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In the mammalian brain information processing and storage rely on the complex coding and decoding events performed by
neuronal networks. These actions are based on the computational ability of neurons and their functional engagement in neuronal
assemblies where precise timing of action potential firing is crucial. Neuronal circuits manage a myriad of spatially and temporally
overlapping inputs to compute specific outputs that are proposed to underly memory traces formation, sensory perception, and
cognitive behaviors. Spike-timing-dependent plasticity (STDP) and electrical brain rhythms are suggested to underlie such functions
while the physiological evidence of assembly structures and mechanisms driving both processes continues to be scarce. Here, we
review foundational and current evidence on timing precision and cooperative neuronal electrical activity driving STDP and brain
rhythms, their interactions, and the emerging role of glial cells in such processes. We also provide an overview of their cognitive
correlates and discuss current limitations and controversies, future perspectives on experimental approaches, and their application
in humans.
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INTRODUCTION
How do brain circuits manage a plethora of highly diverse inputs
to generate precise outputs without functional failure? Neurons—
widely regarded as the main functional units of the brain—
perform crucial computational tasks by non-linear integration of
synaptic inputs and subsequent generation of electrical action
potentials (spikes). This computation is governed by multiple
factors, including neuronal passive membrane properties, geo-
metry, and active currents [1, 2]. However, these single-neuron
properties do not in themselves explain the emergence of
complex cognitive processes such as memory recall, planning,
and decision-making. In this regard, multiple neurons performing
independent computations solely based on their neuronal
properties could be likened to members of an orchestra playing
temporally uncorrelated melodies: the result will be noise and lack
of information content or it may provide certain information that
will appear more difficult for the listener to understand.
A plausible explanation for the brain’s operational capacity

emerges from the formation and dissolution of neuronal
ensembles supported by timely coincident and mainly coopera-
tive activity across activity-synchronized brain circuits [3, 4]. Active
neuronal ensembles, also known as neuronal assemblies [3], can
be transiently formed and segregated based on synaptic
connections’ recruitment, strength, and excitability in a specified
discrete circuitry bearing diverse temporal evolutions. One factor
supporting the neuronal ability to transiently cooperate and/or
engage in a coordinated activity like a “group of discrete units” is

their intrinsic resonance. As such, neuronal resonance is supported
by diverse ionic mechanisms availing the neurons to selectively
respond to inputs of preferred frequencies [5] and can vary within
neuronal compartments (e.g., from dendrites to soma) due to the
spatial gradients of the density of specific ion channels [6].
Experimentally, an intrinsic difficulty is the determination of
assembly sizes since it is not possible to quantitatively define
which neurons are bound into the primary assembly at any given
time point and which represent feedback activation of assembly
members or newly recruited assemblies serving other goals [3].
Therefore, these facts provide a more complex picture for the
study of the neuronal circuit’s dynamics that underlie or correlate
with higher-order functions.
Therefore, it is assumed that in the mammalian neocortex,

information processing relies on the timing precision of neuronal
activity within neuronal circuits and oscillators, [7–17] although
firing rate is supposed to hold relevance. In this regard, the
intrinsic timing of neuronal spiking seemingly depends on
balanced subthreshold ionic currents (inward and outward) that
shape the excitatory postsynaptic potentials (EPSP). The shape of
the EPSP together with the resting membrane potential and firing
threshold determine the efficacy of the EPSP-spike coupling
during the EPSP-induced postsynaptic firing [18]. This coupling is
crucial for the operation of neuronal networks and its timing
precision varies across diverse brain areas and neuronal types [18].
In addition, spike timing precision is controlled by the after-
hyperpolarization (AHP) that follows the action potentials in a
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variety of neurons, [19–21] and enhancement of AHP by (e.g.,)
persistent Na+ current decreases spike time precision in response
to single EPSPs [22]. On the contrary, a persistent reduction of the
AHP potentiates EPSP-spike coupling, and thus the fidelity of spike
timing [23]. Moreover, diverse studies indicate that spike timing is
also plastic and that such plasticity and timing precision are highly
influenced by ion channels [6, 23–25]. Interestingly, evidence of a
role for myelination and consequently oligodendrocytes aiding
spike timing in neuronal circuits is recently emerging [26].
Irrespective of the complex mechanisms underlying timing

precision, it is known that coincident firing (in a window ranging
from 10ms to ~100ms) leads to long-lasting changes in synaptic
efficacy: namely spike timing-dependent plasticity (STDP) [8, 27].
STDP has been related to key functional consequences such as
circuit refinement and cortical map plasticity [27–30] which could
influence learning and memory. In addition, diverse forms have
been described [8, 10, 31, 32]. Likewise, in hippocampal CA3-CA1
synapses, STDP has been canonically defined as a bi-directional
form of synaptic plasticity that depends on the order and timing
of spike occurrence: presynaptic spiking leading postsynaptic
spiking drives long-term potentiation (t-LTP), and postsynaptic
spiking leading presynaptic spiking drives long-term depression
(t-LTD) [10, 31, 32] (Fig. 1A). This original definition has evolved to
include other types of plasticity that depend on spike-timing but
are not bi-directional or do not depend on the order of spike
coincidence (see [33]). In other cases, postsynaptic spiking leading
presynaptic spiking drives t-LTP as in the striatum [34], the adult
hippocampus [35] and in the mouse adult primary somatosensory
cortex [36]. In addition, numerous basic forms of STDP exist at
different synapses with substantial variations, presumably reflect-
ing both synapse specialization and different experimental
conditions (reviewed in [8]). Thus, the state of the network
(Fig. 1B), neuromodulatory actions (Fig. 1C), developmental stage
(Fig. 1D), and astrocytes [37] likely contribute to such diversity [33]
and potentially dictate the sign and magnitude of STDP [38].
Timely cooperation, correlated activity, and consequent syn-

chronization of the electrical activity of neurons that are organized
in networks also give rise to the emergence of what is known as
brain rhythms or neuronal network oscillations. In generalized
models, brain rhythms are supported by rhythmic interplay of
pyramidal cells connected with inhibitory interneurons within
discrete circuits. Inhibitory interneurons play key roles in the
rhythm’s generation and maintenance, mainly by efficiently
controlling and strengthening the timing of pyramidal cells
outputs [4, 17, 39–42]. Rhythmic brain events have been largely
documented underlying higher cognitive functions [43–49] and
can be recorded macroscopically as an electroencephalogram
(EEG) or experimentally/invasively as periodic fluctuations of the
Local Field Potential (LFP). Hans Berger reported the first EEG
recordings in 1929 [50], describing oscillations below and above
12 Hz as alpha and beta waves, respectively. This practice of
classifying brain rhythms by their frequency band is still the
current convention, with prominent examples being slow rhythms
(<1 Hz), theta oscillations (4–10 Hz), and gamma oscillations
(30–90 Hz) [46]. Although the exact frequency range may vary
between species, each oscillation band consistently correlates
with distinct set of behavioral states and tasks [12, 14, 44, 51].
In local brain circuits, diverse neuronal subtypes are embedded in

an organized puzzle of other cellular players such as microglia and
astrocytes, which not only modulate but could actively control
the concert of information processing. In this regard, astrocytes
have been revealed as master regulators of synaptic activity, with
diverse functions impacting the computational capacity of synapses
and neuronal ensembles [52–59]. This apparent “omniscient”
activity is supported by data from e.g., the hippocampus, where
one astrocyte covers hippocampal circuits roughly reaching
120,000 synapses [60] established by diverse neuronal cell types.
Thus, one astrocyte might be able to detect the neurotransmitters

released from those synapses while actively contributing to
cooperativity within neuronal ensembles by releasing gliotransmit-
ters [52]. Previous findings together with these and other advances
have led to the concept of the “tripartite synapse”, which is
composed of a pre-and a postsynaptic neuron with an astrocyte
integrated into a functional unit [61]. In turn, microglia, the
phagocytic myeloid cells of the brain, have been traditionally
regarded as the scavengers of the brain while more recently their
contributions to the computational capacity of brain circuits have
come into focus [62, 63]. The tripartite synapse concept, therefore, is
complemented by microglia, which are particularly attracted by
neuronal synaptic activity establishing bi-directional crosstalk [62].
A bi-directional interplay also exists between STDP and

neuronal network rhythms where the strength and features of
the rhythms are also affected by the occurrence of plastic changes
of the synapses involved in the neuronal ensemble [64]. In
addition, timing precision could be altered by external inputs with
computational consequences, depending on the network archi-
tecture and circuit dynamics of the studied structure [38]. Here, we
summarize key concepts underlying information processing in the
mammalian brain, stressing the crucial role of timing precision for
coincident neuronal electrical activity within neuronal circuits. We
provide an overview of its consequences on cognitive processes
and some behavioral correlates, and we discuss the emerging role
of glial cells in STDP, brain rhythms, and their interactions.
Technical limitations, controversies and future directions on
experimental approaches, and their possible application in
humans are outlined.

SPIKE TIMING-DEPENDENT PLASTICITY
STDP is a ubiquitous learning rule that has been found
experimentally in all species in which it has been studied—from
insects to humans [65]. Several forms of STDP involve or require
the activation of NMDA-type glutamate receptors (NMDARs)
[36, 66–76]. In standard STDP models, postsynaptic NMDARs are
suggested to be the exclusive coincidence detector of the spiking
activity, and the primary calcium source for STDP [67, 77, 78].
According to the classical view, a presynaptic-before-postsynaptic
firing order generates strong NMDAR-mediated calcium signals to
drive t-LTP and a postsynaptic-before-presynaptic firing order
generates weaker calcium signals that drive t-LTD [79–82].
However, STDP at layer 4-to-layer 2/3 synapses in the primary
somatosensory cortex involves separate calcium sources and
coincidence detection mechanisms for t-LTP and t-LTD. While
t-LTP shows “classical” postsynaptic NMDAR dependence, t-LTD
appears independent of postsynaptic NMDARs and instead
requires group I metabotropic glutamate receptors and depends
on presynaptic NMDARs (pre-NMDARs) [66, 70, 78, 83]. Such
unconventional pre-NMDARs are also involved in STDP at other
synapse types [76, 84–87], but their function is subject to debate
partly due to the technical difficulties in providing unequivocal
evidence of their presynaptic signaling to establish a functional
link to STDP. In addition, the interactions of pre- and postsynaptic
neuronal spiking bi-directionally regulate the intrinsic excitability
of pyramidal cells in neural circuits. This has led to the proposition
that there is a functional synergy between synaptic and intrinsic
plasticity induced by STDP, where LTP and LTD are generally
associated with increased or decreased neuronal excitability,
respectively (see [88] for review). Finally, there is a great diversity
of forms of STDP involving pre- and postsynaptic forms with
different underlying mechanisms (e.g., distinct spiking coinci-
dence detection mechanisms [35, 36, 66, 70–72, 78], which also
describe different spike-timing windows as shown in Fig. 1. This
diversity increases due to neuromodulatory actions [89], differ-
ential expression during development [35, 36, 68, 76], and the
state of the network or external inputs [38] to the circuit involved,
conditioning the order of spike coincidence. In addition, there are
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diverse forms of STDP which differentially involves specific
signaling to and from other cellular players like astrocytes.

Glial involvement in the control of STDP
Since the emergence of the tripartite synapse concept, mounting
evidence has revealed that pre-NMDARs could ally with astrocytes

to control information flow in a circuit-specific way, particularly for
STDP [90], framing the coincidence as a temporal detection traffic
light (e.g., favouring the induction of t-LTD by D-serine release at
postnatal days 13–21 (P13–P21), closing a plasticity window due
to adenosine release at P22–P30 or further gating a new plasticity
window for t-LTP due to glutamate release at P34–P42 in mouse

Fig. 1 Schematic diagrams showing the diversity of STDP forms and some of the factors that might influence its expression, sign, and
magnitude. The relative magnitude (y-axis, in %) and spike-time intervals (temporal windows, x-axis, in ms) are simplified and presented
schematically and arbitrary in A–C. A In the classical concept, STDP is equally balanced for t-LTD and t-LTP: postsynaptic spiking occurring before
presynaptic activity drives t-LTD (in red, pre-post timing interval: Δt < 0) whereas presynaptic spiking occurring before postsynaptic spike leads to
t-LTP (in green, pre-post timing interval: Δt > 0) [8, 81]. B Schematic showing that the sign of STDP is under the control of external input at CA3-
CA1 synapses from 13–18 postnatal days (P13–P18) mice [38]. Oscillatory activity (in gray) is induced in a single CA1 pyramidal neuron designed
to make the cell firing just one action potential near the peak of the oscillation and temperoammonic input (TA) to CA1 changes the order of
correlated pre- and postsynaptic activity relative to ongoing theta wave. Upper left panel: without TA stimulation, post-pre activity coincidence
near the theta oscillation peak drives t-LTD (in red) whereas TA stimulation in the descending theta phase (orange arrow) delays the postsynaptic
spike changing the order to pre-post coincidence thus driving t-LTP (in dark orange). The spike-time interval for t-LTP and the magnitude (dark
orange line) are arbitrary. Bottom right panel: without TA stimulation, pre-post activity coincidence near the theta oscillation peak drives t-LTP (in
green) whereas TA stimulation in the ascending theta phase (magenta arrow) advances the postsynaptic spike setting the order to post-pre
coincidence that drives t-LTD (in magenta). The spike-timing interval and the magnitude for t-LTD (magenta line) are arbitrary. C Dopamine (DA)
influences the sign and the time window for STDP in CA3-CA1 synapses at P13–P18. A post-pre pairing protocol with Δt=−20 ms induces t-LTD
(in red) while in the presence of DA the same protocol induces t-LTP (green dot). In turn, a post-pre protocol with Δt >−10 ms induces t-LTP (in
green). DA antagonism drives t-LTD with a post-pre protocol (red dot) that at Δt=−10ms induces t-LTP when endogenous DA signaling is intact.
This indicates that DAwidens the time window for t-LTP which putatively could have an impact on reward-related learning [89, 194].D STDP time
window in CA3-CA1 synapses changes during development. A post-pre protocol (Δt from−35 to−18 ms) induces t-LTD at P13–P21 (in red). This
form of t-LTD requires endocannabinoid signaling and D-serine from astrocytes [76]. At P21–P30, a post-pre pairing (Δt=−18 ms) fails to induce
t-LTD (yellow dot). The developmental loss of t-LTD at this age involves adenosine type 1 receptors (A1Rs) and adenosine released by astrocytes in
a calcium-dependent manner [68]. Interestingly, at P35–P42 (in green) post-pre protocol (Δt from −35 to −18 ms) induces t-LTP instead of t-LTD.
This developmental switch in the plasticity rule for STDP involves the release of adenosine and glutamate by astrocytes indicating that they are
key players in the control of temporal windows for STDP during the development of CA3-CA1 synapses. In addition, a pre-post pairing
(Δt=+5ms) induces t-LTP at both postnatal ages in this hippocampal synapse [35, 76]. Dashed lines represent arbitrary magnitudes that may
follow this behavior according to the findings in [35].
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hippocampal CA1 synapses) (Fig. 1D) [35]. These findings and the
recent similarities found in the mouse primary somatosensory
cortex (S1) [36] allow us to hypothesize that in the mouse
hippocampus and S1, astrocytes aid or prevent firing coincidence
by providing selective gliotransmitters during coincident spiking
depending on the developmental stage. Such dependence on age
involves changes of pre-NMDAR expression, glutamate release (by
neurons and/or astrocytes), endocannabinoid signalling to astro-
cytes, timely astrocytic Ca2+ signals, and the level of adenosine-
mediated inhibition due to astrocytic release of adenosine/ATP in
these synapses [35, 36, 66, 68, 76, 91, 92].
Our hypothesis also finds support in three previous unifying

hypotheses (see [93] for review) that could explain how astrocytes
might influence the spiking coincidence due to the spatial and
temporal dynamics of astrocyte Ca2+ signals combined with the
release of gliotransmitters and actions on neuronal slowly
desensitizing and high-affinity receptors. In turn, astrocytes also
possess slowly desensitizing and high-affinity receptors for
neurotransmitters, which determines the selectivity and the
sensitivity of their activation and thus their role on the regulation
of synaptic transmission and plasticity. Particularly, the kinetics of
astrocyte Ca2+ signals (and the subsequent gliotransmitter
release) encodes neuronal activity and supports the astrocytic
ability to integrate information from different levels of neuronal
activity [93] (e.g., rapid and locally restricted Ca2+ elevations in
response to low synaptic activity modulates synaptic transmission
just in the synapse involved, [55] while local Ca2+ elevations in
response to strong synaptic activity diffuse to nearby processes
affecting neighboring synapses [58], or Ca2+ elevations at multiple
processes in response to coincident activity from multiple
synapses drive to an integrated Ca2+ elevation, resulting in the
control of the synaptic transmission within the whole area
occupied by this astrocyte). This decoding and integrating ability
provide finely tuned and easily adjustable feedback or feedfor-
ward responses that regulate neuronal communication in different
time and spatial domains (see [93] for review). In line with this, it is
known that neurotransmitter-evoked activation of astrocytes leads
to astrocytic release of glutamate, D-serine, ATP, and/or adenosine
[94–98], which, through the activation of the corresponding pre-
and postsynaptic receptors, establish a threshold for basal
synaptic transmission [99, 100] and enhance short- and long-
term synaptic plasticity [53, 55, 101]. Astrocytes gradually increase
their Ca2+ signaling during the induction of t-LTD in a
cannabinoid receptor 1 (CB1R)-dependent manner at synapses
between excitatory neurons in somatosensory cortical layer 4 and
layer 2/3 (L4-L2/3 synapses) [97]. Interestingly, at L4-L2/3 synapses
of the primary somatosensory cortex, stimulation of astrocytes
coincident with afferent activity results in LTD [97]. This has also
been observed during coincident stimulation of Schaffer collat-
erals and astrocytes in the CA1 area of the hippocampus [68, 76].
GABAergic activation of astrocytes also triggers cytosolic Ca2+

oscillations and Ca2+-mediated signaling in astrocytes
[56, 102, 103], which induce a decrease of the excitatory synaptic
tone mediated by the release of ATP [104, 105]. Notably,
hippocampal astrocytes can decode GABAergic activity based on
the frequency and duration of interneuronal spiking activity, thus
contributing to neuronal information processing [56, 104]. Such
astrocyte-mediated decoding events determine whether astro-
cytes release either glutamate or ATP and/or adenosine [56],
leading to the enhancement or decrease of excitatory synaptic
activity and strength, respectively.
It is of particular relevance to note that STDP shows specific

developmental profiles in different brain regions [36, 71, 76] and a
developmental switch has recently been shown for STDP (from
t-LTD to t-LTP) in the CA1 area of the hippocampus [35].
Remarkably, detection of spike coincidence likely changes in this
CA1 area with a post-pre protocol, driving a presynaptic form of
NMDAR-dependent t-LTD until the 3rd postnatal week in mice

[76]. Interestingly, the same protocol induces a presynaptic form
of NMDAR-independent t-LTP at more mature stages [35]. As
detailed above, astrocytes are involved in this developmental
switch by providing D-serine for t-LTD [76] and adenosine and
glutamate for t-LTP, and the switch from t-LTD to t-LTP (Fig. 1D)
[35]. Recently, a similar switch has been observed in the
developing vertical pathways of the primary somatosensory
cortex, which intriguingly appears shifted compared to the
hippocampus (t-LTD is present until the 4th postnatal week and
switches to t-LTP starting at 38 postnatal days [36]). This reveals
the need for even more research efforts to understand how
plasticity rules, timing, and activity coincidence are differentially
governed in diverse brain areas during development and how or
whether astrocytes change developmentally. Moreover, although
the recognized roles of microglia in neural development, their
possible involvement in STDP has so far not been investigated.
Likewise, during postnatal development, microglia play a

pivotal role in synapse pruning, aided by fractalkine (CX3CL1)
and its receptor. The expression of CX3CL1 increases in the Central
Nervous System during embryonic and postnatal maturation,
promoting microglial recruitment to neuronal circuits that
undergo rewiring during periods of activity-dependent remodel-
ing [106]. In turn, disruption of CX3CL1 signaling leads to cognitive
impairment and loss of LTP induced by high-frequency stimula-
tion (HFS-LTP) at hippocampal area CA1 [107]. Interestingly,
purinergic receptors located on astrocytes act downstream of
microglial-derived ATP to modulate the frequency of excitatory
postsynaptic currents (EPSC) in the CA1 area of the hippocampus
[108]. In hippocampal area CA3, microglia-derived ATP alters
synaptic transmission and short-term plasticity through the
activation of presynaptic P2X4 receptors and adenosine receptor
1 (A1R), respectively [109]. Additionally, lipopolysaccharides
(microglia-selective activators) impair LTP in the rat hippocampal
dentate gyrus in vivo. Blockade of A2ARs prevents this by
counteracting the shift of microglia toward a pro-inflammatory
phenotype [110].
Finally, diverse studies indicate that astrocytes possess mechan-

isms that allow them to integrate and store synaptic information
[94]. Therefore, it has been proposed that astrocytes can
“memorize” synaptic events that will have an impact on
subsequent neuronal activity. Hence, astrocyte-mediated plasticity
is thought of as an activity-dependent and input-specific process
that is tightly controlled by synaptic activity. In turn, concomitant
neuronal signaling is dynamically modulated by the surrounding
astrocytes [52]. Also, it has been observed that myelination (lead
by oligodendrocytes) might influence spike timing precision
affecting neuronal firing rate, action potential jitter, and latency
[26], and this influence may have consequences for STDP.
Together, these notions reinforce the concept that brain function
relies on interdependent neuron-astrocyte signaling, but the
astrocytes’ role in integrating information is yet to be properly
elucidated. These studies also indicate that microglia may
influence physiological processes such as spiking coincidence
and neuronal cooperativity, which may underly aging or complex
behavioral patterns related to learning, adaptation, or formation of
long-term memory traces.

TIMELY COINCIDENCE OF NEURONAL ACTIVITY UNDERLYING
NEURONAL NETWORK RHYTHMS
Brain rhythms emerge from the entrainment of circuits estab-
lished by direct synaptic contact between neurons and indirect
feedforward and feedback connections giving rise to rhythmic
electrical fluctuations that can be measured extracellularly
[4, 17, 43, 111–113]. These are due, in part, to the spatial and
temporal summation of electric current contributions from all
active cellular processes within a volume of brain tissue at a given
location in the extracellular medium which generate a rhythmic
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potential [46, 114]. The diverse rhythms of the brain form a
hierarchical system that offers a syntactical structure for the spike
traffic within and across circuits on multiple time scales [3, 45]. In
other words, several interactions occur between brain rhythms
(and the neuronal assemblies and intrinsic oscillators generating
them), allowing for a hierarchical organization that leads to precise
neuronal firing patterns. Another crucial event supporting the
generation of brain rhythms is the synchronous firing of neurons
involved in the assembly (Fig. 2A). In this regard, sharp-wave
ripples (SPW-Rs), which are short-lived ultra-fast oscillations
(140–200 Hz) in the CA1 pyramidal cell layer [115], are considered
the most synchronous assembly pattern in the mammalian brain
[116] and have been early proposed to play a critical role in
transferring transient memories from the hippocampus to the
neocortex for long-term storage [117, 118].
A possible controversy may arise assuming that the neuronal

firing rate instead of the firing synchronization and phase-lock
solely underlie the strength and features of brain rhythms. Such
current controversy could lie in the experimental configurations,
neuronal class recorded, models of study, and/or analytical
approaches. For instance, the assumptions needed to analyze
spike-LFP phase coupling, the common pitfalls that could bias the
analysis (e.g., the firing rate and trials analyzed), and possible ways

to avoid these pitfalls based on in vivo studies and computational
models have been pointed out [119]. In turn, it has been observed
ex vivo that inducing neuronal depolarization with kainic acid (KA)
or carbachol leads to persistent gamma oscillations and provides a
reliable model to study spike-phase coupling that is not biased by
spikes occurrence [43, 120–122]. Thus, it has been observed that
rhythmic synchronization and the resultant gamma oscillations
parameters (e.g., gamma oscillations power and rhythmicity) are
degraded regardless of the firing rate in diverse Alzheimer’s
disease (AD) models. This occurs when the firing rate is decreased
[122, 123], increased [121, 122, 124], or even when the firing rate
remains unchanged [125]. In addition, the increase of spike-phase
coupling to gamma oscillations concomitantly with the increase of
gamma power and rhythmicity has been observed when the firing
rate decreases [120].
Regarding how action potential synchronization in the major

neuronal classes contributes to the emergence of brain rhythms,
two major models have been proposed. These models focus on
explaining the generation and maintenance of the brain rhythm in
the gamma frequency band (30–80 Hz; gamma oscillations).
Gamma oscillations have emerged as crucial for cognitive
processes in the brain and the two mechanistic models
attempting to explain their generation are (1) synchronization of
the interneuronal networks by mutual GABAergic and gap
junction connectivity (the ING model of network entrainment)
[126] and (2) synaptic recurrent feedback loops between
excitatory pyramidal cells (PC) and inhibitory interneurons (the
PING model, Fig. 2B) [43, 127, 128]. Irrespective of the PING or ING
model and their respective generalizations, it is established that
interneurons play a major role in entraining neuronal circuits.
Their spike timing has been extensively studied in diverse
experimental models and their unique characteristics have been
the subject of several previous experimental works and reviews
[4, 17, 39–41, 112, 120, 121, 129–134]. Altogether, these studies
suggest that rhythmic synaptic inhibition regulates the spiking
activity of neurons and enforces precise cooperativity in local
neuronal circuits during gamma oscillations.
In particular, parvalbumin-positive fast-spiking interneurons

(PV-FSN) play a pivotal role in the synchronization of PCs during
the emergence of the intrinsic hippocampal theta rhythm
[17, 131]. This rhythm (theta, 4–12 Hz) has been proposed to
support episodic and spatial memory formation by timing the
interactions between the prefrontal cortex and hippocampus for
memory-guided action selection [135]. In 2015 it was hypothe-
sized that activation of gamma-modulated cell assemblies at a
particular theta phase may allow the network to produce a more
powerful output by ensuring that cells involved fire closely in time
(highly coupled/synchronized). That such a mechanism would
serve to facilitate either memory encoding or memory retrieval,
depending on which type of gamma rhythm is recruited [136].
Accordingly, targeting PV-FSN entrainment has emerged as a
potential therapeutic target to restore normal neuronal network
synchronization from impaired, de-synchronized state found in
models of neurocognitive disorders such as AD
[120, 121, 125, 130, 137, 138]. Conversely, other neurological
disorders exhibit hyper-synchronized circuit states or the emer-
gence of “bad” oscillations such as Parkinson’s disease or Epilepsy
[139–142]. In these cases, the therapeutic attempts should focus
on decreasing the aberrant increase of firing synchronization.
Whether these manipulations adapt to, match, or drive a new
state of the networks that are intrinsically resonating deserves
further research (see [143] for review). Moreover, metabolic
arrestment should also be taken cautiously in such interventions,
particularly in AD, where energy impairment is a pathology
hallmark. How can a system that is undergoing exhaustive
metabolic impairment deal with artificially forcing PV-FSN (e.g.)
to re-entrain the network into fast rhythmic activity? Notably, PV-
FSNs are highly susceptible to energy demands [144] and future

Fig. 2 Simplified model of inhibitory fast-spiking interneurons
(FSN) and excitatory pyramidal cells (PC) synchronization accord-
ing to the PING model. A Schematic representation of a raster plot
showing the action potential firing of ten PCs (blue lines) and one
FSN (orange lines) relative to wavelet transform (e.g., Hilbert
transform, in gray) of a hypothetical segment of gamma oscillation
that emerges from the coordinated activity of represented cells.
B Simplified circuit showing the synaptic interaction of mutually
connected PCs (E: excitatory neuron) and FSN (I: inhibitory
interneuron) that give rise to the fluctuations of LFP transformed
in (A) for instantaneous firing phase detection in the gamma
frequency band. C Polar plot showing the magnitude (spike-phase
coupling) and the preferred phase angle for the hypothetical PCs
and neurons shown in (A). The phase-lock for PCs and FSN in blue
and orange dashed lanes, respectively, can be analytically repre-
sented as an infinite circular distribution of neuronal firing
according to the instantaneous phase relative to each gamma
cycle. A vector length= 1 is assigned to each action potential and
the resultant angular summation yield a vector for PC (e.g., PC #
2,3,4,6,7 or 9; blue arrow) or FSN (orange arrow) whose specific
angle denotes the preferred gamma phase for firing and the
magnitude represents the strength of this preference (phase-lock,
synchronization) [122, 195]. This analysis also allows for corroborat-
ing that FSN fires after PCs firing and that FSN firing drives a strong
inhibition over PCs and entrains them during the gamma cycle in a
coordinated rhythmic activity [41, 43, 44].
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studies will consider integrative approaches, including such
metabolic arrestment in the generation of synchronous spiking.
In general, brain rhythms at different frequencies can occur

separately, but they can also co-exist (nest in each other) and
interact. This phenomenon is termed cross-frequency coupling.
The most common interactions that have been studied is the
coupling between certain features (e.g., phase, amplitude or
power) of theta and gamma rhythms [145–149]. This coupling
results in a higher frequency (e.g., gamma) rhythm nesting within
or on top of the lower frequency (e.g., theta) rhythm at specified
phases denoting timing interdependence. Rhythm coupling,
particularly theta-gamma coupling, offers physiological advan-
tages such as the possibility of encoding different information in
different theta phases and the synchronization of neuronal
ensembles over long distances [46, 150]. In addition to the
importance of the temporal precision of the rhythm coupling, it
has been observed that the theta rhythm not only modulates
gamma rhythm but can also induce it [151]. Taken together, these
studies reinforce the notion that the timing of neuronal spiking
and the timely interaction of brain rhythms is crucial for
information processing in discrete circuits and over distant
brain areas.

Glial contribution to brain rhythms
Brain oscillations have classically been considered as purely
dependent on the physical and functional contacts between the
neurons involved in the ensemble. Non-neuronal contributions
have been largely overlooked until recently, but they are starting
to be the subject of comprehensive reviews [152]. Glial contribu-
tion to oscillations (e.g., gamma) was first described in 2014 [153].
The authors found that blockade of vesicle release in astrocytes
attenuates the power and shortens the duration of carbachol-
induced gamma oscillations in cultured slices and decreases
gamma oscillations power in the mouse neocortex, leading to
behavioral changes in a novel object recognition test. Additionally,
transient increases in intracellular calcium levels in astrocytes
occurs before the onset of carbachol-induced oscillatory activity
[153], which might represent an underlying mechanism aiding
spike-phase coupling to gamma rhythm. The contribution of
astrocytes to brain rhythms has also been observed in vivo
[56, 154]. Particularly, specific ablation of GABAB receptors in
astrocytes diminishes the power of sensory-evoked theta and low
gamma rhythms and impairs theta-gamma phase-amplitude
coupling [56]. Furthermore, conditional blockade of gliotransmit-
ter release in astrocytes triggers a critical desynchronization of
theta oscillations between the dorsal hippocampus and prefrontal
cortex, indicating a modulatory role of astrocytes in the function
of widely distant networks [154]. In turn, sensory-evoked gamma
oscillations elicit morphological and/or gene and protein expres-
sion responses in microglia in diverse mouse models of
neurodegeneration, including 5XFAD, APP/PS1, Tau P301S, and
CK-p25 mice [130, 155, 156]. One of the hypotheses supporting
the effects of gamma entrainment on microglia relies on the high
capacity for ion buffering of these cells (e.g., K+). This points to the
possible direct involvement of these cells in the regulation of ion
flow across cortical layers, thus participating in the entrainment
[157]. On the contrary, some indirect findings support the notion
that microglia activity affects the proper entrainment into gamma
oscillations and precise spike timing in the hippocampus
[109, 158, 159].
A second hypothesis for the role of microglia in the induction of

network rhythms claims a secondary effect instead of a direct
involvement in the entrainment [143]. Consequently, microglia
could respond to the entrainment since their plasma membranes
are exposed to high ionic oscillations and/or are in physical
contact with neurons [62, 160, 161]. A third hypothesis considers
the involvement of neuromodulatory agents, triggering a
secondary effect on microglia due to gamma entrainment. In

astrocytes, it has been shown that activation of internal Ca2+

levels by several stimuli provokes repetitive NMDAR-mediated
responses mainly in CA1 pyramidal neurons. A noticeable feature
of this response is that it arises with a high degree of synchrony in
multiple neurons through the activation of extrasynaptic NMDARs
[59]. An additional aspect to be considered is the emerging role of
myelination and, consequently, the role of oligodendrocytes in
support of spike timing and synchronization [26]. This highlights
the need for more research to dissect the contribution of glial cells
(particularly microglia and myelinating oligodendrocytes) to the
emergence and/or maintenance of precisely timed neuronal
activity within brain circuits during ongoing rhythms.

TOWARD AN UNDERSTANDING OF THE COMPLEX INTERPLAY
BETWEEN STDP AND BRAIN RHYTHMS
Does a group of neurons that are firing locked to a specific
rhythm-entrained ensemble undergo STDP within the group or
with neurons from other rhythm-entrained ensembles at the same
time? Do these neurons disengage from the “primary” ensemble
to achieve spike timing precision related to STDP, or do neurons
undergoing STDP “interrupt” the coincident firing for STDP and
start to uniquely fire in a rhythm’s phase-locked manner? These
questions represent a technical and intellectual challenge,
particularly because of difficulties in determining the ensembles
sizes due to their ability to dynamically engage and disengage [3].
However, in a neuronal circuit where neurons are constantly
bombarded by multiple external inputs, it is not unreasonable to
expect a bi-directional relationship between plasticity and brain
rhythms as it is expected in vivo. Due to the heterogeneity of STDP
forms, it is challenging to address how STDP directly impacts
circuits performance of brain rhythms. Within specific circuits, this
interplay could be supported by glial cells due to their key roles in
both processes, as previously discussed. For instance, it is
reasonable to expect that astrocytes can assist the spiking
coincidence and neuronal cooperativity underlying STDP and
neuronal network rhythms occurring at the same time within the
same ensemble and/or neighboring circuits. This is supported by
the astrocytes’ ability to integrate and decode neuronal informa-
tion occurring in a large array of diverse neuronal activities within
complex astrocytes-neuronal interactions due to their previously
discussed temporal and spatial dynamics (see [93] for review).
Even more sophisticated approaches need to be formulated to
test these notions (including simultaneous recording of brain
rhythms and Ca2+ imaging of astrocytes combined with STDP
protocols).
On the other hand, in the hippocampal area CA1, it was found

that the timing of tempero-ammonic input relative to theta
phase controls the sign of plasticity [38]. Depending on the
timing of the stimulation of tempero-ammonic input, it could
either advance or delay the postsynaptic spike relative to the
theta oscillation, driving a change of outcome: the “disturbance”
of the timing without altering the spike firing rate reverses the
sign of plasticity and enforces either t-LTP or t-LTD at the
Schaffer collateral-CA1 synapse by prospectively controlling
postsynaptic spike timing [38]. From this study, we could also
assume that, in addition to the presence of external input
affecting the sign of STDP, the timing at precise rhythm phases
influences the outcome of plasticity, depending on whether the
coincidence occurs in the ascending or descending phase of the
rhythm. Alternatively, an example of how STDP influences
neuronal ensembles performance is that STDP drives synchro-
nous spiking during signal propagation in feedforward networks,
which is a common feature in vivo [8]. Also, NMDAR antagonists
have been shown to potently increase network hypersynchrony
in vivo [162] and it is known that diverse forms of STDP involve
NMDARs. As such, affecting them will affect both STDP and brain
rhythms occurring at the same circuit.
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As mentioned, PV-FSN offer a suitable target to modify the
progression of instability in neuronal ensembles that might
impact cognition. This has been observed in promising studies
in an Alzheimer’s disease mouse model using optogenetic
stimulation of PV-FSN at central gamma frequencies [130]. In
addition, optogenetic stimulation of glutamatergic neurons from
the medial septum and diagonal band of Broca (MS-DBB)
strongly synchronizes hippocampal theta rhythms over a wide
range of frequencies, probably due to modulation of local septal
circuits, which, in turn, contribute to theta rhythms in the
hippocampus [163]. The theta rhythms has been proposed to be
critical for the temporal coding/decoding of active neuronal
ensembles and the modification of synaptic weights. The
interplay of theta rhythm and synaptic plasticity in the
hippocampus posits the timing of the dendritic excitatory inputs
during the theta cycle as crucial for the strengthening and
weakening of synapses [113]. In addition, in the hippocampal
stratum radiatum, the intrinsic oscillatory dynamics of neurons
has been found to be plastic owing to the plasticity of voltage-
gated ion channel and spatial heterogeneity of pyramidal CA1
neurons. In this region, theta-burst pairing of orthodromic and
antidromic stimulations induce t-LTP, and this plasticity is
associated with spatially widespread plasticity in resonance
and excitability [6]. Recently, it has been observed that selective
optogenetic stimulation of CA1 somatostatin-positive interneur-
ons (important players in hippocampal oscillogenesis) restores
theta-nested gamma oscillation-induced t-LTP in an in vitro
model of AD [137]. Interestingly, in cortical synapses, it has been
found that presynaptic spiking produced by synchronous, strong
input produces a stronger synaptic response than a spike
induced by asynchronous, weak input. This has been named
input synchrony-dependent facilitation and involves presynaptic
axonal Na+ channels that are proposed as “good” readers and
transmitters of the levels of input synchrony to the postsynaptic
cell [164]. These findings and the proposed model to read and
transmit precise levels of input synchrony might have an impact
on the circuitry’s computational abilities underlying STDP.
As in many circuits of the brain, strong theta and gamma

oscillations coexist in the perforant pathway (PP). In this
remarkable input from the entorhinal cortex to the hippocam-
pus, the distal apical dendrites of the basket cell interneurons
(BC) preferentially transmit the lower frequencies to the soma
[165], thus contributing to the modulation of the PP theta
frequency input onto the dentate gyrus (DG). The DG is
proposed to be involved in pattern separation and code
conversion from neocortical inputs by changing the coincidence
patterns and recruiting nonoverlapping cell assemblies in area
CA3 [166]. This is possible through the recruitment of feedback
inhibition due to the excitation of DG granule cells (GC), which
delay the generation of action potentials of less excited GCs
[167]. Should repeated activation of GCs in association with BCs
occur, their coupling will undergo strengthening through the
occurrence of LTP. Consequently, this leads to an improved
signal-to-noise ratio maintaining sparse activity in the DG
network which is a key requirement for high storage capacity
[166]. Then, the progressive emergence of the assembly formed
by the highly excited GCs functionally coupled to BCs will
plausibly reflect the emergence of a memory trace in the DG
network [168]. This integrates plastic events and network
entrainment within a feedback circuitry established between
excitatory (GCs) and inhibitory (BCs) neurons. Likewise, some
forms of synaptic plasticity could modulate the strength of
phase-coupled intrinsic and/or extrinsic inputs, revealing an
effective mechanism for information encoding. Therefore, STDP
could benefit neuronal ensemble engagement and disruption
with the leading roles of the participating neurons and the
involvement of astrocytes. Contrary, the timing (oscillation
phase) of an ongoing rhythm where the spikes coincidence

occurs may affect the sign and magnitude of STDP. Moreover,
the timing of external inputs relative to ongoing brain rhythms
could control the magnitude and sign of STDP although this
generalization needs to be further tested in diverse brain areas
and synapses.
Together, these findings reveal that there is a finely tuned bi-

directional interplay between STDP and neuronal network
rhythms that also includes glial contribution. However, rules
governing the occurrence of spike coincidence for STDP relative to
ongoing brain rhythms and inputs external to the involved
synapse are yet to be unveiled. Based on these findings of brain
rhythms and STDP interactions, it is tempting to propose that
STDP occurring at key synapses of a neuronal ensemble will
strengthen or weaken (by t-LTP or t-LTD, respectively) the
neuronal contribution and their engagement (spike-phase-locking,
rhythmic synaptic transmission) to the rhythm generated within
the network. This could impact the computational ability of the
involved neuronal network, probably serving homeostatic
mechanisms with cognitive consequences [169], as has been
observed in computational models [170]. In addition, these
findings support the design of experimental protocols mimicking
STDP and rhythm interactions [38, 113, 137] and that STDP can
modify circuitry properties and vice-versa. Finally, to answer the
questions posed at the beginning of this section, detailed studies
need to be conducted in a variety of brain circuits by integrating
the current knowledge on STDP, brain rhythms, and other external
inputs and network states into more comprehensive approaches
(e.g., more convergent studies recording brain rhythms combined
with STDP protocols are needed).

TRANSLATING INSIGHTS ON STDP AND BRAIN RHYTHMS INTO
HUMANS
Translation of the knowledge on STDP and brain rhythms
accumulated experimentally in humans is a considerable chal-
lenge. Experimental STDP finds support in mathematical modeling
and vice-versa, while the physiological evidence of assembly
structures driving STDP and rhythms emergence has only arisen
recently [8, 38, 132, 171, 172]. A closer correlate in humans for
STDP can be found in the transcranial magnetic stimulation (TMS)
technique, revealing that STDP-like phenomena exist in humans
(see [173] for review). TMS allows for the study of time-locked
activation of human cortico-cortical connections in healthy and
pathological conditions [174]. It is a non-invasive brain stimulation
technique, which uses a time-varying magnetic field to induce
electrical currents in cortical areas of interest that ultimately lead
to neuronal depolarization and action potential generation [173].
Paired associative stimulation (PAS) is one of the plasticity
protocols performed using this technique. It has been shown
that repeated pairing of peripheral nerve stimulation with TMS
over the contralateral primary motor cortex (M1) area [175, 176]
likely operates through STDP mechanisms and is mediated by
NMDA receptors [177, 178]. The use of TMS in humans allows for
the assessment of cortical function in vivo and can inform us
about network characteristics in pathological scenarios such as
neurodegenerative diseases.
Brain oscillations have been largely documented in humans

aided by the use of EEG recordings [13, 50, 114, 179–182], and are
in focus as diagnostic tools, and their manipulation is proposed
as a promising therapeutic approach, particularly for AD
[130, 162, 179, 182–184]. Accordingly, in neurocognitive disorders,
diverse approaches directed at improving or engaging circuits
back into functionally relevant neuronal dynamics have recently
emerged including optogenetic (experimentally), electrical, or
magnetic stimulation [130, 137, 143, 174, 185–190]. The gain-of-
function observed in these studies reinforces the notion that STDP
and brain oscillations bi-directionally cooperate in humans (as
observed in rodent experimental models), and it reveals that by
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manipulating key players in neuronal dynamics it is possible to
promote accurate spike timing in humans.
However, the basal state of the region of interest, the

spontaneous occurring rhythms, and their nesting should be
further considered in future studies. Whether the induction of de
novo formation of neuronal ensembles affects the ongoing
rhythms and STDP, its interaction and firing homeostasis demand
profound studies of the underlying mechanisms.

CONCLUDING REMARKS
Progress has been made towards understanding of how the brain
processes information, stores it, and generates reliable and efficien
outputs in the form of memories, learning, and other cognitive
behaviors. Timing precision is important for brain information
processing and such precision is subjected to diverse features and
properties at neuronal and circuits levels [191]. As such, intrinsic
neuronal resonance and ion channels play important roles in the
timing of neuronal spike generation and this timing is plastic.
Additionally, within neuronal circuits, spike timing precision leads
to STDP and contributes to brain rhythms which are cognitively-
relevant. Finally, STDP and brain rhythms interact bi-directionally,
and the timing precision necessary for both can be aided by glial
cells, whose supportive roles are starting to be uncovered.
However, much more remains to be done to elucidate the circuit
mechanisms operating to provide functional outputs where
timing seems a crucial goal, and comprehensive and careful
translation from animal experimental models to humans should
be done. Particularly, it appears challenging to compare the
oscillations induced by brain stimulation methods with those
resulting from currently emerging methods, specially the sensory-
evoked circuits’ entrainment [143]. Moreover, the validation of the
spike-timing precision underlying STDP and brain rhythms would
probably need to be taken (at least for now) from the inherent
resulting outcomes of human STDP-like and brain oscillations. In
addition, an accurate assessment of the simultaneous occurrence
of brain rhythms and STDP in humans (as it may occur) could find
a plausible approach in the comprehensive combination of TMS or
sensory stimulation and EEG techniques [182, 185, 188, 192, 193].
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