costs. When controlled by expected value,
drug use can be highly flexible, with individuals choosing to use
despite negative consequences and choosing to abstain should
there be sufficient incentive [1, 86, 87]. The evidence for this is
compelling [6, 82, 88, 89]. It aligns with laboratory findings from
smokers [90], opioid users [85, 91] and polydrug users [92] as well
as with self-reports that cognitive appraisals and cost-benefit
evaluations about use precede self- and treatment-guided
behavior change [2–4, 49, 50]. It also aligns well with the evidence
that cognitive re-evaluations of the ‘pros and cons’ of drug use are
central to behavior change [93].
Pharmacotherapies designed to manage craving and with-

drawal as well as treatments such as contingency management
capitalize directly on this role of value to provide approaches
effective for some people [94]. For example, in voucher-based
reinforcement therapy, individuals earn vouchers and other
incentives if they reach an agreed therapeutic goal. Success of
these treatments is influenced by variables known to influence
value computations, including voucher value and immediacy of
voucher receipt [94].
Value is pleiotropic. So, distortions of value not only explain why

an individual persists in drug-seeking despite adverse consequences
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but also why this persistence is expressed in other behaviors such as
increased break points [16, 18–20, 28, 30, 33, 39, 40], increased
responding during extinction [18, 21, 28, 39, 40] and increased
economic demand [41, 42] in animal models, highlighting the need
for such assessments when attempting to isolate causes of
punishment insensitivity. Moreover, this pathway predicts that
sensitivity or insensitivity to punishment depends on the experi-
ences of the individual [66, 67, 95].
The importance of value in dictating choices to abstain or use

underscores the need for deeper understanding of how negative
and positive value are computed and used. One possibility is that
excessive valuation is due to increased dopaminergic neurotrans-
mission [96, 97]. To study this, Lüscher and colleagues developed
an optical model of midbrain dopamine neuron self-stimulation.
Here mice respond under simple [35] or seeking-taking [23]
schedules for dopamine neuron excitation that also yield
footshock punishment. Under these conditions some mice are
insensitive to punishment. This insensitivity is due to increased
excitability of orbitofrontal cortex neurons [35] and potentiation of
orbitofrontal synapses in dorsal striatum [23, 98]. Remarkably,
artificially sculpting plasticity in this orbitofrontal projection
induced persistent seeking in punishment sensitive mice and
reversed persistent seeking in punishment resistant mice [98].
Whether plasticity in this circuit adjusts response and/or outcome
values remains unclear. Furthermore, the mechanisms for valua-
tion are likely to be more complex still. Dopamine serves different
roles in learning depending on its specific local and long-range
circuit features [99–101]. This role is often value free [102, 103] and
increasing dopamine neurotransmission has also been shown to
increase, not decrease, punishment learning [104].
A second possibility is linked to the repeated cycles of

instrumental incentive learning [105, 106] embedded in drug
use. Here, individuals learn from experience that drug taking
augments positive emotional states and/or ameliorates negative
ones (boredom, social exclusion, depressed mood, drug with-
drawal) [107–110]. This learning causes a revaluation of the drug,
inflating its value and transforming it into a goal to be sought in
future such states. For example, experiencing the alleviation of
drug withdrawal by drug intake increases the incentive value of
the drug in, and propensity to seek and take the drug during,
future withdrawal states. This learning is outcome (i.e., drug) and
state specific, so it can account for context-specific drug
preferences and their reversal in different settings [111–114].
Incentive learning is well established for non-drug reinforcers
[105, 115, 116]. However, evidence from drug reinforcers is sparse
[117]. Understanding whether this incentive learning guides drug
choices in the face of adverse consequences remains important, as
does understanding how pharmacotherapies for withdrawal
management affect this transformation and use of drug values.
The neurobiological mechanisms for these choices to seek and

consume drugs despite negative consequences have attracted
considerable attention. In addition to the mechanisms described
above, insula cortex, basolateral amygdala and their interactions
are essential to encoding internal states [118] and dynamic
changes in reward and punishment value in humans, non-human
primates, and rodents [106, 119–125]. Meta [126] and mega [127]
analyses show alterations in human insula volume and/or gray
matter thickness across dependence to several drugs [128], that
could suggest potential alterations in punishment or reward
encoding. This is supported by alterations in resting state
functional connectivity of frontal and insular cortical regions in
cocaine users [129].
Laboratory animal studies extend these findings. Propensity to

seek alcohol [130, 131] or nicotine [132] after punishment or seek
methamphetamine after voluntary (i.e., choice-induced) absti-
nence [133] is associated with increased activity in the anterior
insula whereas choice-induced prevention of incubated craving

for methamphetamine is linked to reduced anterior insula cortex
activity [134]. Studies with non-drug rewards implicate insula
projections to ventral striatum, particularly accumbens core, in
retrieving and using outcome values in action selection [135, 136].
This pathway also mediates punishment resistant alcohol drinking
[25]. However, other insula projections are relevant, including
projections to the central amygdala. This projection mediates
propensity to choose methamphetamine when alternative non-
drug choices are removed [133]. Activity of amygdaloid PKCδ+
neurons predicts punishment resistant alcohol drinking [33].
Reducing activity of these neurons reduces punished alcohol
choice [33] and mediates the protective effect of non-drug choices
on incubation of methamphetamine craving [134]. However, this
circuitry is more complex still, with important roles for orbito-
frontal cortex [137, 138]. Both lateral [139] and medial [140]
orbitofrontal cortex are essential for learning about the adverse
consequences of behavior. Studies with non-drug rewards show
that distinct orbitofrontal cortical-amygdala projections in encod-
ing (lateral orbitofrontal → basolateral amygdala) and retrieving
(medial orbitofrontal → basolateral amygdala) reward value [138].
The role of these orbitofrontal cortical-amygdala interactions in
choices to seek and take drugs despite negative consequences are
important issues for the field to address.
Medial prefrontal cortex and its projections are also relevant.

Medial prefrontal cortex is essential to value-based choice
[141, 142] including cost-benefit decisions [143]. Medial pre-
frontal cortex shows structural alterations across dependence to
several drugs [126, 127] and animal studies show that drug self-
administration and exposure remodels [144] and reduces
excitability [24, 145] as well as plasticity [16, 28] of prefrontal
neurons. These circuits, especially those in the rodent prelimbic
cortex and its projections to striatum and midbrain, are directly
implicated in the choice of reward (sucrose, alcohol, cocaine)
under punishment [16, 24, 28, 146–148]. Moreover, punishment
resistant seeking has been linked to reductions in excitability
of prelimbic neurons, while increasing activity in these
prelimbic circuits can reduce choice of punished cocaine [148]
and alcohol [24].
Choice is more than behavioral allocation. Process models such

as sequential sampling models (e.g., drift-diffusion [149] and linear
ballistic accumulator [150]) provide computationally tractable
decomposition of choice into its latent cognitive processes
[37, 151–153]. These models identify computational similarities
[154] between human [151], non-human primate [151], and
rodent [155] choice. They have parallels to circuit function
[156–160], holding promise for achieving a formal understanding
of how value is used when making drug choices [81, 161],
complementing reinforcement learning models for learning this
value [149, 162]. They may help identify how medications and
interventions facilitate cognitive appraisal of the negative
consequences of use that drive abstinence. Field et al. [80] have
shown that these process models provide coherent explanations
of drug choices as well as their remediation across recovery (see
also [81]). This aligns with demonstrations that deliberative choice,
including when evaluating the risk versus benefits of seeking
rewards under punishment, is linked to medial prefrontal cortex
[155, 163, 164] and its projections to thalamus [155, 165]. These
findings are relevant to evidence that training deliberative choice
of non-alcohol rewards over alcohol reduces rates of relapse to
alcohol drinking in the high-risk period following inpatient
discharge [166]. Process models also hold promise for under-
standing intra-individual variation in choice. Even with correct
understanding of consequences, choices are not always optimal
and preference is not always stable. Process models provide one
way of understanding stochastic and probabilistic variation in
choice including those based on fluctuations in value and
cognitive control.
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BEHAVIORAL PATHWAYS: RESPONDING TO ADVERSE
CONSEQUENCES
If the negative consequences of drug use have been recognized,
attributed, and valued, then a third pathway to persisting in drug
taking despite adverse consequences is behavioral (Fig. 1)
[37, 38, 167, 168]. Proposed and elaborated by Everitt, Robbins
et al. (see [167, 169, 170] for review), this pathway is based on
dichotomy of control by goal-directed versus habitual instrumental
learning [171, 172] and their distinct neural circuit bases [173–180].
Across prolonged drug self-administration, there may be a transition
from intentional control of value-based choice to Stimulus–Response
control that is separate to any value of the drug to the users’ needs
or desires. Such seeking is a relatively automatic response to
antecedent environmental and behavioral stimuli [181].
Drug seeking as a habit may be autonomous but not necessarily

insensitive to adverse consequences. Stimulus–Response associa-
tions are not immutable and they may be especially fragile [182].
For example in the laboratory, detection of behavioral autonomy
depends on context [183] and number of behavioral choices [184],
among other variables [185]. Thus, it is additionally assumed that a
feature of drug seeking Stimulus–Response habits, and a
characteristic that makes them resistant to their adverse
consequences, is that they are divorced from the reinforcement
mechanisms that would otherwise update them [167]. Under
these conditions, drug seeking can be insensitive to any
consequences, adverse or otherwise [167, 169].
The relevance of this pathway to the experiences and behavior of

drug users has been questioned [6, 86, 87, 186]. This pathway may
be the most difficult to study because it requires exclusion of the
cognitive and motivational pathways [19, 29, 34, 43–45, 187]. None-
theless, this pathway captures a core feature of human and other
animal behavior [188]. Choices, including among cocaine [189] or
alcohol [190] dependent individuals, can sometimes be indepen-
dent of the current value of what is being chosen [171, 191, 192].
The behavioral pathway offers parsimonious explanation of
examples of drug seeking in humans (e.g., absentminded relapse)
[7, 193] that are reminiscent of the ‘slips of action’ observed in
human laboratory choice tasks [190, 194, 195].
The brain mechanisms of this behavioral pathway are based on

findings in humans and rodents identifying a change in control
from ventral to dorsal and then from dorsomedial to dorsolateral
striatum/putamen, as well as a reduction in “deliberative” medial
prefrontal control, as behavior becomes more stimulus-bound
[36–38, 167, 169, 194, 195]. They include, but are not limited to,
demonstrations from laboratory animals that prolonged self-
administration promotes dorsolateral striatal control of cocaine
[196], alcohol [197–200], and heroin [201] seeking. Importantly,
the control of choice by Stimulus–Response mechanisms in
alcohol-dependent individuals is associated with increased puta-
men choice-related activity [190]. The cortical morphological and
volumetric changes seen in drug dependence [127, 128] are
obvious candidates for alterations in top-down control. Indeed,
choice in alcohol-dependent individuals is associated with
reductions in ventromedial prefrontal cortex activity [190].
Punishment-resistant drug seeking can depend on these striatal

circuits. For example, Jonkman [202] showed that cocaine seeking
under punishment, but not in the absence of punishment, was
reduced by reversible inactivation of dorsolateral striatum.
Giuliano et al. [187] extended this to show that persistent alcohol
seeking despite punishment was predicted by the extent to which
alcohol seeking depended on dopamine receptors in the
dorsolateral striatum. Crucially, after rats had been identified as
sensitive or insensitive to punishment, dorsolateral striatal
dopamine receptor antagonism only reduced seeking in labora-
tory animals insensitive to punishment. Giuliano et al. could
exclude differences in propensity to drink alcohol, differences in
alcohol preference, and differences in alcohol self-administration
as causal to this insensitivity. Persistence of alcohol-seeking in the

face of punishment may be due to this failure to disengage
dopamine-dependent signalling in the dorsolateral striatum. The
mechanisms for this are poorly understood but these are
important targets for pharmacotherapies due to their potential
to facilitate value-based choice essential for cognitive appraisals of
drug use. It is worth noting that a common role for dorsolateral
striatal circuitry in punishment-resistant drug seeking and a role
for this circuitry in autonomous Stimulus–Response associations
does not show that such associations drive punishment resistance,
but it does add some evidence for this behavioral pathway.
Alterations in endocannabinoid [203] and serotonin signalling (5-

HT) may also be relevant. 5-HT has complex roles in behavioral
control [204] that may contribute to insensitivity. Pelloux et al. [31]
showed that rats insensitive to punishment of cocaine seeking
under a seeking-taking schedule had reduced 5-HT turnover in
prefrontal cortex and striatum. Insensitivity was alleviated by the
selective serotonin-reuptake inhibitor citalopram [31]. This was
linked to 5-HT actions at 5-HT2C receptors because 5-HT2C agonist
mCPP counteracted insensitivity while 5-HT2C antagonist increased
punished cocaine-seeking. Other 5-HT receptors have also been
implicated. Lüscher and colleagues showed that 5-HT1B receptors
on orbitofrontal cortical projections to dorsal striatum promote
presynaptic depression of this projection and maintain sensitivity of
cocaine taking to punishment in mice [205]. Projection-specific
knock-out of these 5-HT1B receptors reduced the sensitivity of
cocaine taking to punishment [205]. These findings suggest that
upregulating 5-HT may assist in pharmacotherapy for drug use
disorder, but evidence remains unclear [206].

CONCLUSIONS
The persistence of drug use despite negative consequences is
complex. We have argued that this is not a unitary construct but
rather that there are at least three pathways to this persistence—
cognitive, motivational, and behavioral. These pathways are
dissociable but they are neither mutually exclusive nor exhaustive.
They may operate dynamically within the same individual at
different times. They can also interact. For example, valuation
(motivational pathway) depends on correctly recognizing actions
and their consequences (cognitive pathway) but valuation also
governs salience and detection of these consequences [207, 208].
Likewise, transient fluctuations in attention to action can influence
relative contributions of the cognitive or behavioral pathways
[183]. Crucially, these pathways occur against complex back-
grounds of intoxication, individual histories of drug use, acute or
protracted withdrawal, and acute as well as chronic stressors that
can influence capacity to detect, appropriately learn about,
weight, and ultimately respond to negative consequences.
Different pathways for persistent drug use despite adverse

consequences align well with and may help reconcile findings that
there are only partially overlapping brain circuitries for this
persistence. We argue that understanding how insensitivity to
adverse consequences arises has important implications not only
for understanding the underlying brain mechanisms of this
persistence but also for understanding how different pharma-
cotherapies and treatment strategies may act, possibly in
complementary ways, to reduce this persistence and enhance
sensitivity to adverse consequences.
Finally, different pathways for persistent drug use despite its

adverse consequences align well with the fact that recovery from
drug addiction is highly personalized. Choices to use or abstain
from use of a drug are not immalleable. Individuals follow
different pathways to self- or treatment-guided recovery—where
the necessary appraisals of costs versus benefits of use are
predicated upon being able to recognize those costs, evaluate
their importance, and adjust behavior in response to them.
Progress is neither linear nor always predictable. We argue that
resolution of problematic behaviors will depend on which of these
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pathways is contributing at specific times to cause persistence of
behavior. A better understanding of why behaviors persist despite
adverse consequences, and a more thorough examination of
these underlying pathways to insensitivity may help us under-
stand these recoveries, improve understanding of the variation in
efficacy of existing treatment strategies, as well as promote
development of more effective individualized treatments.
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