Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Atypical antipsychotics antagonize GABAA receptors in the ventral tegmental area GABA neurons to relieve psychotic behaviors

Abstract

Psychosis is an abnormal mental condition that can cause patients to lose contact with reality. It is a common symptom of schizophrenia, bipolar disorder, sleep deprivation, and other mental disorders. Clinically, antipsychotic medications, such as olanzapine and clozapine, are very effective in treatment for psychosis. To investigate the neural circuit mechanism that is affected by antipsychotics and identify more selective therapeutic targets, we employed a strategy by using these effective antipsychotics to identify antipsychotic neural substrates. We observed that local injection of antipsychotics into the ventral tegmental area (VTA) could reverse the sensorimotor gating defects induced by MK-801 injection in mice. Using in vivo fiber photometry, electrophysiological techniques, and chemogenetics, we found that antipsychotics could activate VTA gamma-aminobutyric acid (GABA) neurons by blocking GABAA receptors. Moreover, we found that the VTAGABA nucleus accumbens (NAc) projection was crucially involved in such antipsychotic effects. In summary, our study identifies a novel therapeutic target for the treatment of psychosis and underscores the utility of a ‘bedside-to-bench’ approach for identifying neural circuits that influence psychotic disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Local infusion of the olanzapine and clozapine into the VTA respectively could enhance the PPI function and reverse the sensorimotor gating injury caused by MK-801 injection in mice.
Fig. 2: Olanzapine and clozapine activate VTA DA and GABA neurons.
Fig. 3: Olanzapine and clozapine reversed the inhibition of VTA DA and GABA neurons induced by MK-801.
Fig. 4: Bidirectional regulation of the VTA GABA neurons, rather than DA neurons, could modulate sensorimotor gating.
Fig. 5: The olanzapine and clozapine antagonized GABAA receptor of the VTA GABA neurons.
Fig. 6: VTAGABA-NAc neural circuit modulated sensorimotor gating.

Similar content being viewed by others

References

  1. Arciniegas DB Psychosis. Continuum: Lifelong Learning in Neurology. 2015;21(3 Behavioral Neurology and Neuropsychiatry):715.

  2. Huang JT-J, Leweke FM, Oxley D, Wang L, Harris N, Koethe D, et al. Disease biomarkers in cerebrospinal fluid of patients with first-onset psychosis. PLoS Med. 2006;3:e428.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Steiner J Psychic retreats: Pathological organizations in psychotic, neurotic and borderline patients: Routledge; 2003.

  4. David AS. Insight and psychosis. Br J Psychiatry. 1990;156:798–808.

    Article  CAS  PubMed  Google Scholar 

  5. Freeman D, Garety PA. Connecting neurosis and psychosis: the direct influence of emotion on delusions and hallucinations. Behav Res Ther. 2003;41:923–47.

    Article  PubMed  Google Scholar 

  6. Gunduz-Bruce H, McMeniman M, Robinson DG, Woerner MG, Kane JM, Schooler NR, et al. Duration of untreated psychosis and time to treatment response for delusions and hallucinations. Am J Psychiatry. 2005;162:1966–9.

    Article  PubMed  Google Scholar 

  7. Rajapakse T, Garcia‐Rosales A, Weerawardene S, Cotton S, Fraser R. Themes of delusions and hallucinations in first‐episode psychosis. Early Interv Psychiatry. 2011;5:254–8.

    Article  PubMed  Google Scholar 

  8. Reeve S, Sheaves B, Freeman D. The role of sleep dysfunction in the occurrence of delusions and hallucinations: a systematic review. Clin Psychol Rev. 2015;42:96–115.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Jones I, Chandra PS, Dazzan P, Howard LM. Bipolar disorder, affective psychosis, and schizophrenia in pregnancy and the post-partum period. Lancet. 2014;384:1789–99.

    Article  PubMed  Google Scholar 

  10. Leboyer M, Soreca I, Scott J, Frye M, Henry C, Tamouza R, et al. Can bipolar disorder be viewed as a multi-system inflammatory disease? J Affect Disord. 2012;141:1–10.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Meyer F, Meyer TD. The misdiagnosis of bipolar disorder as a psychotic disorder: some of its causes and their influence on therapy. J Affect Disord. 2009;112:174–83.

    Article  PubMed  Google Scholar 

  12. Waters F, Chiu V, Atkinson A, Blom JD. Severe sleep deprivation causes hallucinations and a gradual progression toward psychosis with increasing time awake. Front Psychiatry. 2018;9:303.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kumari V, Premkumar P, Fannon D, Aasen I, Raghuvanshi S, Anilkumar AP, et al. Sensorimotor gating and clinical outcome following cognitive behaviour therapy for psychosis. Schizophrenia Res. 2012;134:232–8.

    Article  Google Scholar 

  14. Quednow BB, Frommann I, Berning J, Kühn K-U, Maier W, Wagner M. Impaired sensorimotor gating of the acoustic startle response in the prodrome of schizophrenia. Biol Psychiatry. 2008;64:766–73.

    Article  PubMed  Google Scholar 

  15. Swerdlow NR, Geyer MA. Using an animal model of deficient sensorimotor gating to study the pathophysiology and new treatments of schizophrenia. Schizophrenia Bull. 1998;24:285–301.

    Article  CAS  Google Scholar 

  16. Braff DL, Geyer MA. Sensorimotor gating and schizophrenia: human and animal model studies. Arch Gen Psychiatry. 1990;47:181–8.

    Article  CAS  PubMed  Google Scholar 

  17. Geyer M, McIlwain K, Paylor R. Mouse genetic models for prepulse inhibition: an early review. Mol Psychiatry. 2002;7:1039–53.

    Article  CAS  PubMed  Google Scholar 

  18. Kohl S, Heekeren K, Klosterkötter J, Kuhn J. Prepulse inhibition in psychiatric disorders–apart from schizophrenia. J Psychiatr Res. 2013;47:445–52.

    Article  CAS  PubMed  Google Scholar 

  19. Swerdlow N, Geyer M, Braff D. Neural circuit regulation of prepulse inhibition of startle in the rat: current knowledge and future challenges. Psychopharmacology 2001;156:194–215.

    Article  CAS  PubMed  Google Scholar 

  20. Braff DL, Geyer MA, Light GA, Sprock J, Perry W, Cadenhead KS, et al. Impact of prepulse characteristics on the detection of sensorimotor gating deficits in schizophrenia. Schizophrenia Res. 2001;49:171–8.

    Article  CAS  Google Scholar 

  21. Cheng C-H, Chan P-YS, Hsu S-C, Liu C-Y. Meta-analysis of sensorimotor gating in patients with autism spectrum disorders. Psychiatry Res. 2018;262:413–9.

    Article  PubMed  Google Scholar 

  22. Minassian A, Feifel D, Perry W. The relationship between sensorimotor gating and clinical improvement in acutely ill schizophrenia patients. Schizophrenia Res. 2007;89:225–31.

    Article  Google Scholar 

  23. Perry W, Minassian A, Feifel D, Braff DL. Sensorimotor gating deficits in bipolar disorder patients with acute psychotic mania. Biol Psychiatry. 2001;50:418–24.

    Article  CAS  PubMed  Google Scholar 

  24. Swerdlow NR, Benbow C, Zisook S, Geyer MA, Braff D. A preliminary assessment of sensorimotor gating in patients with obsessive compulsive disorder. Biol Psychiatry. 1993;33:298–301.

    Article  CAS  PubMed  Google Scholar 

  25. Lally J, MacCabe JH. Antipsychotic medication in schizophrenia: a review. Br Med Bull. 2015;114:169–79.

    Article  CAS  PubMed  Google Scholar 

  26. Perkins DO, Johnson JL, Hamer RM, Zipursky RB, Keefe RS, Centorrhino F, et al. Predictors of antipsychotic medication adherence in patients recovering from a first psychotic episode. Schizophrenia Res. 2006;83:53–63.

    Article  Google Scholar 

  27. Radua J, Borgwardt S, Crescini A, Mataix-Cols D, Meyer-Lindenberg A, McGuire P, et al. Multimodal meta-analysis of structural and functional brain changes in first episode psychosis and the effects of antipsychotic medication. Neurosci Biobehav Rev. 2012;36:2325–33.

    Article  CAS  PubMed  Google Scholar 

  28. Wils RS, Gotfredsen DR, Hjorthøj C, Austin SF, Albert N, Secher RG, et al. Antipsychotic medication and remission of psychotic symptoms 10 years after a first-episode psychosis. Schizophrenia Res. 2017;182:42–8.

    Article  Google Scholar 

  29. Aringhieri S, Carli M, Kolachalam S, Verdesca V, Cini E, Rossi M, et al. Molecular targets of atypical antipsychotics: From mechanism of action to clinical differences. Pharmacol Ther. 2018;192:20–41.

    Article  CAS  PubMed  Google Scholar 

  30. Horacek J, Bubenikova-Valesova V, Kopecek M, Palenicek T, Dockery C, Mohr P, et al. Mechanism of action of atypical antipsychotic drugs and the neurobiology of schizophrenia. CNS Drugs. 2006;20:389–409.

    Article  CAS  PubMed  Google Scholar 

  31. Seeman P. Atypical antipsychotics: mechanism of action. Focus. 2004;47:27–58.

    Google Scholar 

  32. Aichhorn W, Whitworth AB, Weiss EM, Marksteiner J. Second-generation antipsychotics. Drug Saf. 2006;29:587–98.

    Article  CAS  PubMed  Google Scholar 

  33. De Hert M, Hudyana H, Dockx L, Bernagie C, Sweers K, Tack J, et al. Second-generation antipsychotics and constipation: a review of the literature. Eur Psychiatry. 2011;26:34–44.

    Article  PubMed  Google Scholar 

  34. Agid O, Remington G, Kapur S, Arenovich T, Zipursky RB. Early use of clozapine for poorly responding first-episode psychosis. J Clin Psychopharmacol. 2007;27:369–73.

    Article  CAS  PubMed  Google Scholar 

  35. Graham KA, Perkins DO, Edwards LJ, Barrier RC Jr, Lieberman JA, Harp JB. Effect of olanzapine on body composition and energy expenditure in adults with first-episode psychosis. Am J Psychiatry. 2005;162:118–23.

    Article  PubMed  Google Scholar 

  36. Green AI, Tohen M, Patel JK, Banov M, DuRand C, Berman I, et al. Clozapine in the treatment of refractory psychotic mania. Am J Psychiatry. 2000;157:982–6.

    Article  CAS  PubMed  Google Scholar 

  37. McElroy SL, Dessain EC, Pope HG, Cole JO, Keck P, Frankenberg F, et al. Clozapine in the treatment of psychotic mood disorders, schizoaffective disorder, and schizophrenia. J Clin Psychiatry. 1991;52:411–4.

    CAS  PubMed  Google Scholar 

  38. Rothschild AJ, Bates KS, Syed A. Olanzapine response in psychotic depression. J Clin Psychiatry. 1999;60:116–8.

    Article  CAS  PubMed  Google Scholar 

  39. Sanger TM, Lieberman JA, Tohen M, Grundy S, Beasley J, Charles, et al. Olanzapine versus haloperidol treatment in first-episode psychosis. Am J Psychiatry. 1999;156:79–87.

    Article  CAS  PubMed  Google Scholar 

  40. Reynolds GP, Kirk SL. Metabolic side effects of antipsychotic drug treatment–pharmacological mechanisms. Pharmacol Ther. 2010;125:169–79.

    Article  CAS  PubMed  Google Scholar 

  41. Tschoner A, Engl J, Laimer M, Kaser S, Rettenbacher M, Fleischhacker W, et al. Metabolic side effects of antipsychotic medication. Int J Clin Pract. 2007;61:1356–70.

    Article  CAS  PubMed  Google Scholar 

  42. Cohen JY, Haesler S, Vong L, Lowell BB, Uchida N. Neuron-type-specific signals for reward and punishment in the ventral tegmental area. Nature. 2012;482:85–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. D’Ardenne K, McClure SM, Nystrom LE, Cohen JD. BOLD responses reflecting dopaminergic signals in the human ventral tegmental area. Science. 2008;319:1264–7.

    Article  PubMed  Google Scholar 

  44. Lammel S, Lim BK, Ran C, Huang KW, Betley MJ, Tye KM, et al. Input-specific control of reward and aversion in the ventral tegmental area. Nature. 2012;491:212–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Morales M, Margolis EB. Ventral tegmental area: cellular heterogeneity, connectivity and behaviour. Nat Rev Neurosci. 2017;18:73–85.

    Article  CAS  PubMed  Google Scholar 

  46. Gao Z, Wang H, Lu C, Lu T, Froudist-Walsh S, Chen M, et al. The neural basis of delayed gratification. Sci Adv. 2021;7:eabg6611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Giordano GM, Stanziano M, Papa M, Mucci A, Prinster A, Soricelli A, et al. Functional connectivity of the ventral tegmental area and avolition in subjects with schizophrenia: a resting state functional MRI study. Eur Neuropsychopharmacol. 2018;28:589–602.

    Article  CAS  PubMed  Google Scholar 

  48. Hadley JA, Nenert R, Kraguljac NV, Bolding MS, White DM, Skidmore FM, et al. Ventral tegmental area/midbrain functional connectivity and response to antipsychotic medication in schizophrenia. Neuropsychopharmacology. 2014;39:1020–30.

    Article  CAS  PubMed  Google Scholar 

  49. Lisman JE, Pi HJ, Zhang Y, Otmakhova NA. A thalamo-hippocampal-ventral tegmental area loop may produce the positive feedback that underlies the psychotic break in schizophrenia. Biol Psychiatry. 2010;68:17–24.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Rausch F, Mier D, Eifler S, Esslinger C, Schilling C, Schirmbeck F, et al. Reduced activation in ventral striatum and ventral tegmental area during probabilistic decision-making in schizophrenia. Schizophrenia Res. 2014;156:143–9.

    Article  Google Scholar 

  51. Rice MW, Roberts RC, Melendez-Ferro M, Perez-Costas E. Mapping dopaminergic deficiencies in the substantia nigra/ventral tegmental area in schizophrenia. Brain Struct Funct. 2016;221:185–201.

    Article  CAS  PubMed  Google Scholar 

  52. Sotoyama H, Namba H, Kobayashi Y, Hasegawa T, Watanabe D, Nakatsukasa E, et al. Resting-state dopaminergic cell firing in the ventral tegmental area negatively regulates affiliative social interactions in a developmental animal model of schizophrenia. Transl Psychiatry. 2021;11:1–11.

    Article  Google Scholar 

  53. Yamashita F, Sasaki M, Fukumoto K, Otsuka K, Uwano I, Kameda H, et al. Detection of changes in the ventral tegmental area of patients with schizophrenia using neuromelanin-sensitive MRI. Neuroreport. 2016;27:289–94.

    Article  CAS  PubMed  Google Scholar 

  54. Köhler S, Wagner G, Bär KJ. Activation of brainstem and midbrain nuclei during cognitive control in medicated patients with schizophrenia. Hum Brain Mapp. 2019;40:202–13.

    Article  PubMed  Google Scholar 

  55. Yang Y, Cui Y, Sang K, Dong Y, Ni Z, Ma S, et al. Ketamine blocks bursting in the lateral habenula to rapidly relieve depression. Nature. 2018;554:317–22.

    Article  CAS  PubMed  Google Scholar 

  56. Long LE, Malone DT, Taylor DA. Cannabidiol reverses MK-801-induced disruption of prepulse inhibition in mice. Neuropsychopharmacology. 2006;31:795–803.

    Article  CAS  PubMed  Google Scholar 

  57. Yuan Y, Wu W, Chen M, Cai F, Fan C, Shen W, et al. Reward inhibits paraventricular CRH neurons to relieve stress. Curr Biol. 2019;29:1243–51.e4.

    Article  CAS  PubMed  Google Scholar 

  58. Nutt DJ, Malizia AL. New insights into the role of the GABAA–benzodiazepine receptor in psychiatric disorder. Br J Psychiatry. 2001;179:390–6.

    Article  CAS  PubMed  Google Scholar 

  59. Riss J, Cloyd J, Gates J, Collins S. Benzodiazepines in epilepsy: pharmacology and pharmacokinetics. Acta Neurol Scand. 2008;118:69–86.

    Article  CAS  PubMed  Google Scholar 

  60. Sigel E. Mapping of the benzodiazepine recognition site on GABA-A receptors. Curr Top Med Chem. 2002;2:833–9.

    Article  CAS  PubMed  Google Scholar 

  61. Kim JJ, Gharpure A, Teng J, Zhuang Y, Howard RJ, Zhu S, et al. Shared structural mechanisms of general anaesthetics and benzodiazepines. Nature. 2020;585:303–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhu S, Noviello CM, Teng J, Walsh RM, Kim JJ, Hibbs RE. Structure of a human synaptic GABAA receptor. Nature. 2018;559:67–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sigel E, Luscher P. B. A closer look at the high affinity benzodiazepine binding site on GABAA receptors. Curr Top Med Chem. 2011;11:241–6.

    Article  CAS  PubMed  Google Scholar 

  64. Sigel E, Ernst M. The benzodiazepine binding sites of GABAA receptors. Trends Pharmacol Sci. 2018;39:659–71.

    Article  CAS  PubMed  Google Scholar 

  65. Laverty D, Desai R, Uchański T, Masiulis S, Stec WJ, Malinauskas T, et al. Cryo-EM structure of the human α1β3γ2 GABAA receptor in a lipid bilayer. Nature. 2019;565:516–20.

    Article  CAS  PubMed  Google Scholar 

  66. Kasaragod VB, Mortensen M, Hardwick SW, Wahid AA, Dorovykh V, Chirgadze DY, et al. Mechanisms of inhibition and activation of extrasynaptic αβ GABAA receptors. Nature. 2022;602:529–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sente A, Desai R, Naydenova K, Malinauskas T, Jounaidi Y, Miehling J, et al. Differential assembly diversifies GABAA receptor structures and signalling. Nature. 2022;604:190–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Jacob TC, Moss SJ, Jurd R. GABAA receptor trafficking and its role in the dynamic modulation of neuronal inhibition. Nat Rev Neurosci. 2008;9:331–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Masiulis S, Desai R, Uchański T, Serna Martin I, Laverty D, Karia D, et al. GABAA receptor signalling mechanisms revealed by structural pharmacology. Nature. 2019;565:454–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bocklisch C, Pascoli V, Wong JC, House DR, Yvon C, De Roo M, et al. Cocaine disinhibits dopamine neurons by potentiation of GABA transmission in the ventral tegmental area. Science. 2013;341:1521–5.

    Article  CAS  PubMed  Google Scholar 

  71. Brown MT, Tan KR, O’Connor EC, Nikonenko I, Muller D, Lüscher C. Ventral tegmental area GABA projections pause accumbal cholinergic interneurons to enhance associative learning. Nature. 2012;492:452–6.

    Article  CAS  PubMed  Google Scholar 

  72. Lee R-S, Steffensen SC, Henriksen SJ. Discharge profiles of ventral tegmental area GABA neurons during movement, anesthesia, and the sleep–wake cycle. J Neurosci. 2001;21:1757–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lowes DC, Chamberlin LA, Kretsge LN, Holt ES, Abbas AI, Park AJ, et al. Ventral tegmental area GABA neurons mediate stress-induced blunted reward-seeking in mice. Nat Commun. 2021;12:1–13.

    Article  Google Scholar 

  74. Tan KR, Yvon C, Turiault M, Mirzabekov JJ, Doehner J, Labouèbe G, et al. GABA neurons of the VTA drive conditioned place aversion. Neuron. 2012;73:1173–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. van Zessen R, Phillips JL, Budygin EA, Stuber GD. Activation of VTA GABA neurons disrupts reward consumption. Neuron. 2012;73:1184–94.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Abi-Dargham A, Laruelle M. Mechanisms of action of second generation antipsychotic drugs in schizophrenia: insights from brain imaging studies. Eur Psychiatry. 2005;20:15–27.

    Article  PubMed  Google Scholar 

  77. Miyamoto S, Duncan G, Marx C, Lieberman J. Treatments for schizophrenia: a critical review of pharmacology and mechanisms of action of antipsychotic drugs. Mol Psychiatry. 2005;10:79–104.

    Article  CAS  PubMed  Google Scholar 

  78. Reynolds GP. Receptor mechanisms in the treatment of schizophrenia. J Psychopharmacol. 2004;18:340–5.

    Article  CAS  PubMed  Google Scholar 

  79. Padgett CL, Slesinger PA. GABAB receptor coupling to G-proteins and ion channels. Adv Pharmacol. 2010;58:123–47.

    Article  CAS  PubMed  Google Scholar 

  80. Sigel E, Steinmann ME. Structure, function, and modulation of GABAA receptors. J Biol Chem. 2012;287:40224–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhu S, Noviello CM, Teng J, Walsh RM, Kim JJ, Hibbs RE. Structure of a human synaptic GABA A receptor. Nature. 2018;559:67–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Rudolph U, Knoflach F. Beyond classical benzodiazepines: novel therapeutic potential of GABA A receptor subtypes. Nat Rev Drug Discov. 2011;10:685–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Matsui A, Jarvie BC, Robinson BG, Hentges ST, Williams JT. Separate GABA afferents to dopamine neurons mediate acute action of opioids, development of tolerance, and expression of withdrawal. Neuron. 2014;82:1346–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tossell K, Dodhia RA, Galet B, Tkachuk O, Ungless MA. Tonic GABAergic inhibition, via GABAA receptors containing αβƐ subunits, regulates excitability of ventral tegmental area dopamine neurons. Eur J Neurosci. 2021;53:1722–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Petri S, Krampfl K, Dengler R, Bufler J, Weindl A, Arzberger T. Human GABAA receptors on dopaminergic neurons in the pars compacta of the substantia nigra. J Comp Neurol. 2002;452:360–6.

    Article  CAS  PubMed  Google Scholar 

  86. Lobb CJ, Wilson CJ, Paladini CA. A dynamic role for GABA receptors on the firing pattern of midbrain dopaminergic neurons. J Neurophysiol. 2010;104:403–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tepper J, Martin L, Anderson D. GABAA receptor-mediated inhibition of rat substantia nigra dopaminergic neurons by pars reticulata projection neurons. J Neurosci. 1995;15:3092–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Bagdy E, Kiraly I, Harsing LG. Reciprocal innervation between serotonergic and GABAergic neurons in raphe nuclei of the rat. Neurochem Res. 2000;25:1465–73.

    Article  CAS  PubMed  Google Scholar 

  89. Tao R, Auerbach SB. μ-Opioids disinhibit and κ-opioids inhibit serotonin efflux in the dorsal raphe nucleus. Brain Res. 2005;1049:70–9.

    Article  CAS  PubMed  Google Scholar 

  90. Celada P, Puig MV, Artigas F. Serotonin modulation of cortical neurons and networks. Front Integr Neurosci. 2013;7:25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Garcia-Alloza M, Hirst W, Chen C, Lasheras B, Francis P, Ramirez M. Differential involvement of 5-HT1B/1D and 5-HT6 receptors in cognitive and non-cognitive symptoms in Alzheimer’s disease. Neuropsychopharmacology. 2004;29:410–6.

    Article  CAS  PubMed  Google Scholar 

  92. Teixeira CM, Rosen ZB, Suri D, Sun Q, Hersh M, Sargin D, et al. Hippocampal 5-HT input regulates memory formation and Schaffer collateral excitation. Neuron. 2018;98:992–1004.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Grace AA. Dysregulation of the dopamine system in the pathophysiology of schizophrenia and depression. Nat Rev Neurosci. 2016;17:524–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Tye KM, Mirzabekov JJ, Warden MR, Ferenczi EA, Tsai H-C, Finkelstein J, et al. Dopamine neurons modulate neural encoding and expression of depression-related behaviour. Nature. 2013;493:537–41.

    Article  CAS  PubMed  Google Scholar 

  95. Sharma T, Hughes C, Soni W, Kumari V. Cognitive effects of olanzapine and clozapine treatment in chronic schizophrenia. Psychopharmacology 2003;169:398–403.

    Article  CAS  PubMed  Google Scholar 

  96. Meltzer HY, McGurk SR. The effects of clozapine, risperidone, and olanzapine on cognitive function in schizophrenia. Schizophrenia Bull. 1999;25:233–56.

    Article  CAS  Google Scholar 

  97. Del Fabro L, Delvecchio G, D’Agostino A, Brambilla P. Effects of olanzapine during cognitive and emotional processing in schizophrenia: A review of functional magnetic resonance imaging findings. Hum Psychopharmacol: Clin Exp. 2019;34:e2693.

    Article  Google Scholar 

  98. Breton JM, Charbit AR, Snyder BJ, Fong PT, Dias EV, Himmels P, et al. Relative contributions and mapping of ventral tegmental area dopamine and GABA neurons by projection target in the rat. J Comp Neurol. 2019;527:916–41.

    Article  CAS  PubMed  Google Scholar 

  99. Taylor SR, Badurek S, Dileone RJ, Nashmi R, Minichiello L, Picciotto MR. GABAergic and glutamatergic efferents of the mouse ventral tegmental area. J Comp Neurol. 2014;522:3308–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Forns-Nadal M, Bergé D, Sem F, Mané A, Igual L, Guinart D, et al. Increased nucleus accumbens volume in first-episode psychosis. Psychiatry Res: Neuroimaging. 2017;263:57–60.

    Article  PubMed  Google Scholar 

  101. Ma J, Leung LS. Deep brain stimulation of the medial septum or nucleus accumbens alleviates psychosis-relevant behavior in ketamine-treated rats. Behav Brain Res. 2014;266:174–82.

    Article  CAS  PubMed  Google Scholar 

  102. Ma J, Leung LS. Dual effects of limbic seizures on psychosis-relevant behaviors shown by nucleus accumbens kindling in rats. Brain Stimul. 2016;9:762–9.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Whittaker JR, Foley SF, Ackling E, Murphy K, Caseras X. The functional connectivity between the nucleus accumbens and the ventromedial prefrontal cortex as an endophenotype for bipolar disorder. Biol Psychiatry. 2018;84:803–9.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Salgado S, Kaplitt MG. The nucleus accumbens: a comprehensive review. Stereotact Funct Neurosurg. 2015;93:75–93.

    Article  PubMed  Google Scholar 

  105. Powell EW, Leman RB. Connections of the nucleus accumbens. Brain Res. 1976;105:389–403.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all members of Hu lab at ShanghaiTech University and Sun lab at the Chinese Institute for Brain Research. This work was supported by STI2030-Major Projects (grant no. 2021ZD0202800 to WS and grant no. 2021ZD0203900 to XNZ) and the National Natural Science Foundation of China (grant nos. 32192414, 61890951 and 61890950 to JH; grant no. 81701049 to XNZ).

Author information

Authors and Affiliations

Authors

Contributions

JH, WS, XNZ, and CL conceived the study and wrote the manuscript. CL, XNZ and YFF acquired and analyzed the data. CL did the in vivo fiber photometry. XNZ did the in vitro electrophysiology. CL and YFF performed all the behavioral experiments. WZA, JL, ZLG, HQL, MC, FC, SLZ and HXL contributed to data collection, data analysis and interpretation. All authors contributed to the discussion and analysis of the results.

Corresponding authors

Correspondence to Xiaona Zhu, Wenzhi Sun or Ji Hu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, C., Zhu, X., Feng, Y. et al. Atypical antipsychotics antagonize GABAA receptors in the ventral tegmental area GABA neurons to relieve psychotic behaviors. Mol Psychiatry 28, 2107–2121 (2023). https://doi.org/10.1038/s41380-023-01982-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-023-01982-8

This article is cited by

Search

Quick links