Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Epigenome-wide meta-analysis of prenatal maternal stressful life events and newborn DNA methylation

Abstract

Prenatal maternal stressful life events are associated with adverse neurodevelopmental outcomes in offspring. Biological mechanisms underlying these associations are largely unknown, but DNA methylation likely plays a role. This meta-analysis included twelve non-overlapping cohorts from ten independent longitudinal studies (N = 5,496) within the international Pregnancy and Childhood Epigenetics consortium to examine maternal stressful life events during pregnancy and DNA methylation in cord blood. Children whose mothers reported higher levels of cumulative maternal stressful life events during pregnancy exhibited differential methylation of cg26579032 in ALKBH3. Stressor-specific domains of conflict with family/friends, abuse (physical, sexual, and emotional), and death of a close friend/relative were also associated with differential methylation of CpGs in APTX, MyD88, and both UHRF1 and SDCCAG8, respectively; these genes are implicated in neurodegeneration, immune and cellular functions, regulation of global methylation levels, metabolism, and schizophrenia risk. Thus, differences in DNA methylation at these loci may provide novel insights into potential mechanisms of neurodevelopment in offspring.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Geography of participating cohorts.
Fig. 2: Manhattan plots and related quantile–quantile plots showing sites of DNA methylation in cord blood.
Fig. 3: Forest plot from primary and secondary meta-analyses results.

Similar content being viewed by others

Code availability

The code used for this EWAS meta-analysis is available from the corresponding authors upon reasonable request.

References

  1. Lautarescu A, Craig MC, Glover V. Prenatal stress: effects on fetal and child brain development. Int Rev Neurobiol. 2020;150:17–40.

    Article  PubMed  Google Scholar 

  2. Coussons-Read ME. Effects of prenatal stress on pregnancy and human development: mechanisms and pathways. Obstet Med. 2013;6:52–7.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Orr ST, James SA, Casper R. Psychosocial stressors and low birth weight. J Dev Behav Pediatr. 1992;13:343–7.

    Article  CAS  PubMed  Google Scholar 

  4. Ruiz R, Fullerton J. The measurement of stress in pregnancy. Nurs Health Sci. 1999;1:19–25.

    Article  CAS  PubMed  Google Scholar 

  5. March of Dimes. Stress and Pregnancy. 2023; at https://www.marchofdimes.org/find-support/topics/pregnancy/stress-and-pregnancy.

  6. Brunst KJ, Zhang L, Zhang X, Baccarelli AA, Bloomquist T, Wright RJ. Associations between maternal lifetime stress and placental mitochondrial DNA mutations in an urban multiethnic cohort. Biol Psychiatry. 2021;89:570–8.

    Article  CAS  PubMed  Google Scholar 

  7. Glover V, O’Donnell KJ, O’Connor TG, Fisher J. Prenatal maternal stress, fetal programming, and mechanisms underlying later psychopathology—A global perspective. Dev Psychopathol. 2018;30:843–54.

    Article  PubMed  Google Scholar 

  8. Van den Bergh BRH, van den Heuvel MI, Lahti M, Braeken M, de Rooij SR, Entringer S, et al. Prenatal developmental origins of behavior and mental health: The influence of maternal stress in pregnancy. Neurosci Biobehav Rev. 2017;117:26–64.

    Article  PubMed  Google Scholar 

  9. Araji S, Griffin A, Dixon L, Spencer S-K, Peavie C, Wallace K. An overview of maternal anxiety during pregnancy and the post-partum period. J Ment Health Clin Psychol. 2020;4:47–56.

  10. Dunkel Schetter C, Tanner L. Anxiety, depression and stress in pregnancy: implications for mothers, children, research, and practice. Curr Opin Psychiatry. 2012;25:141–8.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Dunkel Schetter C, Glynn L. Stress in pregnancy: Empirical evidence and theoretical issues to guide interdisciplinary research. In: Contrada RJ, Baum A, editors. The handbook of stress science: biology, psychology, and health. Springer Publishing; 2011;321–47.

  12. Hobel CJ, Goldstein AMY, Barrett ES. Psychosocial stress and pregnancy outcome. Clin Obstet Gynecol. 2008;51:333–48.

    Article  PubMed  Google Scholar 

  13. Wadhwa PD, Entringer S, Buss C, Lu MC. The contribution of maternal stress to preterm birth: issues and considerations. Clin Perinatol. 2011;38:351–84.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Rosa MJ, Nentin F, Bosquet Enlow M, Hacker MR, Pollas N, Coull B, et al. Sex-specific associations between prenatal negative life events and birth outcomes. Stress. 2019;22:647–53.

    Article  PubMed  PubMed Central  Google Scholar 

  15. van Meel ER, Saharan G, Jaddoe VWV, de Jongste JC, Reiss IKM, Tiemeier H, et al. Parental psychological distress during pregnancy and the risk of childhood lower lung function and asthma: a population-based prospective cohort study. Thorax. 2020;75:1074–81.

    Article  PubMed  Google Scholar 

  16. Brunst KJ, Rosa MJ, Jara C, Lipton LR, Lee A, Coull BA, et al. Impact of maternal lifetime interpersonal trauma on childrenʼs asthma. Psychosom Med. 2017;79:91–100.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lee A, Mathilda Chiu YH, Rosa MJ, Jara C, Wright RO, Coull BA, et al. Prenatal and postnatal stress and asthma in children: temporal- and sex-specific associations. J Allergy Clin Immunol. 2016;138:740–7.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lee AG, Chiu YM, Rosa MJ, Cohen S, Coull BA, Wright RO, et al. Association of prenatal and early childhood stress with reduced lung function in 7-year-olds. Ann Allergy Asthma Immunol. 2017;119:153–9.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lahti M, Savolainen K, Tuovinen S, Pesonen A-K, Lahti J, Heinonen K, et al. Maternal depressive symptoms during and after pregnancy and psychiatric problems in children. J Am Acad Child Adolesc Psychiatry. 2017;56:30–9.

    Article  PubMed  Google Scholar 

  20. Herba CM, Glover V, Ramchandani PG, Rondon MB. Maternal depression and mental health in early childhood: an examination of underlying mechanisms in low-income and middle-income countries. Lancet Psychiatry. 2016;3:983–92.

    Article  PubMed  Google Scholar 

  21. Tarabulsy GM, Pearson J, Vaillancourt-Morel M-P, Bussières E-L, Madigan S, Lemelin J-P, et al. Meta-analytic findings of the relation between maternal prenatal stress and anxiety and child cognitive outcome. J Dev Behav Pediatr. 2014;35:38–43.

    Article  PubMed  Google Scholar 

  22. Pearson RM, Bornstein MH, Cordero M, Scerif G, Mahedy L, Evans J, et al. Maternal perinatal mental health and offspring academic achievement at age 16: the mediating role of childhood executive function. J Child Psychol Psychiatry. 2015;57:491–501.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mennes M, Bergh BVD, Lagae L, Stiers P. Developmental brain alterations in 17 year old boys are related to antenatal maternal anxiety. Clin Neurophysiol. 2009;120:1116–22.

    Article  PubMed  Google Scholar 

  24. Bergh BRHVD, Mennes M, Oosterlaan J, Stevens V, Stiers P, Marcoen A, et al. High antenatal maternal anxiety is related to impulsivity during performance on cognitive tasks in 14- and 15-year-olds. Neurosci Biobehav Rev. 2005;29:259–69.

    Article  PubMed  Google Scholar 

  25. Davis EP, Hankin BL, Glynn LM, Head K, Kim DJ, Sandman CA. Prenatal maternal stress, child cortical thickness, and adolescent depressive symptoms. Child Development. 2019;91:e432–50.

  26. Buss C, Davis EP, Muftuler LT, Head K, Sandman CA. High pregnancy anxiety during mid-gestation is associated with decreased gray matter density in 6–9-year-old children. Psychoneuroendocrinology. 2010;35:141–53.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Khashan AS, Abel KM, McNamee R, Pedersen MG, Webb RT, Baker PN, et al. Higher risk of offspring schizophrenia following antenatal maternal exposure to severe adverse life events. Arch Gen Psychiatry. 2008;65:146.

    Article  PubMed  Google Scholar 

  28. Cao-Lei L, de Rooij SR, King S, Matthews SG, Metz GAS, Roseboom TJ, et al. Prenatal stress and epigenetics. Neurosci Biobehav Rev. 2020;117:198–210.

    Article  CAS  PubMed  Google Scholar 

  29. Dadds MR, Moul C, Hawes DJ, Mendoza Diaz A, Brennan J. Individual differences in childhood behavior disorders associated with epigenetic modulation of the cortisol receptor gene. Child Dev. 2015;86:1311–20.

    Article  PubMed  Google Scholar 

  30. Heinrich A, Buchmann AF, Zohsel K, Dukal H, Frank J, Treutlein J, et al. Alterations of glucocorticoid receptor gene methylation in externalizing disorders during childhood and adolescence. Behav Genet. 2015;45:529–36.

    Article  PubMed  Google Scholar 

  31. Radtke KM, Ruf M, Gunter HM, Dohrmann K, Schauer M, Meyer A, et al. Transgenerational impact of intimate partner violence on methylation in the promoter of the glucocorticoid receptor. Transl Psychiatry. 2011;1:e21–e21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Brunst KJ, Tignor N, Just A, Liu Z, Lin X, Hacker MR, et al. Cumulative lifetime maternal stress and epigenome-wide placental DNA methylation in the PRISM cohort. Epigenetics. 2018;13:665–81.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Rijlaarsdam J, Pappa I, Walton E, Bakermans-Kranenburg MJ, Mileva-Seitz VR, Rippe RCA, et al. An epigenome-wide association meta-analysis of prenatal maternal stress in neonates: a model approach for replication. Epigenetics. 2016;11:140–9.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Polinski KJ, Putnick DL, Robinson SL, Schliep KC, Silver RM, Guan W, et al. Periconception and prenatal exposure to maternal perceived stress and cord blood DNA methylation. Epigenet Insights. 2022;15:25168657221082045.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lund RJ, Kyläniemi M, Pettersson N, Kaukonen R, Konki M, Scheinin NM, et al. Placental DNA methylation marks are associated with maternal depressive symptoms during early pregnancy. Neurobiol Stress. 2021;15:100374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tesfaye M, Chatterjee S, Zeng X, Joseph P, Tekola-Ayele F. Impact of depression and stress on placental DNA methylation in ethnically diverse pregnant women. Epigenomics. 2021;13:1485–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bakulski KM, Halladay A, Hu VW, Mill J, Fallin MD. Epigenetic research in neuropsychiatric disorders: the “tissue issue”. Curr Behav Neurosci Rep. 2016;3:264–74.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Felix JF, Joubert BR, Baccarelli AA, Sharp GC, Almqvist C, Annesi-Maesano I, et al. Cohort profile: pregnancy and childhood epigenetics (PACE) consortium. Int J Epidemiol. 2018;47:22–3u.

    Article  PubMed  Google Scholar 

  39. Croft J, Heron J, Teufel C, Cannon M, Wolke D, Thompson A, et al. Association of trauma type, age of exposure, and frequency in childhood and adolescence with psychotic experiences in early adulthood. JAMA Psychiatry. 2019;76:79–86.

    Article  PubMed  Google Scholar 

  40. Miller-Lewis LR, Searle AK, Sawyer MG, Baghurst PA, Hedley D. Resource factors for mental health resilience in early childhood: an analysis with multiple methodologies. Child Adolesc Psychiatry Ment Health. 2013;7:6.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Cortes Hidalgo AP, Tiemeier H, Metcalf SA, Monninger M, Meyer-Lindenberg A, Aggensteiner PM, et al. No robust evidence for an interaction between early-life adversity and protective factors on global and regional brain volumes. Dev Cogn Neurosci. 2022;58:101166.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Chen YA, Lemire M, Choufani S, Butcher DT, Grafodatskaya D, Zanke BW, et al. Discovery of cross-reactive probes and polymorphic CpGs in the Illumina Infinium HumanMethylation450 microarray. Epigenetics. 2013;8:203–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. McCartney DL, Walker RM, Morris SW, McIntosh AM, Porteous DJ, Evans KL. Identification of polymorphic and off-target probe binding sites on the Illumina Infinium MethylationEPIC BeadChip. Genom Data. 2016;9:22–4.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Houseman EA, Accomando WP, Koestler DC, Christensen BC, Marsit CJ, Nelson HH, et al. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinforma. 2012;13:86.

    Article  Google Scholar 

  45. Gervin K, Salas LA, Bakulski KM, van Zelm MC, Koestler DC, Wiencke JK, et al. Systematic evaluation and validation of reference and library selection methods for deconvolution of cord blood DNA methylation data. Clin Epigenetics. 2019;11:125.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Venables WN, Ripley BD. Modern Applied Statistics with S, 4th ed. Springer: New York; 2002. https://www.stats.ox.ac.uk/pub/MASS4/.

  47. Min JL, Hemani G, Davey Smith G, Relton C, Suderman M. Meffil: efficient normalization and analysis of very large DNA methylation datasets. Bioinformatics. 2018;34:3983–89.

  48. Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics. 2010;26:2190–1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21:1539–58.

    Article  PubMed  Google Scholar 

  50. Saffari A, Silver MJ, Zavattari P, Moi L, Columbano A, Meaburn EL, et al. Estimation of a significance threshold for epigenome-wide association studies. Genet Epidemiol. 2017;42:20–33.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Peters TJ, Buckley MJ, Statham AL, Pidsley R, Samaras K, V Lord R, et al. De novo identification of differentially methylated regions in the human genome. Epigenetics Chromatin. 2015;8:6.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Sammallahti S, Cortes Hidalgo AP, Tuominen S, Malmberg A, Mulder RH, Brunst KJ. et al. Maternal anxiety during pregnancy and newborn epigenome-wide DNA methylation. Mol Psychiatry. 2021;26:1832–45.

  53. Rakyan VK, Down TA, Balding DJ, Beck S. Epigenome-wide association studies for common human diseases. Nat Rev Genet. 2011;12:529–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. van Dongen J, Nivard MG, Willemsen G, Hottenga J-J, Helmer Q, Dolan CV, et al. Genetic and environmental influences interact with age and sex in shaping the human methylome. Nat Commun. 2016;7:11115.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Hannon E, Knox O, Sugden K, Burrage J, Wong CCY, Belsky DW, et al. Characterizing genetic and environmental influences on variable DNA methylation using monozygotic and dizygotic twins. PLOS Genet. 2018;14:e1007544.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Min JL, Hemani G, Hannon E, Dekkers KF, Castillo-Fernandez J, Luijk R, et al. Genomic and phenotypic insights from an atlas of genetic effects on DNA methylation. Nat Genet. 2021;53:1311–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Edgar RD, Jones MJ, Meaney MJ, Turecki G, Kobor MS. BECon: a tool for interpreting DNA methylation findings from blood in the context of brain. Transl Psychiatry. 2017;7:e1187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ruiz-Arenas C, Hernandez-Ferrer C, Vives-Usano M, Mari S, Quintela I, Mason D. et al. Identification of autosomal cis expression quantitative trait methylation (cis eQTMs) in children’s blood. eLife. 2022;11:e65310.

  59. Ramesh V, Bayam E, Cernilogar FM, Bonapace IM, Schulze M, Riemenschneider MJ, et al. Loss of Uhrf1 in neural stem cells leads to activation of retroviral elements and delayed neurodegeneration. Genes Dev. 2016;30:2199–212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Schroeder P, Rivalan M, Zaqout S, Kruger C, Schuler J, Long M, et al. Abnormal brain structure and behavior in MyD88-deficient mice. Brain Behav Immun. 2021;91:181–93.

    Article  CAS  PubMed  Google Scholar 

  61. Li G, Forero MG, Wentzell JS, Durmus I, Wolf R, Anthoney NC. et al. A Toll-receptor map underlies structural brain plasticity. eLife. 2020;9:e52743.

  62. Harrison JS, Cornett EM, Goldfarb D, DaRosa PA, Li ZM, Yan F. et al. Hemi-methylated DNA regulates DNA methylation inheritance through allosteric activation of H3 ubiquitylation by UHRF1. eLife. 2016;5:e17101.

  63. Watanabe K, Stringer S, Frei O, Umicevic Mirkov M, de Leeuw C, Polderman TJC, et al. A global overview of pleiotropy and genetic architecture in complex traits. Nat Genet. 2019;51:1339–48.

    Article  CAS  PubMed  Google Scholar 

  64. Hoffman GE, Ma Y, Montgomery KS, Bendl J, Jaiswal MK, Kozlenkov A, et al. Sex differences in the human brain transcriptome of cases with schizophrenia. Biol Psychiatry. 2022;91:92–101.

    Article  CAS  PubMed  Google Scholar 

  65. Flynn M, Whitton L, Donohoe G, Morrison CG, Morris DW. Altered gene regulation as a candidate mechanism by which ciliopathy gene SDCCAG8 contributes to schizophrenia and cognitive function. Hum Mol Genet. 2020;29:407–17.

    Article  CAS  PubMed  Google Scholar 

  66. Hamshere ML, Walters JT, Smith R, Richards AL, Green E, Grozeva D, et al. Genome-wide significant associations in schizophrenia to ITIH3/4, CACNA1C and SDCCAG8, and extensive replication of associations reported by the schizophrenia PGC. Mol Psychiatry. 2013;18:708–12.

    Article  CAS  PubMed  Google Scholar 

  67. Monk C, Lugo-Candelas C, Trumpff C. Prenatal developmental origins of future psychopathology: mechanisms and pathways. Ann Rev Clin Psychol. 2019;15:317–44.

  68. Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010;11:373–84.

    Article  CAS  PubMed  Google Scholar 

  69. Lee Y, Choi I, Kim J, Kim K. DNA damage to human genetic disorders with neurodevelopmental defects. J Genet Med. 2016;13:1–13.

    Article  Google Scholar 

  70. Qi T, Wu Y, Zeng J, Zhang F, Xue A, Jiang L. et al. Identifying gene targets for brain-related traits using transcriptomic and methylomic data from blood. Nat Commun. 2018;9:2282.

  71. Joseph RM. Neuronatin gene: Imprinted and misfolded: Studies in Lafora disease, diabetes and cancer may implicate NNAT-aggregates as a common downstream participant in neuronal loss. Genomics. 2014;103:183–8.

    Article  CAS  PubMed  Google Scholar 

  72. Dunn EC, Soare TW, Zhu Y, Simpkin AJ, Suderman MJ, Klengel T, et al. Sensitive periods for the effect of childhood adversity on DNA methylation: results from a prospective, longitudinal study. Biol Psychiatry. 2019;85:838–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Liu J, Cerutti J, Lussier AA, Zhu Y, Smith BJ, Smith A et al. Socioeconomic changes predict genome-wide DNA methylation in childhood. Hum Mol Genet. 2022;32:709–19.

  74. Lussier AA, Zhu Y, Smith BJ, Simpkin AJ, Smith A, Suderman MJ, et al. Updates to data versions and analytic methods influence the reproducibility of results from epigenome-wide association studies. Epigenetics. 2022;17:1373–88.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Merid SK, Novoloaca A, Sharp GC, Kupers LK, Kho AT, Roy R, et al. Epigenome-wide meta-analysis of blood DNA methylation in newborns and children identifies numerous loci related to gestational age. Genome Med. 2020;12:25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Reese SE, Xu CJ, den Dekker HT, Lee MK, Sikdar S, Ruiz-Arenas C, et al. Epigenome-wide meta-analysis of DNA methylation and childhood asthma. J Allergy Clin Immunol. 2019;143:2062–74.

    Article  CAS  PubMed  Google Scholar 

  77. Maccani JZJ, Koestler DC, Lester B, Houseman EA, Armstrong DA, Kelsey KT, et al. Placental DNA methylation related to both infant toenail mercury and adverse neurobehavioral outcomes. Environ Health Perspect. 2015;123:723–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lee KWK, Richmond R, Hu P, French L, Shin J, Bourdon C, et al. Prenatal exposure to maternal cigarette smoking and dna methylation: epigenome-wide association in a discovery sample of adolescents and replication in an independent cohort at birth through 17 years of age. Environ Health Perspect. 2015;123:193–9.

    Article  PubMed  Google Scholar 

  79. Ghazi T, Naidoo P, Naidoo RN, Chuturgoon AA. Prenatal air pollution exposure and placental dna methylation changes: implications on fetal development and future disease susceptibility. Cells. 2021;10:3025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Alves AC, Cecatti JG, Souza RT. Resilience and stress during pregnancy: a comprehensive multidimensional approach in maternal and perinatal health. Sci World J. 2021;2021:9512854.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Acknowledgements and funding for each of the participating studies are listed in the Supplementary Methods sections.

Author information

Authors and Affiliations

Authors

Contributions

All authors made substantial contributions to conception, design, acquisition of data, and/or analysis and interpretation of data. AKR, SS, APCH, JL and KJB drafted/revised the article. All other authors revised the manuscript critically for important intellectual content and gave final approval of the current version of this article.

Corresponding author

Correspondence to Kelly J. Brunst.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotsakis Ruehlmann, A., Sammallahti, S., Cortés Hidalgo, A.P. et al. Epigenome-wide meta-analysis of prenatal maternal stressful life events and newborn DNA methylation. Mol Psychiatry (2023). https://doi.org/10.1038/s41380-023-02010-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41380-023-02010-5

This article is cited by

Search

Quick links