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GWAS-identified bipolar disorder risk allele in the FADS1/2 gene
region links mood episodes and unsaturated fatty acid
metabolism in mutant mice
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Large-scale genome-wide association studies (GWASs) on bipolar disorder (BD) have implicated the involvement of the fatty acid
desaturase (FADS) locus. These enzymes (FADS1 and FADS2) are involved in the metabolism of eicosapentaenoic acid (EPA) and
docosahexaenoic acid (DHA), which are thought to potentially benefit patients with mood disorders. To model reductions in the
activity of FADS1/2 affected by the susceptibility alleles, we generated mutant mice heterozygously lacking both Fads1/2 genes. We
measured wheel-running activity over six months and observed bipolar swings in activity, including hyperactivity and hypoactivity.
The hyperactivity episodes, in which activity was far above the norm, usually lasted half a day; mice manifested significantly shorter
immobility times on the behavioral despair test performed during these episodes. The hypoactivity episodes, which lasted for
several weeks, were accompanied by abnormal circadian rhythms and a marked decrease in wheel running, a spontaneous
behavior associated with motivation and reward systems. We comprehensively examined lipid composition in the brain and found
that levels of certain lipids were significantly altered between wild-type and the heterozygous mutant mice, but no changes were
consistent with both sexes and either DHA or EPA was not altered. However, supplementation with DHA or a mixture of DHA and
EPA prevented these episodic behavioral changes. Here we propose that heterozygous Fads1/2 knockout mice are a model of BD
with robust constitutive, face, and predictive validity, as administration of the mood stabilizer lithium was also effective. This GWAS-
based model helps to clarify how lipids and their metabolisms are involved in the pathogenesis and treatment of BD.
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INTRODUCTION
Bipolar disorder (BD) is a chronic mental illness characterized by
recurrent manic and depressive episodes interspersed with an
absence of symptoms (a euthymic state). Large-scale genome-
wide association studies (GWASs) have identified dozens of loci
associated with BD [1–3]. Among them, the FADS1/2 region was
first highlighted in Japanese population [1] and replicated in the
large European population [2, 3], being the only locus with a
genome-wide significant difference in multiple populations.
The FADS1 and FADS2 genes on a tight linkage disequilibrium

(LD) block are located head-to-head in the GWAS-identified region
(Supplementary Fig. 1a). These genes encode fatty acid desa-
turases, rate-limiting enzymes involved in the biosynthesis of ω3
(n-3) and ω6 (n-6) long-chain polyunsaturated fatty acids (PUFAs)
(Fig. 1a). Linoleic acid (LA; 18:2n-6), which is abundant in the oils of
grains such as corn, is converted to arachidonic acid (AA; 20:4n-6)
by a two-step desaturating reaction catalyzed by FADS2 and

FADS1. α-Linolenic acid (ALA; 18:3n-3), which is enriched in some
seed oils such as linseed oil, is converted to eicosapentaenoic acid
(EPA; 20:5n-3) by FADS2 and FADS1 and then to docosahexaenoic
acid (DHA; 22:6n-3) by further unsaturation catalyzed by FADS2.
Even before this FADS1/2 genomic region attracted attention as

a locus of BD susceptibility shared across populations, it had
seized the spotlight due to the significant changes in haplotype
diversity (Supplementary Fig. 1b) since humans commenced crop
agriculture [4–6]. The increased intake of grain oils has resulted in
an increase in the proportion of people carrying a haplotype
associated with higher FADS1/2 activity (Haplotype D) [4]. This
haplotype has a protective effect against BD [1–3]. GWASs of
blood lipid composition have also demonstrated a pivotal role of
the FADS1/2 locus in the plasma levels of ω3 and ω6 PUFAs [7].
Consistent with these results, expression quantitative trait loci
(eQTL) analysis suggested that the other major haplotype
(Haplotype A) conferring susceptibility to BD was associated with
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decreased expression of FADS1/2 and likely with lower enzyme
activity [8]. Although the odds ratio for the susceptible alleles is
not high (at most 1.18) [1–3], these evolutional and functional
underpinnings of the locus collectively suggest that an animal
mimicking a decreased, but not completely nullified, activity of
both FADS1/2 can be a valid model and contribute to a better
understanding of the pathogenesis of BD. In the present study, to
generate such a model, we deleted the region containing the
mouse Fads1 and Fads2 genes in a heterozygous manner (referred
to as Fads(Δ/+) mice).
Single knockout (KO) mice deficient in either Fads1 or Fads2

have been investigated prior to our study; [9–15] however, if these
mice are crossed, double KO mice cannot be generated because
these genes are located only approximately 100 kb apart.
Additionally, since studies using single KO mice were conducted
from the perspective of nutrition, they mainly analyzed

homozygous KO mice fed semipurified diets [9–15]. Data on
behavioral phenotypes were not reported so far.
The inverse relationship between seafood consumption and the

prevalence of depression and BD highlights a possible nutritional
or pharmacological effect of ω3 PUFAs, such as DHA and EPA [16].
Several previous studies reported the therapeutic efficacy of ω3
PUFAs for depressive episodes in BD [17, 18], but the results from
randomized clinical trials were debatable [19]. Data on plasma
PUFA levels in patients are also inconsistent; however, recent
studies with the largest sample size to date have reported low
levels of EPA and DHA and high levels of AA in patients with BD
[20]. In addition, studies of lipids in postmortem brains are limited,
with small sample sizes and inconsistent results [21–23]. Moreover,
food and medication can be major confounding factors in human
studies, requiring analysis using animal models that provide
greater experimental control.
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Fig. 1 Generation of mutant mice. a The PUFA biosynthesis pathways. The desaturation reactions of ω3 and ω6 PUFAs are catalyzed by FADS1
(cyan arrows) or FADS2 (yellow arrows). b A strategy for simultaneous generation of alleles using the CRISPR/Cas9 system. A CRISPR/Cas9
cocktail containing two gRNAs that targeted the Fads1/2 genes and two single-stranded DNA donor templates with the loxP sequence
(Supplementary Table 3) was microinjected into mouse fertilized eggs (C57BL/6JJcl strain). Nonhomologous end joining (NHEJ) resulted in the
deletion of ~124 kb (Fads(Δ)) and homology-directed repair (HDR) generated the floxed allele. c Body weight of heterozygous and
homozygous Fads1/2 deficient mice. Fads(Δ/Δ) mice were significantly leaner than the Fads(Δ/+) and WT (Fads(+/+)) mice (*P < 0.05, d= 0.80
and 1.24 [large effect size (ES)], respectively, t-test with Bonferroni correction). Males, 18–33 weeks old. The box length and a horizontal bar
show the interquartile range (IQR) and median, respectively. The length of the whiskers is defined as 1.5 times the upper and lower limits of
the IQR. d Food intake. Daily food intake did not differ by genotype.
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In this study, we established Fads(Δ/+) mice as a preclinical
model of the GWAS-identified risk factor in BD; these mice
exhibited both mania- and depression-like episodic behavioral
changes. To detect these infrequent episodic behavioral changes,
we monitored the wheel-running activity of Fads(Δ/+) mice
continuously for six months. Unlike other locomotor activities,
wheel running in mice is a strongly goal-directed behavior having
a significant reward value [24, 25]; thus, a reduction in wheel
running is associated with “markedly diminished pleasure
(anhedonia)”, a core symptom of a depressive episode [26]. In
addition, we provided proof of concept that long-term supple-
mentation with DHA improved the behavioral abnormalities in the
model mice.

METHODS
Generation of Fads1/2 mutant mice
All animal procedures were approved by the Wako Animal Experiment
Committee of RIKEN (H27-2-233, H29-2-230, W2019-2-040, W2021-2-042).
We developed Fads(Δ/+) and Fads(flox/+) mice by the CRISPR/
Cas9 system, which have been deposited in RIKEN BioResource Center
(RBRC11813 and RBRC11814). A detailed description of the procedure and
animal husbandry is provided in Supplementary Methods.

Determination of the lipid composition
Lipidomics analysis of brain samples was performed using liquid
chromatography (LC)–tandem mass spectrometry (LC-MS/MS). All the
lipidomics data were provided in Supplementary Table 1. Total fatty acid
levels in plasma samples were determined by gas chromatography–mass
spectrometry (GC-MS) analysis. For complete details, see Supplementary
Methods.

Behavioral testing
Recording and analyses of wheel-running activity were performed as
previously described [27, 28]. Hyperactivity bouts and hypoactivity
episodes were defined operationally. Tail suspension test was performed
during hyperactivity bouts. IntelliCage analysis and open-field, splash,
accelerating rotarod, sucrose preference tests were conducted in non-
episodic periods. Detailed procedures are provided in Supplementary
Methods.

Lithium treatment and PUFA supplementation
We prepared a lithium-containing normal chow and PUFA-supplemented
AIN93G diets and fed them to mice. The composition of the diets is
provided in Supplementary Table 2. Since hypoactivity episode frequency
was age-dependent (Supplementary Fig. 2), the effect of lithium was
examined by a two-group, two-period crossover design using a cohort
obtained by a single in-vitro fertilization.

Statistics
U-test, t-test, Fisher’s exact probability test, or analysis of variance (ANOVA)
was used. The Benjamin-Hochberg false discovery rate (FDR) or Bonferroni
correction was applied to correct multiple comparisons. Statistical analyses
were performed using Excel (Microsoft) or R (R Development Core Team).
For all analyses, P < 0.05 was considered statistically significant. Substantive
significance (effect size) was calculated using Cohen’s d for t-test, r for U-
test, η2 for ANOVA, and φ for Fisher’s exact test. d > 0.01, 0.2, 0.5, and 0.8
were considered as very small, small, medium, and large effect sizes,
respectively. r > 0.1, 0.3, 0,5; η2 > 0.01, 0.06, 0.14; and φ > 0.1, 0.3, 0.5 were
considered as small, medium, and large effect sizes, respectively.

RESULTS
Generation of Fads(Δ/+) and Fads(flox/+) mice by CRISPR/
Cas9-mediated genome editing in zygotes
To model the susceptibility haplotype to BD, we generated two
kinds of mutant mice by means of the CRISPR/Cas9 system:
Fads(Δ/+) mice carrying a 124-kb genomic fragment deletion and
Fads(flox/+) mice in which the same deletion occurs in the
presence of Cre recombinase (Fig. 1b). F0 mice carrying either the

Fads(Δ) or Fads(flox) allele were crossed with wild-type (WT) mice
to obtain F1 mice, and we confirmed germline transmission of the
genome-edited alleles. We selected strains of Fads(Δ/+) or
Fads(flox/+) mice that did not harbor damaging mutations due
to possible off-target effects of Cas9 or de novo mutagenesis
through whole-exome sequencing and subsequent genotyping.
Both male and female Fads(Δ/+) mice were fed a normal chow

diet (CRF-1 diet, Jackson Laboratory Japan), which contained fish
meat components, and were fertile. Fads(Δ/Δ) mice were obtained
by intercrossing the heterozygous mice. These Fads(Δ/Δ) mice
weighed significantly less than WT and Fads(Δ/+) mice, even
though they ate the similar amount of the normal chow diet
(Fig. 1c, d). We did not use Fads(Δ/Δ) mice in this study because
they completely lost FADS1/2 and therefore did not model the
results of the GWAS, namely, reduced FADS1/2 activity.
We performed histological staining and found no apparent

difference in gross brain structure between Fads(Δ/+) and WT
mice (Supplementary Fig. 3). We conducted open-field, rotarod,
sucrose preference, and splash tests and revealed that Fads(Δ/+)
mice had a normal sensorimotor function and emotional response
in a euthymic state (Supplementary Fig. 4). Additionally, we
measured the plasma levels of seven inflammatory markers and
detected no changes in Fads(Δ/+) mice (Supplementary Fig. 5).
GWAS analysis on blood fatty acids revealed that the PUFA

composition is affected by the genotype (or haplotype) of FADS1/2
[7]. We measured plasma levels of total fatty acids in Fads(Δ/+)
and WT mice by GC-MS. Intermediate metabolites in the ω6 PUFA
pathway, 18:3n-6 (γ-linolenic acid, GLA) and 20:2n-6 (eicosadienoic
acid, EDA), were significantly decreased and increased, respec-
tively, but no significant change in DHA, EPA, or AA was detected
(Fig. 2a). The changes in the plasma fatty acid levels in Fads(Δ/+)
mice were similar to those observed in BD patients carrying the
susceptibility allele (Saito et al., submitted).

Lipid profiles in the brain and plasma are altered in Fads(Δ/+)
mice fed a normal chow diet
To date, data on the brain lipid compositions are lacking in studies
of single KO mice of Fads1 and Fads2, especially mice fed a normal
chow diet that contained DHA and EPA [9–15], as well as in studies
of human patients. We thus used a targeted lipidomics approach
and measured the levels of 464 lipids (26 different lipid classes, 29
types of fatty acids) by LC-MS/MS in brain samples from male
Fads(Δ/+) and WT mice. Unsupervised hierarchical clustering and
principal component analysis (PCA) based on the 464 lipids
categorized Fads(Δ/+) and WT mice into two distinctive groups
(Fig. 2b, c). To identify the lipids, lipid classes, or fatty acids that
contributed to the overall difference in brain lipid composition, we
looked for lipids that were altered in the mutant mice. Of the lipids
measured, 70 were significantly altered with large effect sizes
(P < 0.05 and d > 0.8). Lipid class enrichment analysis showed that
five classes including phosphatidylcholine (PC) and phosphatidyl-
serine (PS) significantly changed by genotype (Fig. 2d). Fatty acid
enrichment analysis revealed a significant change in 16:0 and 20:1
PUFAs but not ω3 or ω6 PUFAs (Fig. 2e). We also examined the
brain samples from female mice (Supplementary Fig. 6). Although
female Fads(Δ/+) mice had a distinct brain lipid composition as
compared to WT mice, the lipid classes and fatty acids that were
significantly altered differed from those in males. We performed
an orthogonal partial least squares discriminant analysis (OPLS-
DA) to uncover individual lipid molecules contributing to the
lipidomic difference between Fads(Δ/+) and WT mice. There were
no identical molecules in the lipids identified in the comparison
between males and those identified in females (Fig. 2f and
Supplementary Figs. 6e, 7).
Little DHA is synthesized locally in the brain even in WT mice,

and DHA in the brain mainly is derived from the blood [29]. Thus,
we examined the plasma of male Fads(Δ/+) and WT mice in detail
by LC-MS/MS and compared them with changes in brain lipids
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(Fig. 2g and Supplementary Fig. 8). We found that blood and brain
have different lipid changes in response to reduced FADS1/2
activity, and the composition of brain lipids varied less by
genotype and also less between individuals than that in the
blood (Fig. 2g), probably due to robust homeostatic mechanisms
in the brain [29, 30].

Spontaneous behavioral changes, hyperactivity bouts and
hypoactivity episodes in Fads(Δ/+) mice
BD is characterized by recurrent manic and depressive episodes
[26]. To detect these infrequent episodic behavioral changes, the
wheel-running activity of Fads(Δ/+) mice of both sexes fed a
normal chow diet was recorded for six months.
Male Fads(Δ/+) mice showed a marked episodic increase in

wheel-running activity (Fig. 3a, b). This episodic high activity

hereafter referred to as a hyperactivity bout (HAB), typically lasted
approximately half a day (~6 h to 1 day). We operationally defined
HABs as behavioral changes that lasted more than 6 h with
sufficiently heightened activity to be considered a statistical
outlier (see Supplementary Methods for details). Male Fads(Δ/+)
mice exhibited HABs at a significantly higher frequency (~2.4
episodes in 6 months) than that of WT mice (Fig. 3c). Several
female Fads(Δ/+) mice also exhibited HABs, but less frequently
than male Fads(Δ/+) mice (Fig. 3c). HABs were often observed
even during the light period when nocturnal mice should have
been resting or sleeping (Fig. 3a).
It is difficult to verify whether the HABs in Fads(Δ/+) mice

correspond to manic episodes. The DSM-5 criteria for a manic
episode are inapplicable to mice because most of the criteria are
related to subjective experiences [26]. In addition, it was
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impossible to predict when HABs developed, and they lasted only
approximately half a day. Given the limitations of this investiga-
tion, we performed a tail suspension test during HABs, which
required no prior training and only 6 min of testing time. The tail
suspension test is a behavioral despair experiment that has been
used in antidepressant screening (antidepressant administration
shortens immobility time) and that has sometimes been used to
evaluate mouse phenotype in models for depression (in general,
immobility time is increased in depression models) [31]. During
HABs, Fads(Δ/+) mice had shorter immobility times than
concurrently tested littermate Fads(Δ/+) mice during non-
episodic periods (Fig. 3d).
Female Fads(Δ/+) mice also exhibited several weeks of

hypoactivity, and some mice showing these episodes showed
HABs as well (Fig. 3b). These hypoactivity episodes were also
operationally defined according to our previous study [27]. Female
Fads(Δ/+) mice showed a significantly higher frequency of these
hypoactivity episodes (~1.3 episodes in 6 months) than WT mice

(Fig. 3e). As an indicator of circadian rhythm disturbances
associated with the hypoactivity episodes, we used the “delayed
activity index” [27], which reflects the extent to which the mice
continued to run on a wheel even in the light period (i.e.,
morning). This index was more marked during hypoactivity
episodes than during the two-week euthymic state surrounding
the episodes (Fig. 3f). The frequency of hypoactivity episodes with
circadian rhythm disturbances was comparable to that of
depression-like episodes in mutant Polg1 Tg mice, a mouse model
of recurrent depression [27]. No such depression-like episodes
were observed in male mice.

Long-term DHA supplementation prevents depression-like
episodes in Fads(Δ/+) mice
We investigated whether PUFA supplementation (EPA, DHA, or
EPA+ DHA) was effective for treating Fads(Δ/+) mice. We thus
prepared semipurified diets supplemented with EPA and/or DHA
to AIN93G that did not contain fish powder (Supplementary
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Fig. 3 Spontaneous behavioral changes in Fads(Δ/+) mice fed a normal chow diet. a Representative double-plotted actograms of wheel-
running activity in WT (i) and Fads(Δ/+) mice (ii, iii). Arrowheads depict hyperactivity bouts (HABs). b Total daily wheel-running activity for six
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a, respectively. m, male; f, female. c Frequency of HABs. Male Fads(Δ/+) mice exhibited HABs significantly more often than WT mice (*P < 0.05,
r= 0.503 [large ES], U-test). d Immobility time in the tail suspension test during HAB or the euthymic state. The immobility time of Fads(Δ/+)
mice was significantly shorter during HABs (*P < 0.05, d= 1.03 [large ES], t-test). Data for euthymic WTmice are shown as a reference. There is a
significant difference in immobility time between euthymic Fads(Δ/+) mice and euthymic WT mice. e Frequency of depression-like episodes.
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showed significantly higher delayed activity during episodes (***P < 0.001, r= 0.91 and 0.80 [large ES], paired U-test).
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Table 2). Mice were raised until 25 weeks of age on a normal chow
diet, and their wheel-running activity was measured at the time
that they were started on the AIN93G-based diets for six months.
HABs were not observed in Fads(Δ/+) mice of either sex fed the

AIN93G control diet or the PUFA-supplemented diets. This
obviously indicates that diet has a significant effect on the
behavioral changes. However, depression-like episodes were
observed in female Fads(Δ/+) mice fed AIN93G; the frequency
of the hypoactivity episodes was similar to that in normal chow-
fed mice (~1.0 vs. ~1.3 episodes in 6 months). The occurrence of
depression-like episodes was significantly reduced in Fads(Δ/+)
mice fed a DHA-supplemented diet compared to that in mice fed
the AIN93G control diet (Fig. 4a). Supplementation with EPA+
DHA that mimicked the composition of Lotriga (Takeda Pharma-
ceutical) also tended to reduce the frequency of these depression-

like episodes. No apparent effects of the diet supplemented with
EPA alone were observed.
Additionally, we examined the brain lipid composition in

Fads(Δ/+) and WT mice fed 5 different diets (normal chow,
AIN93G, AIN93G+ DHA, AIN93G+ EPA, and AIN93G+ EPA+
DHA) for 2 months. The PCA and unsupervised hierarchical
clustering indicated that the effect of the Fads1/2 genotype was
significantly greater than the effect of the diet on the brain lipid
composition (Fig. 4b and Supplementary Fig. 9). We focused on
the DHA-supplemented diet, which notably prevented the
depression-like episodes (Fig. 4a), and further analyzed its effect
on brain lipid composition. In total, 49 lipids were altered with
statistical and substantive significance in Fads(Δ/+) mice fed a
DHA-supplemented diet compared to those of the mutant mice
fed the control diet. Lipid class enrichment analysis showed that
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PE(P) and PE were significantly altered by diet (Fig. 4c). Fatty acid
enrichment and OPLS-DA analyses revealed a significant increase
in several ω3 fatty acids, such as DGLA and EPA, but in DHA
(Fig. 4d, e and Supplementary Fig.10). Plasma levels of total fatty
acids in these mice were also measured. DHA and EPA were
increased, and AA was decreased significantly in the blood of
DHA-supplemented mutant mice (Fig. 4f), indicating that lipid
metabolism and homeostasis are different in the brain than the
periphery.

Lithium has a prophylactic effect on depression-like episodes
in Fads(Δ/+) mice
To evaluate the predictive validity of these mutant mice as a BD
model, we tested the effects of administering lithium, a mood-
stabilizing treatment for manic and depressive episodes [32]. Since
it is difficult to maintain the therapeutic plasma level of lithium in
male mice for months, likely due to less robustness of lithium
clearance, only female mice were used in this study. To examine
the effect of lithium on depression-like episodes exhibited by
female Fads(Δ/+) mice, we administered a lithium-containing CRF-
1 chow in a two-period crossover design, with each period lasting
for 12 weeks (Fig. 5). After 12 weeks of baseline measurement, the
mice were randomly divided into two groups (A and B). Lithium
significantly decreased the frequency of depression-like episodes
in these mice. In addition, we observed more frequent episodes
after terminating the treatment (Fig. 5), which suggests that
lithium withdrawal triggered new episodes. This finding is similar
to observations in BD patients and another mouse model of mood
disorders [27].

Brain-specific deletion of Fads1/2 had no significant impact on
behavioral phenotypes
In the brain, Fads1 is expressed in both neurons and glia, while
Fads2 is expressed mainly in glial cells and subsets of neurons
according to the Single Cell Portal [33]. Since these enzymes are
also widely expressed in peripheral, non-neural tissues, we next
examined whether the HABs and depression-like episodes in
Fads(Δ/+) mice were caused by abnormal PUFA metabolism in

the brain or by peripheral metabolic disorders. We crossed
Fads(flox/+) mice with Nestin-Cre (NC) mice (a brain-specific Cre
driver) and obtained brain-specific conditional knockout (cKO) mice
of the genotype Fads(flox/+);NC/+, in which Fads1/2 genes were
heterozygously deleted in ~80% of cells in the brain (Supplemen-
tary Fig. 11). These mice and control Fads(+/+);NC/+mice were fed
a normal chow diet, and their wheel-running activity was measured
for six months. Neither male nor female cKO mice exhibited HABs
or depressive-like episodic behavioral changes, in contrast to
Fads(Δ/+) mice (Supplementary Fig. 12). No sleep-wake rhythm
abnormalities were detected either (Supplementary Fig. 13). To
detect non-episodic behavioral phenotypes, we performed a
battery of behavioral tests assessing place learning ability,
impulsivity, attention control, etc. using the IntelliCage [34–36].
We compared Fads cKO mice of both sexes fed a normal chow diet
(under group-feeding conditions) compared with controls and
observed that none of the tested behaviors displayed any
differences (Supplementary Fig. 14). Moreover, there were no
significant changes in the plasma fatty acid levels of Fads cKO mice
compared with those of the controls (Supplementary Fig. 15). These
results suggest that the behavioral abnormalities in Fads(Δ/+) mice
(i.e., the HABs and depression-like episodes) were due not to
reduced FADS1/2 activity in the neurons or astrocytes but to
reduced FADS1/2 activity in the periphery or microglia and
endothelial cells in the brain where NC did not work.

DISCUSSION
In this study, we focused on the FADS1/2 gene region, which was
identified in large-scale GWASs of BD in multiple populations
[1–3]. We generated heterozygous KO mice (Fads(Δ/+)) to clarify
the functional relevancy of the genes and the susceptibility
alleles to BD. Using behavioral and lipidomics approaches, we
confirmed that they have construct, face, and predictive validity
[37] as an animal model of BD. Its high construct validity is
conferred by heterozygous deletion of the Fads1/2 gene, which
mimics the reduced FADS1/2 enzyme activity observed in the BD
risk haplotype. Previously proposed mouse models of mania
[38, 39], such as Clock mutant mice and methamphetamine-
treated mice, had a certain level of construct validity, but most
of them lacked episodic phenotypes. In contrast, Fads(Δ/+) mice
exhibited episodic behavioral changes, depression-like episodes
and HABs (Fig. 3a, b). However, it is fundamentally difficult to
evaluate HABs in mice using the DSM-5 diagnostic criteria for
manic episodes because the primary criterion is an abnormally
and persistently elevated mood, which is a subjective perception
or experience. Other diagnostic criteria, such as inflated self-
esteem and flight of ideas, are also difficult to evaluate in mouse
models. However, the HABs of Fads(Δ/+) mice are considered to
meet the following DSM-5 diagnostic criteria for manic episodes:
a decreased need for sleep and an increase in goal-directed
activity. This is because the mutant mice exhibited sustained
wheel-running activity even in the light phase during days of
HABs (Fig. 3a); wheel running is a goal-directed behavior in
rodents and is closely linked to the reward system [24, 25, 27].
In addition, these mice exhibited decreases in immobility time in
the tail suspension test during HABs (Fig. 3d), which supports
the idea that the HAB is a mania-like episode. Fads(Δ/+) mice
also spontaneously showed hypoactive episodes that lasted for
two weeks or more (Fig. 3b). This behavioral phenotype was
accompanied by abnormal circadian rhythms (Fig. 3f) and is very
similar to the hypoactive episodes exhibited by mutant Polg1 Tg
mice, which satisfied the DSM-5 criteria for depressive episodes
[27, 28]. To the best of our knowledge, these findings indicate
that the Fads(Δ/+) mouse model has the most clinically relevant
face validity for BD to date.
Regarding the predictive validity of this model, we demon-

strated that DHA supplementation (and also DHA+ EPA
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Fig. 5 Prophylactic effect of lithium in Fads(Δ/+) mice. Effect of
lithium treatment on the frequency of depression-like episodes.
There was a significant effect of lithium treatment (P < 0.001,
η2= 0.061 [medium ES], two-way repeated-measures ANOVA). The
episodes were significantly more frequent after treatment was
terminated (Group A in Period 2) than during treatment (Group A in
Period 1) (**P < 0.01, r= 0.583 [large ES], paired U-test). The episode
frequency after treatment was terminated was also higher than that
of another treated group (comparing Group A and Group B in
Period 2) (**P < 0.01, r= 0.373 [medium ES], U-test). Data are
expressed as the means ± s.e.m. Group A, n= 27; Group B, n= 25.
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supplementation) was effective in reducing the frequency of
depression-like episodes (Fig. 4a). Comprehensive lipid analysis
showed that DHA supplement slightly altered the brain lipid
composition of Fads(Δ/+) mice, but did not alter the level of
DHA, nor did it alter the lipid composition to resemble that of
WT mice (Fig. 4b and Supplementary Fig. 16). This result may
reflect strong homeostasis to maintain constant PUFA levels,
especially DHA in the brain. Nevertheless, DHA supplement
exerted the prophylactic effect (Fig. 4a), possibly because it
facilitated the homeostatic responses to lower FADS1/2
activities in Fads(Δ/+) mice. Although seemingly contrary to
the results of the meta-analysis of clinical studies that EPA
supplement, rather than DHA, is more effective in treating BD
[17, 18, 40], clinical studies include the problem of not being
able to control diet and DHA supplement could be particularly
effective in BD patient with FADS1/2 risk allele. Lastly, we
emphasize that lithium treatment also had a prophylactic
effect in these mice (Fig. 5), which further supports the
model’s predictive validity.
One of the limitations of the model is sex differences in the

behavioral phenotypes. Male mice did not experience depression-
like episodes, and female mice exhibited less frequent HABs than
males (Fig. 3c, e). This appears to be inconsistent with the lack of
substantial sex difference in the prevalence of BD [41]. A recent
paper, however, reports that depressive episodes are more frequent
in female patients with BD than in males, which would be consistent
with the fact that BD-II is more prevalent in females [42]. Thus, we
would need to investigate the sex ratio of BD patients who have the
susceptibility allele, as well as their detailed symptoms, in addition to
studying the mechanism underlying the sex differences in Fads(Δ/+)
mice. Another limitation is that we have not been able to evaluate
the efficacy of lithium on male Fads(Δ/+) mice or the effects of other
therapeutic drugs because of the lack of a chronic administration
regimen over a period of several months. Because of the
infrequency of episodic behavioral changes exhibited by this model
(Figs. 3–5), there is an urgent need to establish methods for the
long-term administration of various psychotropic drugs to mice.
Curiously and importantly, brain-specific cKO mice lacked

apparent behavioral phenotypes (Supplementary Figs. 12–14). It
suggests that the reduced activity of FADS1/2 enzymes in
peripheral tissues primarily leads the BD-like episodic beha-
vioral change in Fads(Δ/+) mice. The contribution of microglia
and endothelial cells in the brain, in which Nestin-Cre does not
work in cKO mice, cannot be ruled out, but this is unlikely
because the expression of Fads1/2 is very low. In the systemic
KO mice, plasma inflammatory markers were unaltered
(Supplementary Fig. 5), but blood lipid composition was altered
to a greater extent than in the brain (Fig. 2g). Blood levels of
fatty acids were completely unchanged in cKO mice (Supple-
mentary Fig. 15). Even in animal studies, it will be necessary to
study BD not only as a disease of the brain but also as a
disease of the whole body. Fads(Δ/+) mice, which satisfy all
three validities, will particularly help us to understand the
pathogenesis of BD and develop therapeutic interventions in
patients carrying the FADS1/2 susceptibility allele (approxi-
mately half of all patients with BD).
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