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The human brain’s resting-state functional connectivity (rsFC) provides stable trait-like measures of differences in the perceptual,
cognitive, emotional, and social functioning of individuals. The rsFC of the prefrontal cortex is hypothesized to mediate a person’s
rational self-government, as is also measured by personality, so we tested whether its connectivity networks account for
vulnerability to psychosis and related personality configurations. Young adults were recruited as outpatients or controls from the
same communities around psychiatric clinics. Healthy controls (n= 30) and clinically stable outpatients with bipolar disorder
(n= 35) or schizophrenia (n= 27) were diagnosed by structured interviews, and then were assessed with standardized protocols of
the Human Connectome Project. Data-driven clustering identified five groups of patients with distinct patterns of rsFC regardless of
diagnosis. These groups were distinguished by rsFC networks that regulate specific biopsychosocial aspects of psychosis: sensory
hypersensitivity, negative emotional balance, impaired attentional control, avolition, and social mistrust. The rsFc group differences
were validated by independent measures of white matter microstructure, personality, and clinical features not used to identify the
subjects. We confirmed that each connectivity group was organized by differential collaborative interactions among six prefrontal
and eight other automatically-coactivated networks. The temperament and character traits of the members of these groups
strongly accounted for the differences in rsFC between groups, indicating that configurations of rsFC are internal representations of
personality organization. These representations involve weakly self-regulated emotional drives of fear, irrational desire, and
mistrust, which predispose to psychopathology. However, stable outpatients with different diagnoses (bipolar or schizophrenic
psychoses) were highly similar in rsFC and personality. This supports a diathesis-stress model in which different complex adaptive
systems regulate predisposition (which is similar in stable outpatients despite diagnosis) and stress-induced clinical dysfunction
(which differs by diagnosis).
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INTRODUCTION
An outstanding feature of the human brain at rest is its spontaneous
and organized functional activity, which accounts for most of the
brain’s energy consumption [1–4]. Brain energy consumption varies
little between rest and engagement in attention-demanding tasks,
suggesting that brain function is not primarily reflexive or task-
dependent [5–7]. Many questions about the brain’s intrinsic activity
remain a mystery [8], but several lines of accumulating evidence
suggest it is an internal representation of an individual’s personality
that is continuously active in the background of their life. First,
human personality is defined as the dynamic organization within
the individual of the biopsychosocial systems by which the person
both shapes and adapts uniquely to an ever-changing internal and
external environment [9, 10], just as the connectome is dynamic,
self-organized, adaptive, and idiographic [8]. Like the connectome
[11], personality has collaborative components for emotional
reactivity (i.e., temperament) and self-regulation (i.e., character)

that are crucial for all aspects of health, including physical, mental,
and social well-being [12–19].
Second, like personality [9, 10], the resting-state functional

connectivity (rsFC) of healthy people is a large, sparse, complex
network of interconnected modules with efficient small-world
properties [20, 21]. In other words, there are multiple hubs with
dense local connectivity, which may in turn be connected to other
such hubs by longer-distance connections, so that a small number
of connections between the hubs allows communication among
all brain regions. Such pervasive connectivity is essential for the
self-organized healthy functioning of living organisms, as found in
the collaborative communication among the roots of trees
[20, 22], in the neural networks of animals [23], and the social
networks of human communities [23, 24].
Third, reduced connectivity among hubs results in inefficient

and dysfunctional integration of the brain, as in patients with
schizophrenic or bipolar psychoses [25–29] and related conditions
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such as personality disorders with schizotypal [30–33], borderline
[34, 35], narcissistic [36], or neurotic features [37]. Most studies of
rsFC in individuals with psychoses and related conditions show
prominent loss of prefrontal cortical connectivity, including
connectivity within the prefrontal cortex and its connections with
parietal, temporal, limbic, and cerebellar hubs, compared to
healthy individuals [25, 38].
Fourth, the decreased rsFC in patients with psychoses leads to

decreases in modularity and efficiency of integration (i.e., loss
of small world properties). In cognitive and emotional
terms, reduced rsFC in psychosis is associated with impaired
insight and judgment because of distorted perceptions and
unrealistic representation and execution of new forms of
organized goal-directed behavior, which is widely accepted as
the basic function of the prefrontal cortex in collaboration with
other brain regions [39].
However, many aspects of the relations between rsFC and

human brain functions remain unclear, particularly the differences
between psychoses and rational creative states [40]. Psychotic and
psychotic-prone individuals may show increased efficiency and
connectivity between some hubs, so that connectivity is not
uniformly reduced in dysfunctional configurations of rsFC. In
particular, the rsFC of the Default Mode Network (DMN) is
abnormally increased in most studies of schizophrenia and
schizotypy [25, 30, 38], as well as in creatively divergent thinking
in healthy prefrontal network configurations [41, 42]. Furthermore,
the extent to which individual networks show both increased and
decreased connectivity in different subjects with psychoses and
related conditions is likely to have been underestimated because
most studies have relied on average connectivity in samples
[27–29, 43].

Relating human brain functions to rsFC
The Human Connectome is a promising intermediate phenotype
that functions between phenomics (including clinical psycho-
pathology, personality, and behavior) and more basic omics
(including genomics, transcriptomics, and proteomics). In studies
of individual differences, investigators often seek to relate
individual differences in functional connectivity to specific
differences in structural connectivity, personality, and clinical
psychopathology [44, 45]. However, simple linear correspondence
between individual networks and behaviors is unlikely because it
neglects the complex connectivity of the whole brain. The trait-
like features of complex adaptive systems are relatively resilient
configurations that can abruptly change in response to small shifts
in conditions at tipping points: that is, as shown in longitudinal
studies of human personality [10], they are “meta-stable”, not fixed
traits with discrete boundaries.
The brain is organized as several networks with distinct but

collaborative roles [46–49]. Their circuitry overlaps partially, which
facilitates functional interactions [50]. The complexity and hetero-
geneity of rsFC have made it difficult to characterize the functions
of individual networks precisely because multiple networks
operate collaboratively and the correlations among networks vary
between individuals [47] and develop across the lifespan in
relation to genetic and environmental influences [51, 52] and
individual experiences [53, 54]. Average values of connectivity in
heterogeneous groups with the same clinical diagnosis may say
little about what is happening in a particular individual.
Nevertheless, these challenges apply to all complex phenom-

ena, and methods appropriate for characterizing complex systems
are available. In particular, recent work with personality and
schizophrenia has shown that it is possible to identify subgroups
of individuals with distinctive genotypic, environmental, and
phenotypic characteristics [14]. The phenotypic characteristics
include clinical signs and symptoms [55], temperament and
character domains of personality [56–58], learning networks [12],
and neuroimaging characteristics [59]. Rather than focusing on

individual diagnoses or traits, we have found that the complex
traits are most appropriately measured as multi-dimensional
configurations that correspond to the higher-order organization
of the complex system [60].
For example, personality traits measured by the Temperament

and Character Inventory (TCI) are complex in their genetic
and environmental antecedents as well as in cognitive and
emotional features that influence health [9, 61]. Different TCI trait
configurations provide specific measures of schizotypal person-
ality disorder and susceptibility to psychosis [16, 62, 63], cyclothy-
mia, neuroticism and susceptibility to mood disorders [64, 65], and
learning by behavioral conditioning, intentional self-control, and
self-awareness [12, 13]. Such configural analysis allows decon-
struction of a complex system into its components as well as the
analysis of integrative interactions among components, as we did
for human personality [12, 13, 58].
In view of the availability of methods to understand complex

systems, the brain’s rsFC is a particularly promising target for
multiple reasons. First, the intrinsic activity of the resting human
brain accounts for most of its energy consumption, which varies
less than 5% between rest and attention-demanding tasks [5–7].
Brain rsFC networks are highly stable across multiple scans and
imaging sessions over months or years [8]. The FC networks at rest
across sessions are highly stable in the same individual, correlating
at r= 0.8 to 0.9 [8, 66]. The patterns are relatively stable across
tasks (r= 0.5 to 0.9), but even small changes in FC may produce a
wide variety of cognitive and behavioral states, as expected for
complex adaptive systems [8].
Second, the organization of rsFC corresponds generally to brain

structural connections, particularly the positive correlations
among regions [67], which provides a potential basis for validation
of groups of people with heterogeneous configurations of rsFC
with meta-stable (trait-like) properties [68]. Direct intracranial
brain stimulation during neurosurgery documents distinct tem-
poral and directional patterns of signal flow within and between
rsFC networks in the human brain [69–71]. The positive
correlations among regions remain stable even under general
anesthesia, suggesting the positive rsFC reflects structural
connectivity independent of being awake and subjectively aware,
whereas the negative correlations also observed in conscious
subjects are nearly all lost under general anesthesia [67]. However,
this does not mean that positive functional connectivity depends
on structural connectivity: in fact, frequent positive functional
connectivity often leads to later structural connectivity. For
example, inputs to dendrites that fire together tend to wire
together, forming synaptic clusters within individual branches of
dendritic networks that carry out dynamic non-linear computa-
tions [72, 73].
Third, rsFC is predictive of interindividual differences in a wide

range of phenotypes [74, 75], including personality configurations
associated with vulnerability to psychosis [30–37]. Like rsFC, self-
reported measures of temperament and character are moderately
to strongly stable over time regardless of a person’s health status
(~0.7 to 0.9) [62, 76–78].
Fourth, rsFC can flexibly reconfigure across a range of cognitive

and behavioral states and tasks in adaptive responses to changing
conditions and experiences, including psychosocial development
[53, 54], adverse events [79, 80], and therapy [8, 81, 82]. Their
reconfiguration can be trained, so they show promise as
biomarkers to plan precise individualized interventions [8, 83–85].

Potential Confounding Variables
Despite these promising features of rsFC as an intermediate
phenotype between clinical phenomics and omics, there have
been challenges in clinical applications when individual labora-
tories did small studies with different protocols in early efforts to
reduce motion artifacts and to enhance signal to noise ratios
[7, 86, 87]. Fortunately, standardized protocols have now been
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developed that can generate replicable results at multiple sites for
the Human Connectome Project [88], as we used in the current
study. Nevertheless, several factors in subject selection can led to
inconsistent results in both structural and functional connectivity
studies. Prior studies of white matter microstructure have usually
found abnormalities in long-range association tracts when
subjects with schizophrenia (SZ) or bipolar disorder (BP) are
compared to healthy controls by fractional anisotropy (FA), a
technique to measure asymmetric diffusion of water molecules
along neuronal white matter tracts [59, 89]. This index of neuronal
integrity is thought to reflect differences in the myelination and
organization of white matter tracts, which also naturally depend
on the developmental factors, such as age, gender, and health of
subjects. Consequently, it is not surprising that findings about FA
have varied in the strength of differences and the regions affected
across studies because of a variety of influences that are naturally
confounded with psychiatric diagnosis and related personality
profiles. Divergent findings across studies of white matter
microstructure are associated with a variety of factors, including
age, gender, physical health, brain injury, clinical state, duration of
illness, and the medications used in treatment [89].
Likewise resting-state functional connectivity based on correla-

tions in spontaneous fluctuations in blood-oxygen- level-
dependent (BOLD) signals in different brain regions are often
associated with variability of demographic [54, 90, 91], health
[90, 91], and medication history [92–94]. Fortunately, the effects of
demographic variables and physical health are minimal within
groups of young adults [90, 91], as selected in this study.
It is noteworthy that the subject variables that can confound

studies of structural and functional connectivity are also
associated with differences in the natural histories of different
clinical disorders. For example, men with schizophrenia more
often present with onset of psychosis earlier than do women
[95], and people with schizophrenia are more often treated with
neuroleptics than are those with bipolar disorder [89]. Therefore,
the variable findings about brain connectivity in association with
demographic, clinical, and treatment factors may be partly
explained by the existence of subgroups of patients with distinct
patterns of rsFC within heterogeneous diagnostic groups, such
as groups including both BP and SZ patients. That is, differences
in rsFC may occur largely within transdiagnostic groups.
Such transdiagnostic groups of patients are also suggested
by the occurrence of overlapping features of SZ and BP in the
same individual, as in schizoaffective disorders, and in the same
family [96].

Goals of analysis
In this report we will deconstruct the dysfunctional integration of
the brain’s rsFC to uncover groups of young adults with distinct
patterns of rsFC within and across traditional diagnostic groups
using standardized protocols from the Human Connectome
Project. We will test the validity of any differences among
transdiagnostic rsFC groups by independent measures of struc-
tural connectivity, personality, and clinical signs and symptoms
not used to identify the transdiagnostic rsFC groups. We will also
test for association of any of the identified rsFC groups with a
specific diagnosis or potentially confounding demographic,
health, or treatment effects.
Specifically, we will test how the personality and clinical

characteristics observed in subjects correspond to the functions
attributed to the canonical networks of the Human Connectome
Project that are expected to provide a model of self-governance.

Hypotheses to be tested
To formulate our hypotheses, we observed that, in healthy
individuals, the human prefrontal cortex plays a crucial role in the
development of insight and judgment and related neuroadaptive
processes for regulating and integrating a person’s habits, goals,

and values through its connections with other brain regions
[13, 83, 84, 97, 98]. In contrast, we observed that, in individuals
with psychoses or at high risk for psychosis due to personality
disorders, the brain’s rsFC shows prominent disruption of
prefrontal cortical connectivity [25, 38, 99].
Six distinct rsFC networks involving the human prefrontal cortex

are proposed to mediate self-regulatory cognitive and emotional
functioning in a collaborative manner [11, 100]. These include four
networks with putative self-regulatory (top-down) functions: self-
awareness and internally directed evaluation (Default Mode -
DMN), intentional self-control (Cingulo-Opercular-CON, Fronto-
Parietal-FPN), and persistent goal-directed attention (Dorsal
Attention-DAN). Two other prefrontal networks regulate the
plasticity of involuntary attention and orienting in response to
bottom-up emotionally aversive or unfamiliar stimuli (Salience-SN)
and novel or unexpected stimuli (Ventral Attention-VAN) across
sensory modalities [46–50]. Other brain networks are presumed to
be automatically co-activated with the prefrontal networks in
different collaborative patterns that depend on the configuration
of the prefrontal networks as an internal representation of self-
governance of the person [101, 102].
We hypothesized that different interaction patterns of

the prefrontal cognitive-emotional networks and related
automatically-coactivated networks would be distinguished
from one another in their structural connectivity, personality
configurations, and clinical characteristics. Specifically, we
hypothesized that these six prefrontal networks interact with
one another in ways that influence a person’s self-regulation and
risk of psychosis. According to prior work, when a person
functions in a way that promotes health, their self-governance is
rational, which includes health-promoting executive functions
(i.e., self-directedness, including purposeful goal-seeking, resour-
ceful problem-solving, responsible preparatory-planning, flexible
multi-tasking), legislative functions (i.e., cooperativeness, includ-
ing social tolerance, helpfulness, empathy, and fairness),
and judicial functions (i.e., self-transcendence, including creative
insight, coherent fluidity of thought, oceanic feelings, and
altruistic values) [9, 103].
When such rational self-governance is sustained (i.e., main-

tained persistently despite intermittent reinforcement), emotional
reactivity, attachments, and habits are self-conditioned to be
reliably in accord with a person’s goals and values [18, 104, 105].
Therefore, we hypothesized that when irrational emotional drives
overwhelm self-regulation, as in psychosis, self-government is
disrupted by low self-directedness (i.e., aimless, helpless, inflexible,
irresponsibly blaming others and external circumstances), low
cooperativeness (i.e., prejudiced, hostile, self-centered, and
opportunistic), and unrealistic insight and judgment (i.e., magical
ideation, incoherent flow of thought, feelings of separation, and
self-serving values).
More specifically, we hypothesized that the four top-down rsFC

prefrontal networks (DMN, CON, FPN, and DAN) are primarily
involved in cognitive processes of self-aware consciousness and
intentional self-control associated with individual differences in
the configuration of human character [12, 13, 56], as in personality
configurations with low scores in TCI Self-directedness, Coopera-
tiveness, and Self-Transcendence (sct, as in apathetic characters),
low scores in Self-directedness and Cooperativeness (scT, as in
schizotypal characters), and low scores in only Self-directedness
(sCT, as in cyclothymic characters). In contrast, we hypothesized
that the SN and VAN are involved in bottom-up involuntary
sensory and emotional reactivity and, in conjunction with the
automatic cortico-striato-cortical loop, with regulation of habits
that are associated with individual differences in human
temperament [13, 57].
We further hypothesized that TCI character profiles of apathetic,

schizotypal, and cyclothymic personality may be associated with
schizophrenic and/or bipolar psychoses, but that the schizotypal
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character will be more frequent in schizophrenic psychoses
whereas apathetic and cyclothymic characters will be more
frequent in bipolar psychoses. We expected that the self-
regulatory dysfunction associated with psychoses may result from
either overactivity or underactivity of integrated functional
configurations of the four top-down rsFC prefrontal networks
(DMN, CON, FPN, and DAN) [28]. In contrast, we hypothesized that
bottom-up prefrontal networks regulating emotional reactivity
(VAN, SN) were related to the involuntary emotional drives
measured by TCI temperament dimensions, as supported by prior
research [62, 104–110].
The personalities of healthy adults are characterized by nearly

equal proportions of people with organized characters (SCt) or
creative characters (SCT) combined with temperament configura-
tions that are reliably in accord with rational goals and values (i.e.,
characterized by high ratings on Persistence (P) and Reward
Dependence (R) and low ratings on harm avoidance (h) and
novelty seeking (n)) [12]. The strong self-regulatory functioning of
their self-directed and cooperative characters dominates and
shapes their habits to be in accord with their rational goals and
prosocial values [12, 13, 18, 111]. In contrast, the personalities of
unhealthy adults, particularly those with or at risk for psychosis,
have strong emotional drives opposite to reliable temperaments
(namely, H, N, r, p) that dominate the weak and unrealistic self-
regulatory functioning typical of people with apathetic (sct),
schizotypal (scT), or cyclothymic characters (sCT)
[12, 62, 63, 112, 113]. Consequently, if psychosis results from
dysfunctional variation in the same rsFC networks found in
healthy individuals (rather than secondary to unique and discrete
pathogenic traits [114, 115]), we hypothesized that in psychoses,
strong emotional reactivity (as measured by temperament and/or
by rsFC of bottom-up prefrontal networks) would dominate the
weak and dysfunctional self-regulation of psychotic individuals (as
measured by character and/or by rsFC of top-down prefrontal
networks).

SUBJECTS AND METHODS
Subjects
All study protocols and recruitment procedures were approved by
the Institutional Review Board of Washington University Medical
School (WUMS) in St. Louis, MO. All participants (both outpatients
and controls) were recruited from the communities around
psychiatric clinics affiliated with WUMS in two ways: first,
advertisements using posters and flyers soliciting young adults
aged 18 to 30 years in psychiatric clinics and the public spaces of
surrounding communities; second, direct contact through the
WUMS research recruitment service (“Volunteers for Health”),
which maintains a registry of people with a range of disorders and
healthy adults interested in research. All subjects gave written
informed consent prior to participation.
All subjects were screened for inclusion or exclusion criteria

and diagnosed based on a consensus between a research
psychiatrist and a trained research assistant who used the
Structured Clinical Interview for DSM-IV Axis I Disorders (SCID-I).
Selected subjects who satisfied pre-established inclusion and
exclusion criteria included groups of 30 healthy controls and 62
patients with bipolar disorder (BP; n= 35) or schizophrenia (SZ;
n= 27). Control subjects were required to have no lifetime
history of psychotic or mood disorders. Subjects with BP or SZ
were required to be clinically stable outpatients. In addition, to
minimize clinical heterogeneity within the BPD group, only
participants with a history of euphoric mania (versus mania
characterized by primarily irritable mood) were included in
the study.
Participants were excluded if they: (a) met DSM-IV criteria for

substance dependence or severe/moderate abuse during the prior
6 months; or (b) had a clinically unstable or severe general medical

disorder; or (c) had a history of head injury with documented loss
of consciousness or neurological sequelae.

Clinical Assessment
Psychopathology was assessed by a trained Masters-level research
assistant using the Scale for the Assessment of Negative
Symptoms (SANS) and the Scale for the Assessment of Positive
Symptoms (SAPS) [116]. Specific subscale scores were summed to
derive measures of positive symptoms (i.e., hallucination and
delusion subscales), disorganization (i.e., positive formal thought
disorder, bizarre behavior, and attention subscales), and negative
symptoms (i.e., flat affect, alogia, anhedonia, avolition, and asocial
subscales). Estimates of chronic psychotic and affective symptoms
were derived using the Washington Early Recognition Center
Affectivity and Psychosis Screen (WERCAP) [117], a self-assessment
tool. Personality traits were obtained using the online version of
the Temperament and Character Inventory-Revised (TCI-R) with
140 items rated on a five-point Likert scale [118]. Correspondence
of TCI profiles to DSM-5 personality disorders is noted throughout
this article [118], and in relation to other psychometric tests in
Supplementary Information describing personality correlates of
the rsFC groups, and elsewhere in detail for psychiatric disorders
and other psychometric tests [14, 119].

Image Acquisition
Scans were run using a 32-channel head coil on a customized
Siemens 3T “Connectom” MRI scanner, which was previously used
for collecting the Human Connectome Project – Young Adult
(HCP-YA) data and housed at Washington University in St. Louis
[88]. The scanning protocol used identical parameters for
individual scans as that of the HCP-YA, which is extensively
described in the literature [88, 120, 121]. However, the overall
structure of the HCP-YA protocol was consolidated to 3 total
imaging sessions (rather than 4) by: (i) only acquiring a single T1w
and T2w scan (rather than two of each) and (ii) only acquiring 3 of
the 7 fMRI task scans collected by HCP-YA. The 3 sessions were
typically collected over a period of two days.
Briefly, T1-weighted MPRAGE images were acquired at 0.7 ×0.7

×0.7 mm resolution. Four 15-minute resting-state BOLD runs were
acquired at 2 × 2 x 2mm resolution, with images collected every
0.7 s; the two runs (one each of left-right/right-left phase-
encoding) with minimal in-scan motion were selected for each
participant. Resting-state scans were acquired using a T2*-
weighted multiband of 8 echo-planar imaging sequence with 72
axial slices per volume, field of view of 208 mm, echo time of
33.1 ms, repetition time of 720ms, and flip angle of 52°. None of
the task fMRI data are analyzed in the present report.
Diffusion image acquisition has been previously described [89].

Briefly, a full dMRI session included 6 runs (each approximately
9 minutes and 50 seconds), representing 3 different gradient
tables, with each table acquired once with right-to-left and left-to-
right phase encoding polarities, respectively.

Functional and structural connectivity image processing
Diffusion tensor imaging (DTI) scans and analysis based on Tract
Based Spatial Statistics (TBSS) was performed as described
elsewhere [122].
Functional MRI data were run through minimal preprocessing

pipelines, as previously reported [121] (see Supplementary
Information).
Functional network nodes were determined using the 264-ROI

atlas defined by Power et al. [123], and 36 subcortical ROIs from the
Brainnetome atlas [124]. Each node was assigned membership to
its most likely 12 Power atlas-based functional networks (auditory,
cingulo-opercular, context, default mode, dorsal attention, fronto-
parietal, perception, somatomotor-face, somatomotor-body, sal-
ience, ventral attention, and visual) and 4 Brainnetome atlas-
based networks (amygdala, entorhinal-hippocampus, striatum, and
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thalamus). For each node, 6mm spherical ROIs were used. For the
convenience of a broad readership, a descriptive summary of these
16 networks and their known functions is provided in Supplemen-
tary Information (see Notes on Connectivity Circuitry). Components
of each canonical network’s functional and structural connectivity is
provided in Supplementary Table S1.
BOLD time courses for each node were computed by averaging

timeseries for all voxels within each node. These average timeseries
were then correlated, resulting in a 369×369 whole brain correlation
matrix.

Computational analysis of connectivity networks
Diffusion tensor imaging (DTI) analysis based on Non-negative
Matrix Factorization (NMF) of neuroimages was performed as
described elsewhere [122] and available at the NMF-based DTI-
TBSS Analysis (NDTA web server (http://picu.ugr.es/ndta/). This
method was extended in this project to provide customized
functional connectivity analysis (see Supplemental Information).
We sought to identify naturally occurring and homogeneous
groups of subjects sharing distinct patterns of organization of
brain functional connectivity in their resting-state fMRI data by
using a data-driven approach based on machine learning and
optimization research techniques [125–129], as described in our
previously published articles using the same approach [12, 56–59].
We used multi-level NMF to identify these groups in an
unsupervised fashion. In other words, we identified naturally
occurring groups of subjects without restrictive assumptions
about the number of the groups or the patterns of their
distinguishing features. The groups were identified using only
rsFC data regardless of their diagnosis, personality, other clinical
features, or structural connectivity. Specifically, the level of rsFC for
each network in each of the 62 patients was rated as higher or
lower than the mean rsFC for that network in 30 healthy controls,
and then NMF was carried out to identify groups within the 62

patients who had significantly different patterns of correlations
among their networks and those of the healthy controls. The steps
involved in using NMF and related procedures to identify
and describe the patterns of high and low rsFC that specify the
groups are summarized in Fig. 1 and detailed in Supplementary
Information.
Regarding the statistical power of the sample, it can be readily

observed that the 62 patients provided about 10 subjects per
independent variable to test hypotheses about the 6 prefrontal
rsFC networks or 7 personality variables, which satisfies a common
rule of thumb for our planned analyses. More specifically, the
sample size of 62 patients and 30 controls was originally estimated
to give the power to detect true differences between patients and
controls with an effect size of 0.2 or greater with a probability of
80% or more and a risk of false positives of 5% after adjustment
for multiple comparisons (statistical toolbox of Matlab r2022b). In
practice, we had substantially greater power than originally
estimated because the number of comparisons was reduced by
our use of a small number of groups identified by NMF instead of
92 individuals.
The Fuzzy NMF machine learning method identifies matrices

composed of subgroups of subjects with distinct features, which
in this case are correlations between rsFC networks [55, 130–132].
These matrices have different sizes because all features and/or
subjects are not forced to belong to each matrix. Moreover, these
matrices are defined at different levels of granularity to provide a
multifaceted description of all possible groups, ranging from
specific groups characterized by many shared features in a few
subjects to broad groups with many subjects sharing a few
features [133, 134]. It is expected that the constituent subjects
and/or features can participate in more than one matrix because
rsFC networks operate collaboratively and the matrices encode
these collaborative relationships. That is, correlated groups
necessarily share subjects and/or features. Therefore, no restrictive

Fig. 1 Specific description of method for group identification. Groups were uncovered in six steps, as detailed in Supplemental Information:
(1) Preprocessing datasets by flattening matrices (Fig. S6); (2) Identifying optimal functional connectivity sets by multilevel NMF factorization:
(2.1) Mathematical description of the NMF (Figs. S5-S7); (2.2) Decomposing the data into a multilevel family of sub-matrices (Fig. S7); (3)
Dissecting factors in biclusters, including (3.1) Dissecting NMF k factors into sub-matrices or biclusters which are interpreted as fMRI sets (Fig.
S7), and (3.2) Learning the W and H matrices of FNMF; (4) Selecting biclusters: Multi-view and optimally assembling the families of sub-
matrices (Fig. S10); (5) Statistical analysis of biclusters (Figs. S2, S9); (6) Graph and matrix representations of biclusters (Fig. S8), including (6.1)
Displaying biclusters extracted after factorization (Figs. S2, S9), (6.2) Displaying and decoding TBSS biclusters and transforming them back to
native space (Fig. 2, S1, S6), and (6.3) Displaying and decoding fMRI biclusters and transforming them back to native space (Fig. 3, S3, S6).
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assumptions were made about the extent of separation of groups
or their number.
The identified rsFC groups are called biclusters when repre-

sented by matrices because each group is a relationship specified
by both its subjects and their distinguishing features. In the
terminology of graph theory, biclusters are bipartite graphs with
cliques (Supplementary Information). Groups were selected to
maximize jointly their specificity, sensitivity, and the multifaceted
coverage of subjects and features by using optimization
techniques from the operations research field [125–129] (see
also Supplementary Information; algorithm code available upon
request).
All subjects, regardless of diagnosis or control status, are

included in the analysis, so it was desirable for us to have roughly
equal numbers of subjects who were healthy, patients with
schizophrenia, or patients with bipolar disorder. However, the
identification of groups is exploratory and requires validation with
independent data. Therefore, we next evaluated the individuals
within each identified rsFC group by their shared features in other
domains that had not been used to identify them, which included
structural microstructure using FA, personality profiles, and other
clinical characteristics. Since none of the data used for the second
step of the analysis were part of the clustering algorithm, group
differences cannot be attributed to over-fitting or other sources of
bias; rather, they provide an independent test to validate the
identified functional connectivity groups.

GENERAL STATISTICAL ANALYSIS
Statistical significance was assessed by comparing the connec-
tions characterizing each group (bicluster) as measured by the
correlation coefficient with the same connectivity values of
subjects not involved in that group, including comparisons with
controls and/or subjects in other groups, using one-way ANOVA
and pairwise t-tests (R version 2.15.1) and applying Bonferroni
correction (Supplementary Tables S1–S3, Figures S1, S2)). Sig-
nificance in each domain of knowledge, including structural
connectivity, personality, and clinical data was calculated in the
same fashion (Supplementary Tables S4–S7, Figures S3–S5).
Significance testing of demographic and other potential con-
founding variables also used ANOVA and pairwise t-tests, as well
as pairwise Chi-squared tests, and the effect size of intergroup
differences as the correlation coefficient using R version 2.1. These
procedures properly account for differences in group size and any
overlap in group membership.
The explanatory power of personality features to account for

membership in rsFC groups was calculated as a set of stepwise
logistic regressions to predict membership in each rsFC group
versus all other patients. That is, the seven personality variables of
the 62 patients, who had independently been divided into
subgroups based on rsFC alone, were used to estimate how well
they distinguished members of each group from all the others.
Then the regression between actual group membership and the
regression values provided an estimate of the explained variance
for each group after adjusting for multiple tests, including the
squared regression (R2), the F-statistic and its probability p, and
the root mean square error (RMSE), using the statistical toolbox of
Matlab r2022b.

RESULTS
Identification of functional connectivity groups
Our search strategy uncovered five groups of patients with
distinct functional connectivity patterns. The rsFC pattern in each
group differed from the other groups and from healthy controls,
along with associated clinical features related to our hypotheses
(Table 1, Supplementary Tables S1–S6). In Table 1, the different
patterns in each group are shown by describing rsFC in each

network as positive when significantly greater than in healthy
controls and as negative when significantly less than in healthy
controls. As predicted, the five groups identified within the 62
patients were distinguished primarily by distinct patterns of the
four top-down (self-regulatory) prefrontal networks (DMN, CON,
FPN, DAN) and two bottom-up prefrontal networks that react to
aversive or novel external stimuli (i.e., SN and VAN). Eight other
networks were co-activated with the prefrontal networks (Table 1).
The distinct pattern of functional connections among all 16

networks and regions are depicted for each group of patients as a
bicluster matrix in Fig. 2. Both the number of connections and
their strength relative to controls among each pair of regions are
shown within the matrix of Fig. 2.
Information about the number of subjects, connections, and

diagnoses of subjects in each connectivity group is summarized in
Table 2. Individuals in each connectivity group were all diagnosed
with SZ or BP (risk = 1) and accounted for 97% of the total
number of subjects. The proportions of cases of SZ and of BP were
nearly the same in each connectivity group. We had expected only
a few healthy controls to be included in rsFC groups with the
patients because connectivity strength was evaluated in relation
to the mean of the controls (i.e., higher, or lower), but in fact no
subject in the connectivity groups was a healthy control. The
significance of the differences among the group means was tested
by ANOVA for patients versus controls (Table 2).
The distinctive functional connectivity patterns of each of the

groups we uncovered can be depicted as bicluster matrices (as in
Fig. 2) or as graphs of brain connectivity (as in Fig. 3). The
connectivity can be quantified in terms of the number and
strength of their connections (i.e., by the number of pairs of
regions with significantly correlated BOLD signals as well as by the
strength of those correlations, as depicted in Figs. 2 and 3).
Members of each functional connectivity group differ in what
regions are involved and in the intensity of connections that
specify the network.
The individuals in each of the five functional connectivity

networks also had structural, personality, and clinical character-
istics that differed from each other and from healthy controls
(Table 1, Supplementary Table S1). Each group represents an
abnormal high-order functional connectivity network, which was
later tested and confirmed to be distinguished by a distinct
syndrome of self-regulatory functions and emotional reactivity
measured by TCI character and temperament traits respectively
along with SANS/SAPS ratings (Table 1, Supplementary Table S1).
We also compared the controls and each of the rsFC groups

with one another to evaluate whether the observed rsFC
differences might be confounded by differences in demographics,
duration of illness, or medications used in treatment (Supplemen-
tary Tables S7, S8). We found an absence of strong effects from
potential confounding variables in our young adult sample, as
summarized in Supplementary Table S7 with detailed statistics in
Supplementary Table S8. In each group, the average age was
about 25 years, with non-significant (p > 0.05) and weak differ-
ences between groups (effect size r= .12). The gender distribution
was approximately 60% male and 40% female, with 93% of the
intergroup differences found to be either non-significant or weak
(r= 0.04 to 0.31). Ethnicity was mostly white (57 to 64%) in
controls and in patients in groups 1 and 4, whereas ethnicity was
white in 44% of groups 2 and 5, and 30% in group 3, with some
significant but weak to moderate intergroup differences (r= 0.11
to 0.39). Approximately 90% (range 88 to 100%) were right-handed
in each group, with one weak but significant intergroup difference
(r= 0.18). The duration of illness was similar in groups 1 - 3 (average
83 months, range 74 – 88 months) and slightly longer in the other
two patient groups (103 to 104 months), but none of the differences
among the five patient groups were significant (p > 0.05, effect size
r= 0.12). The differences in patients use of neuroleptics, mood
stabilizers, and other medications were not large, but 21% of
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intergroup treatment differences were significant (0.01 < p < 0.05)
with weak effect sizes (r= 0.17 to 0.23).
In contrast, we found that the rsFC groups were strongly

distinguished from one another by the subject’s self-reported
personality features, as shown in Table 1. The power of the TCI to
predict the membership of individuals in a particular rsFC group
(i.e., squared multiple regression R2) was strong and highly
significant for group 1 (R2= 52%, F= 79.42, p < 1E−5, RMSE 0.11),
group 3 (R2= 67%, F= 142.9, p < 1E−5, RMSE= 0.07), group 4
(R2= 35%, f= 51.2, p < 1E−5, RMSE 0.17), and group 5 (R2= 46%,
F= 7 l.9, p < 1E−5, RMSE 0.14). For group 2, the explanatory power
was weaker due to the fuzziness of the group (R2= 18.5%,
F= 19.6, p < 3.5E−2, RMSE 0.28), but even here the TCI profiles of
cases sharing features of other groups matched those of cases
only in group 2 (HN, scT), as shown in Table 1. All the rsFC
groups were emotionally unstable (i.e., fearful (H), impulsive (N),
detached (r), and/or erratic (p)), and all had weak rational self-
regulation (i.e., schizotypal or apathetic features (sc)). The
significant cognitive-emotional features varied both among the
rsFC groups and from healthy controls (Table 1, Supplementary
Table S1). Contrary to expectations, cyclothymic personality
features (sCT) did not distinguish any of the groups, and neither

character nor temperament traits were differentially associated
with the diagnosis (BP or SZ) of psychotic patients (Supplementary
Tables S1, S3).
Based on the personality and clinical features that distinguished

each group from healthy controls, we assigned descriptive names
to the 5 rsFC groups to capture both motivational (subjective) and
behavioral (objective) aspects of their phenotype. For example,
the patients in rsFC group 1 had TCI profiles typical of avoidant
personality disorder with high Harm Avoidance (H) and low self-
directedness (s), indicating a disposition to defensive social
withdrawal with prominent negative affect and little or no positive
affect (Table 1). On the SAPS/SANS, the same subjects were
described as anhedonic and asocial, so we describe individuals in
group 1 as Avoidant-Anhedonic. Such close relations between the
personality and other clinical variables were present for each
group (Table 1; Supplementary Information: Clinical Relations
distinguish rsFC groups).

The relation of rsFC patterns to transdiagnostic clinical
phenotypes
Given the strong explanatory power of personality and related
phenotypes to distinguish the rsFC groups from each other

Table 1. Distinct organization of the resting-state Functional Connectivity of five groups of subjects and their associated temperament, character,
and clinical features.

Functional Type
(clinical)

rsFC Network Group 1
Avoidant-
Anhedonic

Group 2 Sensitive-
Disorganized

Group 3
Asocial-
Blocked

Group 4
Fragile-
Avolitional

Group 5
Explosive
-Inattentive

PFC top-down Default Mode Positive Positive Negative Negative Negative

Cingulo-
Opercular

Positive Positive Positive Negative Negative

Fronto-Parietal Positive Positive Positive Positive Positive

Dorsal Attention Positive Positive Positive Positive Negative

self-regulatory
functioning/
character

Defensive
Control
(s)

Overattentive
Schizotype
(scT)

Hostility
Mistrust
(cT)

Avolition
Apathy
(s)

Inattentive
Schizotype
(scT)

PFC Bottom-up Ventral
Attention

Positive Positive Negative Negative Negative

Salience -- Positive -- -- --

emotional
reactivity/
temperament

Harm
Avoidance
(H)

Ambivalence
(HN)

Novelty
Seeking (N)

Fragility
(pHN)

Explosive
Borderline
(rHN)

Automated
modules

Visual Positive Positive Negative Negative Negative

Auditory -- Positive Positive Negative --

Thalamus -- -- Positive Negative --

Striatum -- Positive Positive Negative --

Context -- -- Positive -- Negative

Perception -- Positive Positive Positive Negative

SM hand -- Positive Positive Negative Negative

SM mouth -- Positive Negative Negative Positive

Amygdala -- -- -- -- --

Entorhinal -- -- -- -- --

(Negative sx) Anhedonia
Asociality

Alogia
Blunt Affect

Blocking Avolition
Apathy

Inattention

(Positive sx) -- Bizarre behavior
Thought disorder

Somatic
Delusions

Hallucinate
Delusions

--

rsFC in patients compared to healthy control is shown as positive when significantly greater than in healthy controls, negative when significantly less than in
healthy controls. Differences that are bold are highly significant. Other observations are not significantly different (--). Significantly associated traits in each
group are TCI character traits of low self-directedness (s) and cooperativeness (c), high/low Self-Transcendence (T/t), and TCI temperament traits of low
persistence (p) and reward dependence (r), and high Harm Avoidance (H) and Novelty Seeking (N). Positive/negative symptoms are significant SAPS/SANS
ratings.
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(Table 1), we next tested the relationships of temperament and
character to rsFC within each group. The Avoidant-Anhedonic
individuals (group 1: n= 11, Tables 1, 2, Figs. 2A, 3A, Supplemen-
tary Table S1, Figures S1A, S2A) shared highly correlated increases
in rsFC in both top-down prefrontal (DMN and FPN) and bottom-
up (VAN) prefrontal networks (Table 1). This rsFC pattern was
associated with defensive control, as indicated by low self-
directedness (s, blaming others and feeling like a persecuted
victim, p < 4.04E−04) coupled with significantly high Harm
Avoidance (H, anxious avoidance and shyness, p < 3.88E−04),
respectively (Table 1, Supplementary Table S1, Figures S2A-D). In
addition, these three networks (DMN, FPN, VAN) also had
significantly greater connectivity in these subjects than controls
in two additional top-down prefrontal networks (CON and DAN)
and with the visual network, but their correlations with the other
components of this multi-modular functional system were less
strong (Supplementary Figure 2B).
Likewise, the Sensitive-Disorganized individuals (group 2:

n= 27, Tables 1, 2, Figs. 2B, 3B, Supplementary Table S1, Figures
S1B, S2B) had increased connectivity compared to healthy
controls in all six of the prefrontal networks (Table 1). This
prefrontal rsFC pattern was associated with an ambivalent (HN)
temperament and overattentive schizotype (scT, p < 1.27E-03). In
addition, they had greater connectivity than controls in an
extended set of functional networks including sensory networks
(Visual, Auditory), Striatum, Perception, and the Somatomotor
networks for control of the hand and mouth (Tables 1, 2,
Supplementary Table S1, Figures S2E–H). The unique increase in

rsFC of the SN and these positively coactivated networks suggests
hypersensitivity to novel or unfamiliar external stimuli to which
they have conflicting urges to both seek (N) and avoid (H).
The Asocial-blocked individuals (group 3: n= 10, Tables 1, 2,

Figs. 2C, 3C, and Supplementary Table S1, Figures S1C, S2C) had a
highly distinctive pattern of rsFC. In the top-down prefrontal
networks, there was decreased DMN connectivity coupled with
increased connectivity in the other networks (CON, FPN, DAN),
associated with significant hostile mistrust (cT, p < 6.18E-05) and
blocking. In the bottom-up prefrontal networks, SN was average,
and VAN had less connectivity than controls. Other coactivated
networks were more strongly connected than in controls
(Auditory, Thalamus, Striatum, Context, and SM hand) whereas
the visual network and the somatomotor network for the mouth
was less strongly connected than in controls (Table 1, Supple-
mentary Table S1). Networks involved in recognition of faces and
social emotions (Context and Perception Networks) had greater
connectivity than controls (Table 1, Supplementary Table S1,
Figure S2 I–L).
The Fragile-Avolitional individuals (group 4: n= 35, Table 1,

Figs. 2D, 3D, Supplementary Table S1, Figures S1D, S2D) had
decreased connectivity in two of the four top-down prefrontal
networks (CON, DMN) and increased connectivity in the other two
(FPN, DAN). Functional connectivity of the CON with the
somatomotor (hand and mouth), striatum, auditory, visual net-
works were all weaker than observed in healthy control subjects
(Supplementary Table 1, Figure S2M–P), which supported the
hypothesis that this configuration was uniquely low in personality

Fig. 2 Matrix representation of the five fMRI connectivity groups that account for 97% of the connectivity in SZ and BP patients. Number
of connections and their relative importance are shown and color coded [blue indicates positive connections (correlation greater than in
controls) whereas red shows negative connections (correlation less than in controls)]. The number in the cells represents edges (i.e., links) are
the functional connections between nodes (i.e., component brain regions or fMRI networks) that specify the connectivity networks (see also
Figures S2 and S9). A–E represent each of the five sets that describe different patterns of connections among the nodes: A the Avoidant-
Anhedonic (group 1), B the Sensitive-Disorganized subjects (group 2), C the Asocial-Blocked subjects (group 3), D the Fragile-Avolitional
subjects (group 4), and E the Explosive-Inattentive individuals (group 5).
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measures of effortful (intentional) control and persistence (i.e.,
spH, p < 2.72E−05) (Table 1, Supplementary Table S1, Notes on
rsFC circuitry).
Lastly, the Explosive-Inattentive individuals in connectivity

group 5 (n= 16, Tables 1, 2, Figs. 2E, 3E, Supplementary Table S1,
Figures S1F, S2F) had another distinct configuration. Its group
members had reduced rsFC in the three prefrontal networks
for sustained patterns of self-regulation (CON, DMN, DAN),
consistent with an inattentive schizotype (scT, p < 2.60E−03)
whereas the FPN, whose putative functions are task-switching
and divergent thinking, was positive. Other networks were less
strongly connected than in controls, including the VAN, visual,
context, and perception networks (Table 1, Supplementary
Table S1, Figures S2 Q–U).

Influence of emotional reactivity on rsFC of the self-regulatory
networks
Among the four top-down prefrontal networks, the FPN was
consistently higher in rsFC than controls (Table 1). In contrast, the
DMN, CON, and DAN varied across groups in whether they were
higher or lower than controls in rsFC. Likewise, the two bottom-up
networks (VAN, SN), varied in the strength of rsFC across groups.
This variability allowed us to test our prediction that the bottom-
up prefrontal networks were most strongly associated with
temperament (Table 1, Supplementary Table S1) in such a way
that fear, impulsive desire, or mistrust dominated rational self-
government in patients with psychosis.
We found Avoidant-Anhedonic subjects (group 1) had high

activity of the VAN associated with high Harm Avoidance (anxious
avoidance, p < 3.88E−04), which was associated with defensive
executive functioning (i.e., low self-directedness, such as blaming
others as a persecuted victim, p < 4.04E−03). Likewise, Sensitive-
disorganized subjects (group 2) had high activity of both the SN
and VAN associated with both high Harm Avoidance (p < 7.63E
−03) and high Novelty Seeking (p < 5.90E-03) coupled with
overattentive schizotypy (scT, 1.27E-03 < p < 1.13E−02).
On the other hand, there was reduced rsFC in the VAN and

average Salience in the other three groups. Asocial-Blocked
patients (group 3) were Novelty Seekers (N, p < 3.88E-03) who
were mistrustful (cT, 4.29E-02 < p < 6.18E-03). Group 3’s rsFC was
reduced in both the VAN and DMN but increased in CON, FPN, and
DAN. The Fragile-Avolitional patients in group 4 were unique in
being low in persistence (p < 4.97E-03) combined with ambivalent
impulses (HN, 2.72E-05 < p < 4.02E-02) and low self-directedness
(p < 1.54E−03). Their temperament-character profile (spH, 2.73E-
05 < p < 4.97E-03) leads to emotional fragility coupled with weak
intentional control (i.e., apathy and avolition), which was
associated with reduced connectivity in both the DMN and
CON (Table 1). Finally, inattentive schizotypes (group 5) had

explosive borderline temperaments (NHr, p < 8.55E-03)) coupled
with inattentive schizotypal self-regulatory functioning (scT, 2.60E
−03 < p < 5.67E−03). Their borderline cognitive-emotional profile
was associated with reduced activity in the DMN, CON, and DAN
but increased activity in the VAN, as expected from their intense
and unstable emotional reactivity (i.e., fearful, impulsive, irritable).

The relation of rsFC within groups to diagnoses
There were only a few weak but significant differences in rsFC
between SZ and BP subjects within the groups (Supplementary
Information and Table S2). For example, there were weakly
significant differences (0.01 < p < 0.05) by diagnosis in network
connectivity correlations in group 1 (4 of 279), group 2 (12 of
1077), group 3 (3 of 366), group 4 (0 of 627) and group 5 (1 of 209).
Further details are presented in Supplementary Information
(Relations of features within groups to diagnosis, Tables S1-6).

Structural connectivity distinguishes each functional
connectivity group
Decreased fractional anisotropy (FA) maps of white matter
microstructure distinguished the five groups of subjects that we
identified based on their rsFC alone (Fig. 4, Supplementary
Table S1). The FA pattern for each group was distinct, but all of
them had significantly asymmetric involvement, more severe in
the left hemisphere. White matter tracts associated with the
different rsFC groups primarily involved prefrontal fibers and their
connections to motor, limbic, and cerebellar regions.
For most components of each rsFC group, we observed

corresponding white matter structural abnormalities, as shown
in Fig. 4 and detailed descriptions in Supplementary Information
and Table S1. For example, members of each group had uniquely
low FA in specific white matter tracts underlying its rsFC, including
group 1 (fornix), group 2 (superior corona radiata, inferior and
middle cerebellar peduncles), group 3 (superior cerebellar
peduncle), group 4 (thalamic radiation to the posterior limb of
the internal capsule), and group 5 (cingulum, superior longitudinal
fasciculus) consistent with their rsFC (Supplementary Information
on structural connectivity of each rsFC Group, Table S1).

DISCUSSION
Four major findings
Our most important findings are fourfold. First, we confirmed a
well-established observation that is essential to keep in mind:
human brain functioning involves the collaboration of multiple
distributed and complex adaptive networks, not discrete or localized
centers. In healthy individuals, the collaboration of these systems is
harmoniously orchestrated, whereas in patients with psychoses
and related personality disorders, they are discordant— habits,

Table 2. Functional biclusters (coverage of 97%). Five sets selected based on subject’s coverage, risk, and difference from “others” (uniqueness of
subjects and/or connections).

Network (Name) ANOVA p Connections # Subjects # SZ # BP # Controls # Risk SZ % BP %

Group 1
(Avoidant-Anhedonic)

1.2
E−07

279 11 5 6 0 1.00 45 55

Group 2
(Sensitive-Disorganized)

9.9
E−12

1077 27 10 17 0 1.00 37 63

Group 3
(Asocial-Blocked)

6.1
E−06

366 10 4 6 0 1.00 40 60

Group 4
(Fragile-Avolitional)

6.5
E−15

627 35 17 18 0 1.00 49 51

Group 5
(Explosive-Inattentive)

9.3
E−04

209 16 8 8 0 1.00 50 50

Individuals in each fMRI groups were all diagnosed with SZ or BP (risk = 1) and accounted for 97% of the connections observed. None were controls.
Significance was tested by ANOVA for patients versus controls.
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goals, and values are discordant because negative emotions and
irrational thoughts overwhelm weak and dysfunctional self-
regulation. Extensive research has shown that the neural
assemblies that comprise these distributed functional connectivity
networks are synchronized to work collaboratively by a combina-
tion of neurobiological and psychosocial mechanisms [135–139].
Second, stable outpatients with psychotic disorders (BP or SZ)

differ strongly from healthy controls in the organization of both their
personality and their brain functional connectivity. Among stable
outpatients with psychosis (BP or SZ), we identified five groups of
patients with distinctive patterns of rsFC measured by protocols
standardized for the Human Connectome Project. The identified
groups were then validated by independent measures of
structural connectivity, personality, and other clinical features
not used to identify the rsFC groups. These groups were
distinguished by configurations of rsFC networks related to
specific biopsychosocial aspects of psychosis: sensory hypersensi-
tivity, negative emotional balance, impaired attentional control,
avolition, and social mistrust. Vulnerability to psychosis was
associated with these dysfunctional configurations of rsFC net-
works, particularly impaired connectivity of the prefrontal cortex
with parietal, temporal, limbic, and cerebellar hubs.
Third, we found that variable configurations of rsFC are internal

representations of a person’s temperament and character organiza-
tion. The four top-down prefrontal networks (DMN, CON, FPN,
DAN) mediate mental self-government as measured by TCI
character traits, whereas the two bottom-up prefrontal networks
(VAN, SN) mediate sensory and emotional reactivity as measured
by TCI temperament traits. Both rsFC and personality configura-
tions represent the same underlying complex systems of learning

and memory that are meta-stable and trait-like, but not fixed or
discrete [8, 12, 66–68]. We found that temperament and character
explained most of the variability in rsFC configurations that was
possible (i.e., squared regressions of 35% to 67%) when
considering the test-retest correlations indicating the reliability
of the measures of personality (~0.6 to 0.8) [15, 76] and rsFC (-0.8
to 0.9) [66].
Fourth, stable outpatients with schizophrenia were highly similar

in their rsFC and personality to those with bipolar disorder despite
the patients with different diagnoses having distinct signs and
symptoms when acutely psychotic. We had identified vulnerability
to psychosis by identifying the configurations of rsFC among
stable outpatients with diagnoses of either schizophrenia or
bipolar disorder compared to healthy controls (see third finding).
However, we found nearly equal numbers of patients with each
diagnosis in every rsFC group. Also, there were only a few weak
but significant differences by diagnosis in the network connectiv-
ity correlations in every rsFC group.
These finding combine to support a diathesis-stress model that

postulates largely different mechanisms for diathesis (i.e., predis-
position) to psychosis and for stress reactivity that provokes the
diagnostic signs and symptoms of different forms of acute
psychosis. In the next section we discuss how all four of our major
findings contributed to uncovering a more refined diathesis-stress
model of psychosis than has been possible previously.

A diathesis-stress model of functional dysregulation in
psychosis
Health can be characterized by integration of biopsychosocial
functions so that a person’s habits, goals, and values are in accord

Fig. 3 Graph representation of the five fMRI connectivity groups using BrainNet Viewer. Thicker edges correspond to stronger and higher
number of correlations (only the most notorious edges are shown). A–E represent each of the five sets that describe different patterns of
connections among the nodes: A The Avoidant-Anhedonic (group 1), B the Sensitive-Disorganized subjects (group 2), C the Asocial-Blocked
subjects (group 3), D the Fragile-Avolitional subjects (group 4), and E the Explosive-Inattentive individuals (group 5).
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with one another in promoting their well-being [85, 140–142]. In
major findings two and three of this study, we showed that
temperament-character profiles and/or rsFC can be used to
distinguish between healthy people and those predisposed to
psychosis. The widespread synchronization of the oscillatory
activity of rsFC networks allows widely distributed communication
throughout the brain, promoting efficient collaboration in diverse
biopsychosocial brain functions, as noted in our first major finding.
This synchronization is facilitated by coordination of multiple
neurobiological and psychosocial mechanisms [135–139]. The
observed neural mechanisms of synchronization of neural
assemblies include synaptic transmission of inhibitory and
excitatory impulses that lead to coupling of neural assemblies
locally and distributed at a distance, the synchronization of groups
of neurons with similar preferential firing rates, and gap junctions
for inhibitory synaptic transmission that initiate firing of many
neurons at once upon cessation of inhibition. In addition,
synchronized neural networks and related personality configura-
tions are facilitated by mutual constraints on activity by focusing
activity on shared goals, shared interpersonal experience in dyads
and larger social and ecological settings [135, 143]. These

psychosocial influences serve to synchronize neural networks
while promoting mutual trust and respect under favorable
conditions, such as rearing with parental warmth and tolerance,
which is positively selected in evolution by promoting longevity
and reproductive fitnesss [12, 13]. In combination, neurobiological
and psychosocial mechanisms can reinforce one another to
promote biopsychosocial integration at intercellular, individual,
social, and ecological levels of synchronization.
Genomic studies have identified both genetic and environ-

mental variables that influence the development of personality,
including temperament, character, and their joint integration
[12, 13, 56–58]. Different molecular pathways influence complex
systems of learning for behavioral conditioning, intentionality, and
self-awareness, which correspond to distinct configurations of
temperament and character [58]. Our second major finding
indicates that stable outpatients with either schizophrenic or
bipolar psychoses have impaired rsFC that is associated with
strong irrational emotional drives that bias and distort their
perceptions, expectations, intentions, and values so much that
self-government become unrealistic and maladaptive. Likewise,
our third finding indicates that individuals with extreme

Fig. 4 TBSS low FA images corresponding to each rsFC group. Low FA is red when p < 0.05 adjusted for multiple comparisons of voxels. The
images are arranged for the whole group (top row), BP subjects (middle row), and SZ subjects (bottom row) of each group. A–E represent each
of the five sets that describe different patterns of connections among the nodes: A the Avoidant-Anhedonic (group 1), B the Sensitive-
Disorganized subjects (group 2), C the Asocial-Blocked subjects (group 3), D the Fragile-Avolitional subjects (group 4), and (E) the Explosive-
Inattentive individuals (group 5).
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temperaments and weak character development are vulnerable to
psychosis. For example, selfish desire and hostile mistrust (N and
cT, as in groups 2, 3 and 5) impairs the legislative functions of
cooperation and leads to schizotypal outlooks of separation with
magical thinking (scT). Fearful avoidance (H and s, as in groups 1
and 4) impairs the executive functions of self-direction and
intentional control. The path to psychosis involves the false
perception of separation from other people and things: apathy
and hopelessness (as in avoidant and apathetic personalities) or
mistrust and grandiosity (as in schizotypal personalities).
However, as shown by our third major finding in stable

outpatients, people with a vulnerability to psychosis do not always
manifest their predisposition continuously or ever, as is clearly
demonstrated in neurocognitive studies of monozygotic twins
discordant for psychosis [144]. Likewise, not all people with
schizotypal characters (scT) and ambivalent (HN) or explosive
(rHN) temperaments develop psychosis [145]. The integration of
human brain functions for predisposition to well-being occurs in the
neocortex and its cortico-thalamo-cortical loops [136], particularly
the prefrontal cortex and its reciprocal functional and structural
connections with other regionally distributed hubs [39].
Our fourth major finding supports the hypothesis that the level

of stress reactivity that precipitates or exacerbates acute psychosis
involves dysfunctional regulation of internal and external stres-
sors. The neural diathesis-stress model postulates that the
hypothalamic-pituitary-adrenal (HPA) axis regulates stress-
reactivity related to psychosis and that cumulative stressors
impair functional connectivity, and eventually lead to dopaminer-
gic sensitization that impairs higher cognitive and temperament-
character functioning through cortico-striatal activity [146–149].
The brain regulatory system that regulates stress reactivity is a

component of a more general system of automatic and instinctive
predictive regulation to maintain homeostasis and allostasis in
animals. Allostasis is the predictive regulation of adaptive
responses that maintain health by anticipating changing or
stressful conditions [150–153]. This stress-responsive system is
integrated by regulatory functions of the hypothalmus [98], with
its light-responsive suprachiasmatic nucleus to synchronize
systems in every tissue through the HPA axis, thereby anticipating
and coordinating behaviors to secure future needs, while
rewarding better-than-predicted results with dopaminergic stimu-
lation [137, 152, 153]. The hypothalamus controls basic life
functions of all internal organs through the autonomic nervous
system, as well as cells groups in the brainstem that control
autonomic reflexes, including breathing, which are instinctive
[154]. Instinct refers to adaptive behaviors that are genetically
determined, innate, reflexive, unlearned, and stereotypic in
response to anticipated needs and external stressors [155]. In
addition, instincts are automatic reflexes that do not depend on
conscious thought (i.e., habits, intentions, reasoning, or self-
awareness). Instinctive behaviors related to sex, hunger, thirst,
wakefulness, defenses against attack (fight, flight, freeze) and
other activities related to maintenance of health, survival, and
reproduction are observed in all animals, including humans [156].
The hypothalamus is the highest level of integration of

regulatory brain functions in reptiles [98]. In mammals, it is part
of the multi-level limbic system in which both instinctive and
learned emotional behaviors can be integrated with a person’s
goals and values through reciprocal connections with the
prefrontal cortex of healthy people [98]. However, human
instinctive behaviors become dysregulated during acute psycho-
sis, leading to extreme displays of sexuality, consumption, activity,
wakefulness, and basic emotions (fear, anger, disgust, elation,
sadness) in BP, defense against attack, perseverative and
stereotypic behaviors in SZ, or mixtures of these in some
psychoses and other disorders [157, 158]. Displays of such
instinctive behaviors tend to increase in frequency along with
development of positive psychotic symptoms [145] when

recurring stressful experiences create a vicious cycle of increas-
ingly dysfunctional regulation and more stress [147].
More generally, instinctive responses to physiological chal-

lenges and stress throughout the body are genetically regulated
by non-coding RNAs, particularly lncRNAs and microRNA, in all
cellular life forms with or without complex nervous systems
[159–162]. The regulatory ncRNAs have many essential regulatory
functions including transcriptional and post-transcriptional reg-
ulation of gene expression and co-expression, splicing, translation
and post-translational modification, assembly of large multi-
protein complexes, and epigenetic modification of DNA. Regula-
tory RNAs operate within cells and are also released in
extracellular vesicles as chemical messengers for cell-cell commu-
nication, just as hormones of the HPA axis are also secreted in
vertebrates [163]. The cellular and extracellular functions of
regulatory RNAs permit organisms to operate as dynamically
self-organized multi-component ensembles that adapt automati-
cally to changing conditions and stressors without reliance on
conscious thought.
In humans this reflexive-instinctive level of adaptation can

collaborate with the higher level of conscious adaptation because
ncRNAs are also involved in regulation of temperament and
character [12, 13, 56–58]. However, in people predisposed to
psychosis by personality disorder, or those exposed to repeated
trauma, neglect, and stress, particularly in childhood, or following
extensive use of intoxicants, this communication and collabora-
tion is impaired, thereby leading to increased vulnerability and
dysregulated stress reactivity [147]. Common adverse stressors
that precipitate or exacerbate psychosis include traumatic and
adverse life events associated with urban environments, migra-
tion, military activity, disasters, or loss of family and friends, which
may be proxy measures of fear, violence, and social isolation and
inequity leading to perceptions of being separate or an outsider
without control, support, or trust [147, 164]. Therefore, among
stable outpatients with psychosis, as observed in this study, the
association between specific diagnoses based on signs and
symptoms of acute psychosis (BP or SZ) is expected to be only
weakly correlated with their predisposition to psychosis, as
measured by brain functional connectivity or self-reported
personality configurations.
In addition to our current findings, the proposed biopsychoso-

cial diathesis-stress model explains several other important
findings from prior independent research. The hypothesis that
there are distinct complex genetic systems that regulate predis-
position and stress reactivity also provides an explanation for the
variable natural history of psychoses, such as progression with
repeated adverse events [147] or improvement under favorable
conditions [85]. In addition, there is moderate specificity in the
types of childhood adversities reported by patients with schizo-
phrenia spectrum disorders and mood disorders: the stressors in
the schizophrenia spectrum are predominantly the presence of
unstable and uncaring relationships with much abuse and neglect,
whereas the stressors for bipolar disorder and major depressive
disorders are predominantly absence or loss of stable caring
relationships [165].
Further tests of the proposed diathesis-stress model in

transcriptomic studies are underway. We have already carried
out studies of personality in relation to the human genome, but
not with its transcriptome. The human genome is composed
entirely of DNA with nucleotide sequences for a little more than
63,000 genes in total. Just under 20,000 of these sequences code
for proteins and most of the other 43,000 are transcribed to
ncRNAs [166], which regulate adaptation to changing intracellular
and extracellular conditions. The most prominent biomarkers of
acute disease states are these transcribed regulatory ncRNAs [162].
Accordingly, we have begun transcriptomic studies that may allow
us to characterize the organization of these genetic transcripts to
clarify the regulatory control of stressful and destabilizing events.
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Strengths and limitations
A possible limitation of our work is that our sample size was not
large enough to allow dividing it into an initial calibration sample
and a validation sample. Nevertheless, our sample size was highly
informative to identify the large differences among patients in the
different functional connectivity groups. Exploratory analyses do
require validation, which we did by testing the differences between
the functional groups using information independent of that used
to select subjects or to identify the functional connectivity groups.
A strength of this approach to validation in moderate sized

samples is that it illustrates the value of thorough phenotyping,
which allowed us to have a deep understanding of the
neuroadaptive processes that account for their clinical character-
istics. We suggest that the thorough assessment of moderate-
sized samples is particularly important because it allows detection
of strong effects with broad coverage, which in turn facilitates
future research and translation into useful clinical practices.

Implications of a biopsychosocial approach to human brain
functions
Our findings indicate that human functioning cannot be reduced
to physical processes, to psychological processes, or social
processes – all three aspects of human functioning collaborate
interdependently, as illustrated here in brain functional connec-
tivity. A biopsychosocial diathesis-stress model provides a conceptual
framework that can guide an understanding that respects the utility
of traditional clinical diagnoses along with the causal and
developmental insights that can be gained from both neurobiolo-
gical and psychosocial measures.
There has been a growing crisis of confidence about the validity

and utility of traditional diagnostic categories in psychiatry
represented in DSM and ICD, including many calls for a paradigm
shift due to pervasive comorbidity and failure to identify specific
objective laboratory tests to confirm specific diagnoses [167].
Likewise alternative proposals for bottom-up approaches like RDoC
that seek to begin with basic neurobiological findings to explain
clinical phenomena are insufficient when applied to the complex
adaptive systems that underlie common health problems [167, 168].
We suggest that the controversy about the validity and utility of
traditional clinical diagnoses may be due to a misunderstanding
that is much like earlier controversies about development and
regulation of the effects of nature versus nurture in biology,
diathesis versus stress in psychology, and person versus situation in
personal and social fields of science. Common disorders in
medicine, regardless of specialty, involve a hierarchy of complex
adaptive systems with fuzzy boundaries, so dysregulation and
dysfunction are not expected to fall neatly into separate diagnostic
categories or separate centers in the brain or other organs.
Nevertheless, the strong relationship between brain functional

connectivity and personality in humans can help to bridge the
explanatory gap about the meaning of neuroimaging data and
self-reports of the biopsychosocial aspects of human personality.
As recommended in recent reviews of alternative perspectives on
psychiatric validation [169], this finding advances the program of
validation in psychiatry in which objective neurobiological
findings can be translated into meaningful and clinically relevant
descriptions of concurrent human behavior and subjective
experience, and vice versa. Fortunately, we are positioned to
begin to address such challenges by integrating prior findings
about the genetics, development, and evolution of human
personality with our current findings on the hierarchical organiza-
tion of brain functional connectivity.
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