Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The organization of frontostriatal brain wiring in non-affective early psychosis compared with healthy subjects using a novel diffusion imaging fiber cluster analysis

Abstract

Background

Alterations in brain connectivity may underlie neuropsychiatric conditions such as schizophrenia. We here assessed the degree of convergence of frontostriatal fiber projections in 56 young adult healthy controls (HCs) and 108 matched Early Psychosis-Non-Affective patients (EP-NAs) using our novel fiber cluster analysis of whole brain diffusion magnetic resonance imaging tractography.

Methods

Using whole brain tractography and our fiber clustering methodology on harmonized diffusion magnetic resonance imaging data from the Human Connectome Project for Early Psychosis we identified 17 white matter fiber clusters that connect frontal cortex (FCtx) and caudate (Cd) per hemisphere in each group. To quantify the degree of convergence and, hence, topographical relationship of these fiber clusters, we measured the inter-cluster mean distances between the endpoints of the fiber clusters at the level of the FCtx and of the Cd, respectively.

Results

We found (1) in both groups, bilaterally, a non-linear relationship, yielding convex curves, between FCtx and Cd distances for FCtx-Cd connecting fiber clusters, driven by a cluster projecting from inferior frontal gyrus; however, in the right hemisphere, the convex curve was more flattened in EP-NAs; (2) that cluster pairs in the right (p = 0.03), but not left (p = 0.13), hemisphere were significantly more convergent in HCs vs EP-NAs; (3) in both groups, bilaterally, similar clusters projected significantly convergently to the Cd; and, (4) a significant group by fiber cluster pair interaction for 2 right hemisphere fiber clusters (numbers 5, 11; p = .00023; p = .00023) originating in selective PFC subregions.

Conclusions

In both groups, we found the FCtx-Cd wiring pattern deviated from a strictly topographic relationship and that similar clusters projected significantly more convergently to the Cd. Interestingly, we also found a significantly more convergent pattern of connectivity in HCs in the right hemisphere and that 2 clusters from PFC subregions in the right hemisphere significantly differed in their pattern of connectivity between groups.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A model of our method for obtaining cortical and caudate mean distances between the endpoints of streamlines of two frontostriatal fiber clusters.
Fig. 2: Pairwise Distances for Fiber Cluster 5 (Right Hemisphere).
Fig. 3: Graphical representation of the relationship between cortical and caudate distances.
Fig. 4: A mixed model regression analysis of convergence quotients.
Fig. 5: A 3D rendering of fiber clusters 5 and 11.

Similar content being viewed by others

Code availability

Statistical analyses were performed using R (www.r-project.org), including the “lme4” and “lmerTest” libraries for mixed model regression. The R code scripts used are available on request. Whole brain white matter tractography was computed using the unscented Kalman filter (UKF) tractography (https://github.com/pnlbwh/ukftractography). Tractography fiber clustering was performed using the whitematteranalysis (WMA) package (https://github.com/SlicerDMRI/whitematteranalysis) and the O’Donnell Research Group (ORG) atlas (http://dmri.slicer.org/atlases/), provided via the SlicerDMRI software (http://dmri.slicer.org). Code for fiber point analysis is available upon request.

References

  1. Barch DM, Dowd EC. Goal representations and motivational drive in schizophrenia: the role of prefrontal-striatal interactions. Schizophr Bull. 2010;36:919–34.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Basser PJ, Pajevic S, Pierpaoli C, Duda J, Aldroubi A. In vivo fiber tractography using DT-MRI data. Magn Reson Med. 2000;44:625–32.

    Article  CAS  PubMed  Google Scholar 

  3. Basser PJ, Pierpaoli C. Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B. 1996;111:209–19.

    Article  CAS  PubMed  Google Scholar 

  4. Mori S, Crain BJ, Chacko VP, van Zijl PC. Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol. 1999;45:265–9.

    Article  CAS  PubMed  Google Scholar 

  5. Westin CF, Maier, SE, Khidhir, B, Everett, P, Jolesz, FA, Kikinis R. Image processing for diffusion tensor magnetic resonance imaging. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Cambridge, UK: Springer; 1999. p.441–52.

  6. Levitt JJ, Zhang F, Vangel M, Nestor PG, Rathi Y, Kubicki M, et al. The organization of frontostriatal brain wiring in healthy subjects using a novel diffusion imaging fiber cluster analysis. Cereb Cortex. 2021;31:5308–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kandel E, Schwartz J, Jessell T. Principles of neural science. New York: McGraw-Hill, Health Professions Division; 2000.

  8. Murray RM, Lewis SW. Is schizophrenia a neurodevelopmental disorder? Br Med J (Clin Res Ed). 1987;295:681–2.

    Article  CAS  PubMed  Google Scholar 

  9. Ripke S, Sanders AR, Kendler KS, Levinson DF, Sklar P, Holmans PA, et al. Genome-wide association study identifies five new schizophrenia loci. Nat Genet. 2011;43:969.

    Article  CAS  Google Scholar 

  10. Sekar A, Bialas AR, de Rivera H, Davis A, Hammond TR, Kamitaki N, et al. Schizophrenia risk from complex variation of complement component 4. Nature. 2016;530:177–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Weinberger DR. Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry. 1987;44:660–9.

    Article  CAS  PubMed  Google Scholar 

  12. Cronenwett WJ, Csernansky JG. Diving deep into white matter to improve our understanding of the pathophysiology of schizophrenia. Biol Psychiatry. 2013;74:396–7.

    Article  PubMed  Google Scholar 

  13. Friston KJ, Frith CD, Liddle PF, Frackowiak RS. Functional connectivity: the principal-component analysis of large (PET) data sets. J Cereb Blood Flow Metab. 1993;13:5–14.

    Article  CAS  PubMed  Google Scholar 

  14. Calhoun VD, Eichele T, Pearlson G. Functional brain networks in schizophrenia: a review. Front Hum Neurosci. 2009;3:17.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Skudlarski P, Jagannathan K, Anderson K, Stevens MC, Calhoun VD, Skudlarska BA, et al. Brain connectivity is not only lower but different in schizophrenia: a combined anatomical and functional approach. Biol Psychiatry. 2010;68:61–69.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gold JM, Waltz JA, Prentice KJ, Morris SE, Heerey EA. Reward processing in schizophrenia: a deficit in the representation of value. Schizophr Bull. 2008;34:835–47.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Levitt JJ, Nestor PG, Levin L, Pelavin P, Lin P, Kubicki M, et al. Reduced structural connectivity in frontostriatal white matter tracts in the associative loop in schizophrenia. Am J Psychiatry. 2017;174:1102–11.

    Article  PubMed  Google Scholar 

  18. Alexander GE, Crutcher MD. Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci. 1990;13:266–71.

    Article  CAS  PubMed  Google Scholar 

  19. Haber SN. The primate basal ganglia: parallel and integrative networks. J Chem Neuroanat. 2003;26:317–30.

    Article  PubMed  Google Scholar 

  20. Redgrave P, Rodriguez M, Smith Y, Rodriguez-Oroz MC, Lehericy S, Bergman H, et al. Goal-directed and habitual control in the basal ganglia: implications for Parkinson’s disease. Nat Rev. 2010;11:760–72.

    Article  CAS  Google Scholar 

  21. Averbeck BB, Lehman J, Jacobson M, Haber SN. Estimates of projection overlap and zones of convergence within frontal-striatal circuits. J Neurosci. 2014;34:9497–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Draganski B, Kherif F, Kloppel S, Cook PA, Alexander DC, Parker GJ, et al. Evidence for segregated and integrative connectivity patterns in the human Basal Ganglia. J Neurosci. 2008;28:7143–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lehericy S, Ducros M, Van de Moortele PF, Francois C, Thivard L, Poupon C, et al. Diffusion tensor fiber tracking shows distinct corticostriatal circuits in humans. Ann Neurol. 2004;55:522–9.

    Article  PubMed  Google Scholar 

  24. Haber SN. Convergence of limbic, cognitive, and motor cortico-striatal circuits with dopamine pathways in primate brain. In: Iversen LL, Iversen SD, Dunnett SB, Bjorklund A, editors. Dopamine handbook. Oxford: Oxford University Press, Inc.; 2010. p.38–48.

  25. Casey BJ, Epstein JN, Buhle J, Liston C, Davidson MC, Tonev ST, et al. Frontostriatal connectivity and its role in cognitive control in parent-child dyads with ADHD. Am J Psychiatry. 2007;164:1729–36.

    Article  CAS  PubMed  Google Scholar 

  26. Liston C, Malter Cohen M, Teslovich T, Levenson D, Casey BJ. Atypical prefrontal connectivity in attention-deficit/hyperactivity disorder: pathway to disease or pathological end point? Biol Psychiatry. 2011;69:1168–77.

    Article  PubMed  Google Scholar 

  27. Haas BW, Barnea-Goraly N, Lightbody AA, Patnaik SS, Hoeft F, Hazlett H, et al. Early white-matter abnormalities of the ventral frontostriatal pathway in fragile X syndrome. Dev Med Child Neurol. 2009;51:593–9.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Heller C, Steinmann S, Levitt JJ, Makris N, Antshel KM, Fremont W, et al. Abnormalities in white matter tracts in the fronto-striatal-thalamic circuit are associated with verbal performance in 22q11.2DS. Schizophr Res. 2020;224:141–50.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Quan M, Lee SH, Kubicki M, Kikinis Z, Rathi Y, Seidman LJ, et al. White matter tract abnormalities between rostral middle frontal gyrus, inferior frontal gyrus and striatum in first-episode schizophrenia. Schizophr Res. 2013;145:1–10.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Levitt JJ, Nestor PG, Kubicki M, Lyall AE, Zhang F, Riklin-Raviv T, et al. Miswiring of frontostriatal projections in schizophrenia. Schizophr Bull. 2020;46:990–8.

  31. Zhang F, Wu Y, Norton I, Rigolo L, Rathi Y, Makris N, et al. An anatomically curated fiber clustering white matter atlas for consistent white matter tract parcellation across the lifespan. NeuroImage. 2018;179:429–47.

    Article  PubMed  Google Scholar 

  32. Howes OD, Montgomery AJ, Asselin MC, Murray RM, Valli I, Tabraham P, et al. Elevated striatal dopamine function linked to prodromal signs of schizophrenia. Arch Gen Psychiatry. 2009;66:13–20.

    Article  PubMed  Google Scholar 

  33. Kegeles LS, Abi-Dargham A, Frankle WG, Gil R, Cooper TB, Slifstein M, et al. Increased synaptic dopamine function in associative regions of the striatum in schizophrenia. Arch Gen Psychiatry. 2010;67:231–9.

    Article  CAS  PubMed  Google Scholar 

  34. Levitt JJ, Rosow LK, Nestor PG, Pelavin PE, Swisher TM, McCarley RW, et al. A volumetric MRI study of limbic, associative and sensorimotor striatal subregions in schizophrenia. Schizophr Res. 2013;145:11–19.

    Article  PubMed  Google Scholar 

  35. Cetin Karayumak S, Bouix S, Ning L, James A, Crow T, Shenton M, et al. Retrospective harmonization of multi-site diffusion MRI data acquired with different acquisition parameters. NeuroImage. 2019;184:180–200.

    Article  PubMed  Google Scholar 

  36. Cetin-Karayumak S, Di Biase MA, Chunga N, Reid B, Somes N, Lyall AE, et al. White matter abnormalities across the lifespan of schizophrenia: a harmonized multi-site diffusion MRI study. Mol Psychiatry. 2020;25:3208–19.

    Article  PubMed  Google Scholar 

  37. Mirzaalian H, Ning L, Savadjiev P, Pasternak O, Bouix S, Michailovich O, et al. Inter-site and inter-scanner diffusion MRI data harmonization. NeuroImage. 2016;135:311–23.

    Article  CAS  PubMed  Google Scholar 

  38. Malcolm JG, Shenton ME, Rathi Y. Filtered multitensor tractography. IEEE Trans Med Imaging. 2010;29:1664–75.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Reddy CP, Rathi Y. Joint multi-fiber NODDI parameter estimation and tractography using the unscented information filter. Front Neurosci. 2016;10:166.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Farquharson S, Tournier JD, Calamante F, Fabinyi G, Schneider-Kolsky M, Jackson GD, et al. White matter fiber tractography: why we need to move beyond DTI. J Neurosurg. 2013;118:1367–77.

    Article  PubMed  Google Scholar 

  41. Vos SB, Viergever MA, Leemans A. Multi-fiber tractography visualizations for diffusion MRI data. PLoS ONE. 2013;8:e81453.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Fillard P, Descoteaux M, Goh A, Gouttard S, Jeurissen B, Malcolm J, et al. Quantitative evaluation of 10 tractography algorithms on a realistic diffusion MR phantom. NeuroImage. 2011;56:220–34.

    Article  PubMed  Google Scholar 

  43. Zhang F, Wu Y, Norton I, Rathi Y, Golby AJ, O’Donnell LJ. Test-retest reproducibility of white matter parcellation using diffusion MRI tractography fiber clustering. Hum Brain Mapp. 2019;40:3041–57.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Baumgartner C, Michailovich O, Levitt J, Pasternak O, Bouix S, Westin CF, et al. A unified tractography framework for comparing diffusion models on clinical scans. In: Computational Diffusion MRI Workshop of MICCAI Nice. Springer; 2012. p.27–32.

  45. Chen Z, Tie Y, Olubiyi O, Zhang F, Mehrtash A, Rigolo L, et al. Corticospinal tract modeling for neurosurgical planning by tracking through regions of peritumoral edema and crossing fibers using two-tensor unscented Kalman filter tractography. Int J Comput Assist Radio Surg. 2016;11:1475–86.

    Article  Google Scholar 

  46. Liao R, Ning L, Chen Z, Rigolo L, Gong S, Pasternak O, et al. Performance of unscented Kalman filter tractography in edema: Analysis of the two-tensor model. Neuroimage Clin. 2017;15:819–31.

    Article  PubMed  PubMed Central  Google Scholar 

  47. O’Donnell LJ, Suter Y, Rigolo L, Kahali P, Zhang F, Norton I, et al. Automated white matter fiber tract identification in patients with brain tumors. Neuroimage Clin. 2017;13:138–53.

    Article  PubMed  Google Scholar 

  48. Zhang F, Norton I, Cai W, Song Y, Wells WM, O’Donnell LJ. Comparison between two white matter segmentation strategies: an investigation into white matter segmentation consistency. In: IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017); Melbourne, Australia: IEEE; 2017. p.796–9.

  49. Descoteaux M, Angelino E, Fitzgibbons S, Deriche R. Regularized, fast, and robust analytical Q-ball imaging. Magn Reson Med. 2007;58:497–510.

    Article  PubMed  Google Scholar 

  50. Ning L, Westin CF, Rathi Y. Estimating diffusion propagator and its moments using directional radial basis functions. IEEE Trans Med Imaging. 2015;34:2058–78.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ning L, Laun F, Gur Y, DiBella EV, Deslauriers-Gauthier S, Megherbi T, et al. Sparse Reconstruction Challenge for diffusion MRI: validation on a physical phantom to determine which acquisition scheme and analysis method to use? Med Image Anal. 2015;26:316–31.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Tournier JD, Yeh CH, Calamante F, Cho KH, Connelly A, Lin CP. Resolving crossing fibres using constrained spherical deconvolution: validation using diffusion-weighted imaging phantom data. NeuroImage. 2008;42:617–25.

    Article  PubMed  Google Scholar 

  53. Essayed WI, Zhang F, Unadkat P, Cosgrove GR, Golby AJ, O’Donnell LJ. White matter tractography for neurosurgical planning: A topography-based review of the current state of the art. Neuroimage Clin. 2017;15:659–72.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Huang H, Zhang J, van Zijl PC, Mori S. Analysis of noise effects on DTI-based tractography using the brute-force and multi-ROI approach. Magn Reson Med. 2004;52:559–65.

    Article  PubMed  Google Scholar 

  55. Radmanesh A, Zamani AA, Whalen S, Tie Y, Suarez RO, Golby AJ. Comparison of seeding methods for visualization of the corticospinal tracts using single tensor tractography. Clin Neurol Neurosurg. 2015;129:44–49.

    Article  PubMed  Google Scholar 

  56. Wakana S, Caprihan A, Panzenboeck MM, Fallon JH, Perry M, Gollub RL, et al. Reproducibility of quantitative tractography methods applied to cerebral white matter. NeuroImage. 2007;36:630–44.

    Article  PubMed  Google Scholar 

  57. Guevara P, Duclap D, Poupon C, Marrakchi-Kacem L, Fillard P, Le Bihan D, et al. Automatic fiber bundle segmentation in massive tractography datasets using a multi-subject bundle atlas. NeuroImage. 2012;61:1083–99.

    Article  CAS  PubMed  Google Scholar 

  58. Jin Y, Shi Y, Zhan L, Gutman BA, de Zubicaray GI, McMahon KL, et al. Automatic clustering of white matter fibers in brain diffusion MRI with an application to genetics. NeuroImage. 2014;100:75–90.

    Article  PubMed  Google Scholar 

  59. Lefranc S, Roca P, Perrot M, Poupon C, Le Bihan D, Mangin JF, et al. Groupwise connectivity-based parcellation of the whole human cortical surface using watershed-driven dimension reduction. Med Image Anal. 2016;30:11–29.

    Article  PubMed  Google Scholar 

  60. Smith RE, Tournier JD, Calamante F, Connelly A. SIFT: spherical-deconvolution informed filtering of tractograms. NeuroImage. 2013;67:298–312.

    Article  PubMed  Google Scholar 

  61. Wu Y, Zhang F, Makris N, Ning Y, Norton I, She S, et al. Investigation into local white matter abnormality in emotional processing and sensorimotor areas using an automatically annotated fiber clustering in major depressive disorder. NeuroImage. 2018;181:16–29.

    Article  PubMed  Google Scholar 

  62. Zhang F, Savadjiev P, Cai W, Song Y, Rathi Y, Tunc B, et al. Whole brain white matter connectivity analysis using machine learning: an application to autism. NeuroImage. 2018;172:826–37.

    Article  PubMed  Google Scholar 

  63. Desikan RS, Segonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage. 2006;31:968–80.

    Article  PubMed  Google Scholar 

  64. van den Heuvel MP, Scholtens LH, de Reus MA, Kahn RS. Associated microscale spine density and macroscale connectivity disruptions in schizophrenia. Biol Psychiatry. 2016;80:293–301.

    Article  PubMed  Google Scholar 

  65. Weinberger DR. Future of days past: neurodevelopment and schizophrenia. Schizophr Bull. 2017;43:1164–8.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Goldman-Rakic PS. The corticostriatal fiber system in the rhesus monkey: organization and development. Prog Brain Res. 1983;58:405–18.

    Article  CAS  PubMed  Google Scholar 

  67. Chen SY, Huang PH, Cheng HJ. Disrupted-in-schizophrenia 1-mediated axon guidance involves TRIO-RAC-PAK small GTPase pathway signaling. Proc Natl Acad Sci USA. 2011;108:5861–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mukai J, Tamura M, Fenelon K, Rosen AM, Spellman TJ, Kang R, et al. Molecular substrates of altered axonal growth and brain connectivity in a mouse model of schizophrenia. Neuron. 2015;86:680–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Solek CM, Farooqi NAI, Brake N, Kesner P, Schohl A, Antel JP, et al. Early inflammation dysregulates neuronal circuit formation in vivo via upregulation of IL-1β. J Neurosci. 2021;41:6353–66.

  70. Goldman-Rakic PS. Prenatal formation of cortical input and development of cytoarchitectonic compartments in the neostriatum of the rhesus monkey. J Neurosci. 1981;1:721–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Haber SN. Neuroanatomy of reward: a view from the ventral striatum. In: Gottfried JA, editor. Neurobiology of sensation and reward. Boca Raton (FL): CRC Press; 2011.

  72. Selemon LD, Goldman-Rakic PS. Longitudinal topography and interdigitation of corticostriatal projections in the rhesus monkey. J Neurosci. 1985;5:776–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yeterian EH, Van Hoesen GW. Cortico-striate projections in the rhesus monkey: the organization of certain cortico-caudate connections. Brain Res. 1978;139:43–63.

    Article  CAS  PubMed  Google Scholar 

  74. Barch DM, Pagliaccio D, Luking K. Mechanisms underlying motivational deficits in psychopathology: similarities and differences in depression and schizophrenia. Curr Top Behav Neurosci. 2016;27:411–49.

    Article  PubMed  Google Scholar 

  75. Haber SN, Behrens TE. The neural network underlying incentive-based learning: implications for interpreting circuit disruptions in psychiatric disorders. Neuron. 2014;83:1019–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Uddin LQ. Cognitive and behavioural flexibility: neural mechanisms and clinical considerations. Nat Rev. 2021;22:167–79.

    Article  CAS  Google Scholar 

  77. Borst JP, Anderson JR. Using model-based functional MRI to locate working memory updates and declarative memory retrievals in the fronto-parietal network. Proc Natl Acad Sci USA. 2013;110:1628–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Aron AR, Robbins TW, Poldrack RA. Inhibition and the right inferior frontal cortex. Trends Cogn Sci. 2004;8:170–7.

    Article  PubMed  Google Scholar 

  79. Aron AR, Robbins TW, Poldrack RA. Inhibition and the right inferior frontal cortex: one decade on. Trends Cogn Sci. 2014;18:177–85.

    Article  PubMed  Google Scholar 

  80. Szczepanski SM, Knight RT. Insights into human behavior from lesions to the prefrontal cortex. Neuron. 2014;83:1002–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Burgess PWW, H Rostral Prefrontal cortex (Brodmann Area 10) Metacognition in the Brain. In: Stuss DTKRT, editor. Principles of frontal lobe function, 2nd edition. New York: Oxford University Press; 2013. p.524–44.

  82. Butler PD, Hoptman MJ, Smith DV, Ermel JA, Calderone DJ, Lee SH, et al. Grant report on social reward learning in schizophrenia (dagger). J Psychiatr Brain Sci. 2020;5:e200004.

    PubMed  PubMed Central  Google Scholar 

  83. Green MF. What are the functional consequences of neurocognitive deficits in schizophrenia? Am J Psychiatry. 1996;153:321–30.

    Article  CAS  PubMed  Google Scholar 

  84. Kring AM, Gur RE, Blanchard JJ, Horan WP, Reise SP. The Clinical Assessment Interview for Negative Symptoms (CAINS): final development and validation. Am J Psychiatry. 2013;170:165–72.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Oliver LD, Hawco C, Homan P, Lee J, Green MF, Gold JM, et al. Social cognitive networks and social cognitive performance across individuals with schizophrenia spectrum disorders and healthy control participants. Biol Psychiatry Cogn Neurosci Neuroimaging. 2021;6:1202–14.

    PubMed  Google Scholar 

  86. Palaniyappan L, Simmonite M, White TP, Liddle EB, Liddle PF. Neural primacy of the salience processing system in schizophrenia. Neuron. 2013;79:814–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Strauss GP, Waltz JA, Gold JM. A review of reward processing and motivational impairment in schizophrenia. Schizophr Bull. 2014;40 Suppl 2:S107–116.

    Article  PubMed  Google Scholar 

  88. Crow TJ. Cerebral asymmetry and the lateralization of language: core deficits in schizophrenia as pointers to the gene. Curr Opin Psychiatry. 2004;17:97–106.

    Article  Google Scholar 

  89. Levitt JJ, O’Donnell BF, McCarley RW, Nestor PG, Shenton ME. Correlations of premorbid adjustment in schizophrenia with auditory event-related potential and neuropsychological abnormalities. Am J Psychiatry. 1996;153:1347–9.

    Article  CAS  PubMed  Google Scholar 

  90. von Hohenberg CC, Pasternak O, Kubicki M, Ballinger T, Vu MA, Swisher T, et al. White matter microstructure in individuals at clinical high risk of psychosis: a whole-brain diffusion tensor imaging study. Schizophr Bull. 2014;40:895–903.

    Article  Google Scholar 

  91. Seitz J, Zuo JX, Lyall AE, Makris N, Kikinis Z, Bouix S, et al. Tractography analysis of 5 white matter bundles and their clinical and cognitive correlates in early-course schizophrenia. Schizophr Bull. 2016;42:762–71.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Maier-Hein KH, Neher PF, Houde JC, Cote MA, Garyfallidis E, Zhong J, et al. The challenge of mapping the human connectome based on diffusion tractography. Nat Commun. 2017;8:1349.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Thomas C, Ye FQ, Irfanoglu MO, Modi P, Saleem KS, Leopold DA, et al. Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited. Proc Natl Acad Sci USA. 2014;111:16574–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Marder SR, Davis JM, Chouinard G. The effects of risperidone on the five dimensions of schizophrenia derived by factor analysis: combined results of the North American trials. J Clin Psychiatry. 1997;58:538–46.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Funding

R21MH121704 (JJL); U01MH104977 (MES, AB, DO, DH, MKes); R01MH119222 (YR, LJO); R01MH125860 (LJO, YR); P41EB015902 (LJO), R01MH074794 (Mkub, LJO), R21MH116352 (YR, Mkub, MES), NARSAD Young Investigator Award (SC-K), K24 MH110807, R01MH112748 (MKub), VA Merit Award (I01 CX000176-06; MES), R01MH117012 (KEL).

Author information

Authors and Affiliations

Authors

Contributions

JJL: conceptualization and design of the study, methodology, data analysis, writing original draft, manuscript review and editing. FZ: conceptualization and design of the study, methodology, software, data analysis, manuscript review and editing. MV: conceptualization and design of the study, methodology, software, statistical analysis, manuscript review and editing. PGN: provided input on science, review of manuscript. YR: conceptualization, methodology, manuscript review and editing. SC-K: provided input on science, methodology, review of manuscript. MK: provided input on science, manuscript review. MJC: data science, QA/QC of clinical database, review of manuscript. KEL: provided input on science, data collection, review of manuscript. DH: provided input on science, data collection, review of manuscript. MKesh: provided input on science, data collection, manuscript review and editing. SB: design and execution of MRI data processing and quality control, review of manuscript. DO: provided input on science, data collection, review of manuscript. AB: provided input on science, data collection, review of manuscript. MES: provided input on science, oversaw collection of data, manuscript review and editing. LJO: conceptualization and design of the study, methodology, software, manuscript review and editing.

Corresponding author

Correspondence to J. J. Levitt.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levitt, J.J., Zhang, F., Vangel, M. et al. The organization of frontostriatal brain wiring in non-affective early psychosis compared with healthy subjects using a novel diffusion imaging fiber cluster analysis. Mol Psychiatry 28, 2301–2311 (2023). https://doi.org/10.1038/s41380-023-02031-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-023-02031-0

This article is cited by

Search

Quick links