Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The cytoplasmic localization of ADNP through 14-3-3 promotes sex-dependent neuronal morphogenesis, cortical connectivity, and calcium signaling

Abstract

Defective neuritogenesis is a contributing pathogenic mechanism underlying a variety of neurodevelopmental disorders. Single gene mutations in activity-dependent neuroprotective protein (ADNP) are the most frequent among autism spectrum disorders (ASDs) leading to the ADNP syndrome. Previous studies showed that during neuritogenesis, Adnp localizes to the cytoplasm/neurites, and Adnp knockdown inhibits neuritogenesis in culture. Here, we hypothesized that Adnp is localized in the cytoplasm during neurite formation and that this process is mediated by 14-3-3. Indeed, applying the 14-3-3 inhibitor, difopein, blocked Adnp cytoplasmic localization. Furthermore, co-immunoprecipitations showed that Adnp bound 14-3-3 proteins and proteomic analysis identified several potential phosphorylation-dependent Adnp/14-3-3 binding sites. We further discovered that knockdown of Adnp using in utero electroporation of mouse layer 2/3 pyramidal neurons in the somatosensory cortex led to previously unreported changes in neurite formation beginning at P0. Defects were sustained throughout development, the most notable included increased basal dendrite number and axon length. Paralleling the observed morphological aberrations, ex vivo calcium imaging revealed that Adnp deficient neurons had greater and more frequent spontaneous calcium influx in female mice. GRAPHIC, a novel synaptic tracing technology substantiated this finding, revealing increased interhemispheric connectivity between female Adnp deficient layer 2/3 pyramidal neurons. We conclude that Adnp is localized to the cytoplasm by 14-3-3 proteins, where it regulates neurite formation, maturation, and functional cortical connectivity significantly building on our current understanding of Adnp function and the etiology of ADNP syndrome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Adnp localization shifts from the nucleus to the cytoplasm as cortical neurons undergo neurite formation, and 14-3-3 inhibition traps Adnp in the nucleus.
Fig. 2: Adnp regulates multiple aspects of neurite formation in vitro.
Fig. 3: Live imaging reveals that deficits in neuritogenesis due to Adnp knockdown begin at P0.
Fig. 4: Adnp knockdown increases basal dendritic development and axon outgrowth in vivo.
Fig. 5: Adnp deficient cells in female mice exhibit increased spontaneous calcium signaling in interhemispheric cortical connectivity.

Similar content being viewed by others

References

  1. Reese D, Drapeau P. Neurite growth patterns leading to functional synapses in an identified embryonic neuron. J Neurosci: Off J Soc Neurosci. 1998;18:5652–62.

    Article  CAS  Google Scholar 

  2. Yi G, Wang J, Wei X, Deng B. Dendritic properties control energy efficiency of action potentials in cortical pyramidal cells. Front Cell Neurosci. 2017;11:265.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bradke F, Dotti CG. Establishment of neuronal polarity: Lessons from cultured hippocampal neurons. Curr Opin Neurobiol. 2000;10:574–81.

    Article  CAS  PubMed  Google Scholar 

  4. da Silva JS, Dotti CG. Breaking the neuronal sphere: Regulation of the actin cytoskeleton in neuritogenesis. Nat Rev Neurosci. 2002;3:694–704.

    Article  PubMed  Google Scholar 

  5. Dotti CG, Sullivan CA, Banker GA. The establishment of polarity by hippocampal neurons in culture. J Neurosci: Off J Soc Neurosci. 1988;8:1454–68.

    Article  CAS  Google Scholar 

  6. Craig AM, Banker G. Neuronal polarity. Annu Rev Neurosci. 1994;17:267–310.

    Article  CAS  PubMed  Google Scholar 

  7. Bennison SA, Blazejewski SM, Smith TH, Toyo-Oka K. Protein kinases: Master regulators of neuritogenesis and therapeutic targets for axon regeneration. Cell Mol life Sci: CMLS. 2019;77:1511–30.

    Article  PubMed  Google Scholar 

  8. Cornell B, Wachi T, Zhukarev V, Toyo-Oka K. Regulation of neuronal morphogenesis by 14-3-3epsilon (Ywhae) via the microtubule binding protein, doublecortin. Hum Mol Genet. 2016;25:4405–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang S-X, Duan L-H, Qian H, Yu X. Actin aggregations mark the sites of neurite initiation. Neurosci Bull. 2016;32:1–15.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zhang S-X, Duan L-H, He S-J, Zhuang G-F, Yu X. Phosphatidylinositol 3,4-bisphosphate regulates neurite initiation and dendrite morphogenesis via actin aggregation. Cell Res. 2017;27:253–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dehmelt L, Halpain S. Actin and microtubules in neurite initiation: Are MAPs the missing link? J Neurobiol. 2004;58:18–33.

    Article  CAS  PubMed  Google Scholar 

  12. Dehmelt L, Nalbant P, Steffen W, Halpain S. A microtubule-based, dynein-dependent force induces local cell protrusions: Implications for neurite initiation. Brain Cell Biol. 2006;35:39–56.

    Article  CAS  PubMed  Google Scholar 

  13. Flynn KC. The cytoskeleton and neurite initiation. Bioarchitecture. 2013;3:86–109.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lu W, Fox P, Lakonishok M, Davidson MW, Gelfand VI. Initial neurite outgrowth in Drosophila neurons is driven by kinesin-powered microtubule sliding. Curr Biol: CB. 2013;23:1018–23.

    Article  CAS  PubMed  Google Scholar 

  15. Hausser M, Spruston N, Stuart GJ. Diversity and dynamics of dendritic signaling. Science (NY). 2000;290:739–44.

    Article  CAS  Google Scholar 

  16. Gipson CD, Olive MF. Structural and functional plasticity of dendritic spines - root or result of behavior? Genes Brain Behav. 2017;16:101–17.

    Article  CAS  PubMed  Google Scholar 

  17. Yuste R, Denk W. Dendritic spines as basic functional units of neuronal integration. Nature. 1995;375:682–4.

    Article  CAS  PubMed  Google Scholar 

  18. Ozeki Y, Tomoda T, Kleiderlein J, Kamiya A, Bord L, Fujii K, et al. Disrupted-in-Schizophrenia-1 (DISC-1): mutant truncation prevents binding to NudE-like (NUDEL) and inhibits neurite outgrowth. Proc Natl Acad Sci USA. 2003;100:289–94.

    Article  CAS  PubMed  Google Scholar 

  19. Murtomaki S, Risteli J, Risteli L, Koivisto UM, Johansson S, Liesi P. Laminin and its neurite outgrowth-promoting domain in the brain in Alzheimer’s disease and Down’s syndrome patients. J Neurosci Res. 1992;32:261–73.

    Article  CAS  PubMed  Google Scholar 

  20. Bakos J, Bacova Z, Grant SG, Castejon AM, Ostatnikova D. Are Molecules Involved in Neuritogenesis and Axon Guidance Related to Autism Pathogenesis? Neuromolecular Med. 2015;17:297–304.

    Article  CAS  PubMed  Google Scholar 

  21. Lepagnol-Bestel AM, Maussion G, Boda B, Cardona A, Iwayama Y, Delezoide AL, et al. SLC25A12 expression is associated with neurite outgrowth and is upregulated in the prefrontal cortex of autistic subjects. Mol Psychiatry. 2008;13:385–97.

    Article  CAS  PubMed  Google Scholar 

  22. Gozes I. Activity-dependent neuroprotective protein: From gene to drug candidate. Pharmacol therapeutics. 2007;114:146–54.

    Article  CAS  Google Scholar 

  23. Van Dijck A, Vulto-van Silfhout AT, Cappuyns E, van der Werf IM, Mancini GM, Tzschach A. et al. Clinical presentation of a complex neurodevelopmental disorder caused by mutations in ADNP. Biol Psychiatry. 2019;85:287–97.

    Article  PubMed  Google Scholar 

  24. Levine J, Cohen D, Herman C, Verloes A, Guinchat V, Diaz L, et al. Developmental phenotype of the rare case of DJ caused by a unique ADNP gene de novo mutation. J Mol Neurosci: MN. 2019;68:321–30.

    Article  CAS  PubMed  Google Scholar 

  25. Ivashko-Pachima Y, Hadar A, Grigg I, Korenková V, Kapitansky O, Karmon G, et al. Discovery of autism/intellectual disability somatic mutations in Alzheimer’s brains: mutated ADNP cytoskeletal impairments and repair as a case study. Mol Psychiatry. 2021;26:1619–33.

  26. Gozes I, Van Dijck A, Hacohen-Kleiman G, Grigg I, Karmon G, Giladi E, et al. Premature primary tooth eruption in cognitive/motor-delayed ADNP-mutated children. Transl Psychiatry. 2017;7:e1166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gozes I, Patterson MC, Van Dijck A, Kooy RF, Peeden JN, Eichenberger JA, et al. The eight and a half year journey of undiagnosed AD: Gene sequencing and funding of advanced genetic testing has led to hope and new beginnings. Front Endocrinol. 2017;8:107.

    Article  Google Scholar 

  28. Gozes I, Helsmoortel C, Vandeweyer G, Van der Aa N, Kooy F, Bedrosian-Sermone S. The compassionate side of neuroscience: Tony Sermone’s undiagnosed genetic journey-ADNP mutation. J Mol Neurosci: MN. 2015;56:751–7.

    Article  CAS  PubMed  Google Scholar 

  29. Vulih-Shultzman I, Pinhasov A, Mandel S, Grigoriadis N, Touloumi O, Pittel Z, et al. Activity-dependent neuroprotective protein snippet NAP reduces tau hyperphosphorylation and enhances learning in a novel transgenic mouse model. J Pharm Exp Ther. 2007;323:438–49.

    Article  CAS  Google Scholar 

  30. Gozes I. The ADNP Syndrome and CP201 (NAP) Potential and Hope. Front Neurol. 2020;11:608444.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Pascual M, Guerri C. The peptide NAP promotes neuronal growth and differentiation through extracellular signal-regulated protein kinase and Akt pathways, and protects neurons co-cultured with astrocytes damaged by ethanol. J Neurochem. 2007;103:557–68.

    Article  CAS  PubMed  Google Scholar 

  32. Smith-Swintosky VL, Gozes I, Brenneman DE, D’Andrea MR, Plata-Salaman CR. Activity-dependent neurotrophic factor-9 and NAP promote neurite outgrowth in rat hippocampal and cortical cultures. J Mol Neurosci: MN. 2005;25:225–38.

    Article  CAS  PubMed  Google Scholar 

  33. Ivashko-Pachima Y, Sayas CL, Malishkevich A, Gozes I. ADNP/NAP dramatically increase microtubule end-binding protein-Tau interaction: a novel avenue for protection against tauopathy. Mol psychiatry. 2017;22:1335–44.

    Article  CAS  PubMed  Google Scholar 

  34. Ivashko-Pachima Y, Maor-Nof M, Gozes I. NAP (davunetide) preferential interaction with dynamic 3-repeat Tau explains differential protection in selected tauopathies. PloS one. 2019;14:e0213666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hacohen-Kleiman G, Sragovich S, Karmon G, Gao AYL, Grigg I, Pasmanik-Chor M, et al. Activity-dependent neuroprotective protein deficiency models synaptic and developmental phenotypes of autism-like syndrome. J Clin Investig. 2018;128:4956–69.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Oz S, Kapitansky O, Ivashco-Pachima Y, Malishkevich A, Giladi E, Skalka N, et al. The NAP motif of activity-dependent neuroprotective protein (ADNP) regulates dendritic spines through microtubule end binding proteins. Mol psychiatry. 2014;19:1115–24.

    Article  CAS  PubMed  Google Scholar 

  37. Magen I, Gozes I. Microtubule-stabilizing peptides and small molecules protecting axonal transport and brain function: focus on davunetide (NAP). Neuropeptides. 2013;47:489–95.

    Article  CAS  PubMed  Google Scholar 

  38. Sun X, Peng X, Cao Y, Zhou Y, Sun Y. ADNP promotes neural differentiation by modulating Wnt/β-catenin signaling. Nat Commun. 2020;11:2984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mandel S, Spivak-Pohis I, Gozes I. ADNP differential nucleus/cytoplasm localization in neurons suggests multiple roles in neuronal differentiation and maintenance. J Mol Neurosci: MN. 2008;35:127–41.

    Article  CAS  PubMed  Google Scholar 

  40. Blazejewski SM, Bennison SA, Ha NT, Liu X, Smith TH, Dougherty KJ, et al. Rpsa signaling regulates cortical neuronal morphogenesis via its ligand, PEDF, and plasma membrane interaction partner, Itga6. Cereb Cortex. 2021;32:770–95.

    Article  PubMed Central  Google Scholar 

  41. Liu X, Blazejewski SM, Bennison SA, Toyo-Oka K. Glutathione S-transferase Pi (Gstp) proteins regulate neuritogenesis in the developing cerebral cortex. Hum Mol Genet. 2021;30:30–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hacohen-Kleiman G, Yizhar-Barnea O, Touloumi O, Lagoudaki R, Avraham KB, Grigoriadis N, et al. Atypical auditory brainstem response and protein expression aberrations related to ASD and hearing loss in the Adnp haploinsufficient mouse brain. Neurochem Res. 2019;44:1494–507.

    Article  CAS  PubMed  Google Scholar 

  43. Malishkevich A, Amram N, Hacohen-Kleiman G, Magen I, Giladi E, Gozes I. Activity-dependent neuroprotective protein (ADNP) exhibits striking sexual dichotomy impacting on autistic and Alzheimer’s pathologies. Transl Psychiatry. 2015;5:e501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Amram N, Hacohen-Kleiman G, Sragovich S, Malishkevich A, Katz J, Touloumi O, et al. Sexual divergence in microtubule function: the novel intranasal microtubule targeting SKIP normalizes axonal transport and enhances memory. Mol psychiatry. 2016;21:1467–76.

    Article  CAS  PubMed  Google Scholar 

  45. Wachi T, Cornell B, Marshall C, Zhukarev V, Baas PW, Toyo-oka K. Ablation of the 14-3-3gamma protein results in neuronal migration delay and morphological defects in the developing cerebral cortex. Dev Neurobiol. 2016;76:600–14.

    Article  CAS  PubMed  Google Scholar 

  46. Cornell B, Wachi T, Zhukarev V, Toyo-Oka K. Overexpression of the 14-3-3gamma protein in embryonic mice results in neuronal migration delay in the developing cerebral cortex. Neurosci Lett. 2016;628:40–46.

    Article  CAS  PubMed  Google Scholar 

  47. Risher WC, Ustunkaya T, Singh Alvarado J, Eroglu C. Rapid Golgi analysis method for efficient and unbiased classification of dendritic spines. PloS one. 2014;9:e107591.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Chen T-W, Wardill TJ, Sun Y, Pulver SR, Renninger SL, Baohan A, et al. Ultra-sensitive fluorescent proteins for imaging neuronal activity. Nature. 2013;499:295–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Blazejewski SM, Bennison SA, Liu X, Toyo-Oka K. High-throughput kinase inhibitor screening reveals roles for Aurora and Nuak kinases in neurite initiation and dendritic branching. Sci Rep. 2021;11:8156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mandel S, Gozes I. Activity-dependent neuroprotective protein constitutes a novel element in the SWI/SNF chromatin remodeling complex. J Biol Chem. 2007;282:34448–56.

    Article  CAS  PubMed  Google Scholar 

  51. Mandel S, Rechavi G, Gozes I. Activity-dependent neuroprotective protein (ADNP) differentially interacts with chromatin to regulate genes essential for embryogenesis. Developmental Biol. 2007;303:814–24.

    Article  CAS  Google Scholar 

  52. Oz S, Ivashko-Pachima Y, Gozes I. The ADNP derived peptide, NAP modulates the tubulin pool: implication for neurotrophic and neuroprotective activities. PloS one. 2012;7:51458–51458.

    Article  Google Scholar 

  53. Cornell B, Toyo-Oka K. 14-3-3 proteins in brain development: Neurogenesis, neuronal migration and neuromorphogenesis. Front Mol Neurosci. 2017;10:318.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Johnson C, Crowther S, Stafford MJ, Campbell DG, Toth R, MacKintosh C. Bioinformatic and experimental survey of 14-3-3-binding sites. Biochemical J. 2010;427:69–78.

    Article  CAS  Google Scholar 

  55. Mao AJ, Bechberger J, Lidington D, Galipeau J, Laird DW, Naus CC. Neuronal differentiation and growth control of neuro-2a cells after retroviral gene delivery of connexin43. J Biol Chem. 2000;275:34407–14.

    Article  CAS  PubMed  Google Scholar 

  56. Fan S, Ramirez SH, Garcia TM, Dewhurst S. Dishevelled promotes neurite outgrowth in neuronal differentiating neuroblastoma 2A cells, via a DIX-domain dependent pathway. Mol Brain Res. 2004;132:38–50.

    Article  CAS  PubMed  Google Scholar 

  57. Gennet N, Herden C, Bubb VJ, Quinn JP, Kipar A. Expression of activity-dependent neuroprotective protein in the brain of adult rats. Histol Histopathol. 2008;23:309–17.

    CAS  PubMed  Google Scholar 

  58. Bassan M, Zamostiano R, Davidson A, Pinhasov A, Giladi E, Perl O, et al. Complete sequence of a novel protein containing a femtomolar-activity-dependent neuroprotective peptide. J Neurochemistry. 1999;72:1283–93.

    Article  CAS  Google Scholar 

  59. Hacohen-Kleiman G, Moaraf S, Kapitansky O, Gozes I. Sex-and region-dependent expression of the autism-linked ADNP correlates with social- and speech-related genes in the canary brain. J Mol Neurosci: MN. 2020;70:1671–83.

    Article  CAS  PubMed  Google Scholar 

  60. Witte H, Bradke F. The role of the cytoskeleton during neuronal polarization. Curr Opin Neurobiol. 2008;18:479–87.

    Article  CAS  PubMed  Google Scholar 

  61. Taniguchi Y, Young-Pearse T, Sawa A, Kamiya A. In utero electroporation as a tool for genetic manipulation in vivo to study psychiatric disorders: from genes to circuits and behaviors. Neuroscientist: a Rev J bringing Neurobiol, Neurol psychiatry. 2012;18:169–79.

    Article  Google Scholar 

  62. Freichel C, Potschka H, Ebert U, Brandt C, Löscher W. Acute changes in the neuronal expression of GABA and glutamate decarboxylase isoforms in the rat piriform cortex following status epilepticus. Neuroscience. 2006;141:2177–94.

    Article  CAS  PubMed  Google Scholar 

  63. Ramı́rez M, Gutiérrez R. Activity-dependent expression of GAD67 in the granule cells of the rat hippocampus. Brain Res. 2001;917:139–46.

    Article  PubMed  Google Scholar 

  64. Sperk G, Wieselthaler-Hölzl A, Pirker S, Tasan R, Strasser SS, Drexel M, et al. Glutamate decarboxylase 67 is expressed in hippocampal mossy fibers of temporal lobe epilepsy patients. Hippocampus. 2012;22:590–603.

    Article  CAS  PubMed  Google Scholar 

  65. Sarro EC, Kotak VC, Sanes DH, Aoki C. Hearing loss alters the subcellular distribution of presynaptic GAD and postsynaptic GABAA receptors in the auditory cortex. Cereb Cortex. 2008;18:2855–67.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Kinoshita N, Huang AJY, McHugh TJ, Suzuki SC, Masai I, Kim IH, et al. Genetically encoded fluorescent indicator GRAPHIC delineates intercellular connections. iScience. 2019;15:28–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Li XS, Wu HT, Yu Y, Chen GY, Qin XY, Zheng GE, et al. Increased serum FGF2 levels in first-episode, drug-free patients with schizophrenia. Neurosci Lett. 2018;686:28–32.

    Article  CAS  PubMed  Google Scholar 

  68. Merenlender-Wagner A, Malishkevich A, Shemer Z, Udawela M, Gibbons A, Scarr E, et al. Autophagy has a key role in the pathophysiology of schizophrenia. Mol psychiatry. 2015;20:126–32.

    Article  CAS  PubMed  Google Scholar 

  69. Malishkevich A, Marshall GA, Schultz AP, Sperling RA, Aharon-Peretz J, Gozes I. Blood-Borne Activity-Dependent Neuroprotective Protein (ADNP) is correlated with premorbid intelligence, clinical stage, and Alzheimer’s disease biomarkers. J Alzheimers Dis. 2016;50:249–60.

    Article  CAS  PubMed  Google Scholar 

  70. Sragovich S, Malishkevich A, Piontkewitz Y, Giladi E, Touloumi O, Lagoudaki R, et al. The autism/neuroprotection-linked ADNP/NAP regulate the excitatory glutamatergic synapse. Transl Psychiatry. 2019;9:2.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Karmon G, Sragovich S, Hacohen-Kleiman G, Ben-Horin-Hazak I, Kasparek P, Schuster B, et al. Novel ADNP syndrome mice reveal dramatic sex-specific peripheral gene expression with brain synaptic and tau pathologies. Biol Psychiatry. 2022;92:81–95.

  72. Grigg I, Ivashko-Pachima Y, Hait TA, Korenková V, Touloumi O, Lagoudaki R, et al. Tauopathy in the young autistic brain: Novel biomarker and therapeutic target. Transl Psychiatry. 2020;10:228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Routh BN, Rathour RK, Baumgardner ME, Kalmbach BE, Johnston D, Brager DH. Increased transient Na+ conductance and action potential output in layer 2/3 prefrontal cortex neurons of the fmr1−/y mouse. J Physiol. 2017;595:4431–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Rane P, Cochran D, Hodge SM, Haselgrove C, Kennedy DN, Frazier JA. Connectivity in autism: A review of MRI connectivity studies. Harv Rev Psychiatry. 2015;23:223–44.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Kast RJ, Levitt P. Precision in the development of neocortical architecture: From progenitors to cortical networks. Prog Neurobiol. 2019;175:77–95.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Pabba M, Scifo E, Kapadia F, Nikolova YS, Ma T, Mechawar N, et al. Resilient protein co-expression network in male orbitofrontal cortex layer 2/3 during human aging. Neurobiol Aging. 2017;58:180–90.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Kitamura S, Shimada H, Niwa F, Endo H, Shinotoh H, Takahata K, et al. Tau-induced focal neurotoxicity and network disruption related to apathy in Alzheimer’s disease. J Neurol, Neurosurg Psychiatry. 2018;89:1208–14.

    Article  PubMed  Google Scholar 

  78. Ivashko-Pachima Y, Hadar A, Grigg I, Korenková V, Kapitansky O, Karmon G, et al. Discovery of autism/intellectual disability somatic mutations in Alzheimer’s brains: mutated ADNP cytoskeletal impairments and repair as a case study. Mol psychiatry. 2021;26:1619–33.

    Article  CAS  PubMed  Google Scholar 

  79. Zamostiano R, Pinhasov A, Gelber E, Steingart RA, Seroussi E, Giladi E, et al. Cloning and characterization of the human activity-dependent neuroprotective protein. J Biol Chem. 2001;276:708–14.

    Article  CAS  PubMed  Google Scholar 

  80. Cappuyns E, Huyghebaert J, Vandeweyer G, Kooy RF. Mutations in ADNP affect expression and subcellular localization of the protein. Cell Cycle. 2018;17:1068–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Brunet A, Kanai F, Stehn J, Xu J, Sarbassova D, Frangioni JV, et al. 14-3-3 transits to the nucleus and participates in dynamic nucleocytoplasmic transport. J Cell Biol. 2002;156:817–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wu YK, Fujishima K, Kengaku M. Differentiation of apical and basal dendrites in pyramidal cells and granule cells in dissociated hippocampal cultures. PloS one. 2015;10:e0118482.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Han YM, Chan AS. Disordered cortical connectivity underlies the executive function deficits in children with autism spectrum disorders. Res Developmental Disabilities. 2017;61:19–31.

    Article  Google Scholar 

  84. Holiga S, Hipp JF, Chatham CH, Garces P, Spooren W, D’Ardhuy XL, et al. Patients with autism spectrum disorders display reproducible functional connectivity alterations. Sci Transl Med. 2019;11:eaat9223.

  85. Bhat AN, McDonald NM, Eilbott JE, Pelphrey KA. Exploring cortical activation and connectivity in infants with and without familial risk for autism during naturalistic social interactions: A preliminary study. Infant Behav Dev. 2019;57:101337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Takarae Y, Sweeney J. Neural Hyperexcitability in Autism Spectrum Disorders. Brain Sci. 2017;7:129.

  87. Hutsler JJ, Casanova MF. Review: Cortical construction in autism spectrum disorder: columns, connectivity and the subplate. Neuropathol Appl Neurobiol. 2016;42:115–34.

    Article  PubMed  Google Scholar 

  88. Kapitansky O, Karmon G, Sragovich S, Hadar A, Shahoha M, Jaljuli I, et al. Single Cell ADNP Predictive of Human Muscle Disorders: Mouse Knockdown Results in Muscle Wasting. Cells. 2020;9:2320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Helsmoortel C, Vulto-van Silfhout AT, Coe BP, Vandeweyer G, Rooms L, van den Ende J, et al. A SWI/SNF-related autism syndrome caused by de novo mutations in ADNP. Nat Genet. 2014;46:380–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Peter Baas, Dr. Wen-Jun Gao, Dr. Elias Spiliotis, and Dr. Pat Levitt for their helpful comments, feedback, and fruitful discussions on this manuscript. We further thank Dr. Paschalis Theotokis for retrieval of results from ADNP mice and Dr. Tomomi Shimogori in Riken Center for Brain Science in Japan who provided the GRAPHIC vectors. This work has been supported by a research grant from the NINDS (R01NS096098-01A1 to KT and F31NS113404-01A1 to SMB), the NICHD (F31HD103405-01A1 to SAB), ERA-NET Neuron (ADNPinMED), Drs. Ronith and Armand Stemmer and Arthur Gerbi (French Friends of Tel Aviv University), Anne and Alex Cohen (Canadian Friends of Tel Aviv University) and Holly and Jonathan Strelzik (American Friends of Tel Aviv University) (IG).

Author information

Authors and Affiliations

Authors

Contributions

SAB designed and performed most experiments, data analysis and wrote the manuscript. SMB performed calcium imaging. XL performed some validation experiments. KT performed all in utero electroporation. GHK and SS characterized and handled the Adnp+/ mice. SZ, OT and NG provided the Adnp+/ mouse immunohistochemistry data, IG orchestrated the Adnp+/ mouse work. SMB, XL, IG, and KT edited the manuscript.

Corresponding author

Correspondence to Kazuhito Toyo-oka.

Ethics declarations

COMPETING INTERESTS

NAP (CP201, davunetide) use is under patent protection (US patent nos. US7960334, US8618043, US10912819 and WO2017130190A1) (IG), PCT/IL2020/051010 (IG) and provisional patent applications have been submitted (IG inventor and contributing scientist SS). Davunetide is exclusively licensed to ATED Therapeutics LTD (IG, Co-Founder and Chief Scientific Officer).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bennison, S.A., Blazejewski, S.M., Liu, X. et al. The cytoplasmic localization of ADNP through 14-3-3 promotes sex-dependent neuronal morphogenesis, cortical connectivity, and calcium signaling. Mol Psychiatry 28, 1946–1959 (2023). https://doi.org/10.1038/s41380-022-01939-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-022-01939-3

This article is cited by

Search

Quick links