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Since the brain was found to be somehow flexible, plastic, researchers worldwide have been trying to comprehend its
fundamentals to better understand the brain itself, make predictions, disentangle the neurobiology of brain diseases, and finally
propose up-to-date treatments. Neuroplasticity is simple as a concept, but extremely complex when it comes to its mechanisms.
This review aims to bring to light an aspect about neuroplasticity that is often not given enough attention as it should, the fact
that the brain’s ability to change would include its ability to disconnect synapses. So, neuronal shrinkage, decrease in spine
density or dendritic complexity should be included within the concept of neuroplasticity as part of its mechanisms, not as an
impairment of it. To that end, we extensively describe a variety of studies involving topics such as neurodevelopment, aging,
stress, memory and homeostatic plasticity to highlight how the weakening and disconnection of synapses organically permeate
the brain in so many ways as a good practice of its intrinsic physiology. Therefore, we propose to break down neuroplasticity
into two sub-concepts, “upward neuroplasticity” for changes related to synaptic construction and “downward neuroplasticity”
for changes related to synaptic deconstruction. With these sub-concepts, neuroplasticity could be better understood from a
bigger landscape as a vector in which both directions could be taken for the brain to flexibly adapt to certain demands. Such a
paradigm shift would allow a better understanding of the concept of neuroplasticity to avoid any data interpretation bias, once
it makes clear that there is no morality with regard to the organic and physiological changes that involve dynamic biological
systems as seen in the brain.
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INTRODUCTION
The etymology of neuroplasticity breaks it down into two basic
morphemes: neuro- plastic; with the “plastic” originally meaning
“suitable for molding” as it comes first from the Greek term
“plastikós” and later from the Latin “plasticus”. As a concept,
neuroplasticity means the nervous system’s ability to reorganize its
structure and functioning in response to some stimuli, either
intrinsic or extrinsic [1]. Although simple in definition, the historical
ground behind this concept relies entirely on the shoulders of
magnificent and pioneering scientists. From a philosophical
perspective, plasticity roots, as a reference to the nervous system,
are still a matter of debate and have been tracked back to Willian
James (1890), Santiago Ramón y Cajal (1894) and Demor (1896) in
the late 1800s or Lugaro (1906) and Minea (1909) in the early 1900s
[2–4]. However, the practical relevance of the neuroplasticity only
began to be unveiled in the mid-20th century by Paul Bach-y-Rita
who built the concept of sensory substitution by proposing that
other brain areas may assume functions previously mediated by a
lost neural tissue [5]. Similarly, based on Wilder Penfield works that
showed a motor and sensory cortical representation of the body [6],
Michael Merzenich noted that the adult brain is actually a dynamic
structure, with the cortical body representations constantly shifting

its boundaries [7]. Intriguing, Merzenich’s findings were initially
criticized by David Hubel and Torsten Wiesel, two eminent
neuroscientists at Johns Hopkins who had found a critical period
for visual cortex plasticity to allow visual processing input to be
replaced by the non-deprived eye at the expense of the deprived
one [8, 9].
All the field advancement has not come without the

controversy of the unknown and, not surprisingly, for so long
the adult brain was considered hard-wired, incapable of any
accommodation. However, after some breakthroughs, neuroplas-
ticity is now well recognized as a fundamental and lifelong brain
property. Although partially compromised, compared to early
neurodevelopment, adult brain remodeling is still salient and
fairly required for learning/experience- and internal milieu-based
behavioral adjustments [10].
Bearing in mind a broader perspective of a flexible brain, we will

go through studies related to early neurodevelopment, aging,
stress, memory, and homeostatic plasticity to propose that brain
flexibility goes beyond the obvious to include the concepts of
“upward” and “downward” to neuroplasticity. Such sub-concepts
aim to clarify how neuroplasticity is not only about building, but
also about dismantling.
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NEURONAL DISCONNECTION OF A PROLIX BRAIN AS A
NATURAL CONSEQUENCE OF THE NEURODEVELOPMENT
Humans are born with tens of billions of brain cells and a single
neuron may contact as far as 15,000 other cells, moreover a 3 years
old child’s brain has established nearly 1000 trillion synapses [11].
The immature nervous system has a fundamentally redundant
neuro-circuitry, as evidenced by the cortical dendritic spine density
exceeded in childhood by one and a half to threefold that of adult’s
brain [12, 13]. Higher synaptic density of the cerebral cortex was
also found in early postnatal development of monkeys [14, 15], rats
[16] and kittens [17], compared to adult animals. Cajal in the late
19th had already noticed that the spine density of pyramidal
neurons throughout early postnatal development is greater than in
adulthood [18].
Overabundant synapses were proposed as an endeavor by the

brain to generate a diversity of connections beyond genetic
anchorage, as activity-induced stabilization selects from the
overproduced synapses those to remain [19, 20]. Accordingly,
multiple retinal inputs converge onto immature lateral geniculate
nucleus in both mice and ferrets, most of which are eliminated to
just a few be maintained into adulthood [21, 22]. It was then
proposed that the fuzzy retinogeniculate connections from early
development would support the polishing of geniculocortical
connections in late development to sharpen thalamocortical
topography and likely also fine tune the orientation of cortical
receptive fields [22]. Neuromuscular junction (NMJ) has also been
a highly successful model to study developmental synaptic
pruning. Early in development, one muscle fiber stablishes weak
connections with about ten overly intermingled motor nerve
axons, most of which (except for one) are further eliminated
through the next postnatal couple of weeks [23]. Interestingly,
increasing divergence in synaptic strength was observed before
one of the two axonal inputs was removed from the shared mice
muscle fiber, as the survivor earned vigor by increasing its
quantal content and the defeated one became gradually weaker
up to full withdrawal within 1 to 2 days [24]. Indeed, axons
broaden their territory in response to previously evacuated sites,
since the “soon-to-be-eliminated axon” still takes over the NMJ
after laser removal of the strongest input [25]. Similarly, such
refinement is widely established throughout early neurodevelop-
ment on several occasions as a matter of axonal disconnection,
as it follows: thalamic connection with the layer IV cells of the
visual cortex is disrupted [26]; preganglionic inputs are discon-
nected from submandibular ganglion cells [27]; and climbing
fibers disassemble from cerebellar Purkinje cells [28, 29]. The
hippocampus is also target of developmental remodeling as
the projections of pyramidal cells from the hippocampus to the
medial septum are transient in rats and abruptly withdraw after
birth [30]. Furthermore, the mossy fibers (infrapyramidal bundle)
carrying intra hippocampal axons from the dentate gyrus (DG) to
CA3 dramatically retract between the third and fourth week after
mice are born [31].
Interestingly, early neurodevelopmental refinement has also

been noticed from non-mammalian species, such as in the auditory
systems of chicks [32] and in the visual system of tadpoles [33].
Drosophila metamorphosis prompts also to the loss of the
dendritic arbor and axonal branches after puparium formation
[34, 35]. Which means that the brain’s basic genetic program
responsible for the ability to trigger early development-based
abundance of synapses is, at least partially, presumable as
evolutionarily conserved in different classes of animals, including
invertebrates such as insects. However, different cellular mechan-
ism may still be involved in synaptic pruning under different
circumstances [36]. Besides, according to most evidence, develop-
mental synaptic pruning or input disconnection has been usually
acknowledged to be complete around early phases, or even when
young people reach puberty or late adolescence. Consistently,
callosal axons in newborn monkeys outnumber those in adults,

and about 70% of these axons disappear months after birth [37].
Still, while young mice had 73% of the spines in layer-5 pyramidal
neurons (primary visual cortex) stable over one-month interval,
with changes primarily related to spine removal, adult mice had
96% of the spines stable for longer than 13 months [38].
Therefore, throughout early development, nervous system

maturation has the highly dynamic process of neuronal remodeling
as its hallmark and synaptic pruning is ubiquitously part of this
complex rearrangement [39]. So, an embryonic and transient
template, generous in promiscuous synapses, gradually gives place
to a keen adult pattern of activity-driven neuronal connectivity as
the repertoire of possible circuit configurations is pruning-based
refined [36]. More than a passive process, developmental pruning
follows Hebb’s rule whereas asynchrony, but no synchrony,
between action potential achieves competing terminals to trigger
input concurrence and further synaptic elimination [40].
Altogether, activity-guided neuronal disconnection is part of a

successful and universal developmental program, occurring
naturally throughout the nervous system, as well as in different
species, and timely-frame coordinated according to each network,
in order to forge and fine-tune connections to then enable minute
idiosyncratic adaptations that fit into individual experiences and
distinct surrounding factors. Even at lower levels, be aware that
the adult brain is still undergoing remodeling whereas spine
lifespans vary widely. For instance, notwithstanding dendritic
branches in the barrel cortex of adult mice are quite stable over
weeks and close to 50% of dendritic spines may persist for at least
a month, surprisingly the remaining ones are only present for
a few days [41]. For the human prefrontal cortex (PFC),
developmental remodeling of the brain based on the pruning of
superfluous spines extends even into the third decade of life [42].
Outstanding, these latest findings from human brain enlarge
neurodevelopment beyond adolescence, and such elongated
phase of reorganization implies the prefrontal cortex longer
vulnerable to the environment in its most labile arrangement, thus
a sensitive substrate for late-onset neuropsychiatry disorders [42].
For a brief overview of the topic, see Fig. 1.

NEURONAL DISCONNECTION AS A NATURAL CONSEQUENCE
OF BRAIN AGING
Developmental synaptic pruning related to neuronal refinement
shifts over a continuum of time to a non-pathological and
cumulative process of synaptic deterioration that irreversibly
affects all maturing organisms, causing aging to intrinsically make
the individual unable to properly adapt to the environment.
Although aging is a genuine event, it is a major risk factor for the
emergence of neurodegenerative and psychiatric diseases [43, 44].
Nevertheless, the occurrence of age-related cognitive decline is
highly variable and is generally within the range for which aging
may not yet be considered part of any neuropathology [45]. For a
brief overview of the topic, see Fig. 2.

Aging-related microstructural synaptic disconnection
Back to 1955, Brody claimed that age-linked shrinkage of the
human brain was due, in part, to a decay in the number of cortical
neurons [46]. Subsequent studies corroborated it by showing a
decline in cortical neuron density, as well as cell loss in cortical and
subcortical areas of elderly humans and non-human primates
[47–49]. However, with the advancement of stereological methods
new studies have identified these earlier data as confounding and
likely biased by shrinkage artefacts and the mistaken inclusion of
diseased samples [50, 51]. Yet, presynaptic terminal count was
negatively correlated with age in individuals older than 60 years,
averaging thus a 20% decrease in density of presynaptic terminals
within the frontal cortex [52]. A 10% reduction per decade was
also found in the total length of myelinated fibers, the main
components of the white matter, adding up to 45% when the
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comparison was made directly between individuals aged around
20 and 80 years [53]. Similar to humans, in addition to decreased
dendritic complexity, age-related changes in the non-human
primate neocortex include a significant reduction in the number
and density of spines [54, 55]. Further, ultrastructural inspection of
white matter fiber tracts in aged rhesus monkey’s brain suggests
an overall defective orchestrated driving of neuronal signals with
the breakdown of the myelin sheath structure [56–58]. Indeed,
such aging disconnection has been supported by independent
rodent studies as, rather than loss of neurons, numerous cortical
and subcortical areas show subtle, neuronal type-specific mor-
phological changes involving the number of synaptic contacts
and/or dendritic branches [59–65]. Some changes though may
depend on whether the aged animal behaves cognitively normal
or not [66]. Finally, even though the effects of aging are mostly
drawn from the vertebrate’s brain, typically mammals, notably
aged invertebrates such as insects, including fruit flies, honeybees,
crickets and cockroaches also manifest a range of disconnection-
like synaptic alterations [51].

Aging-related changes in functional synaptic plasticity
While long-term potentiation (LTP) is a persistent increase in
synaptic strength that favors signal transmission between
neurons, its counterpart long-term depression (LTD) is a long-
lasting reduction in neurotransmission efficacy [67]. Both are
activity-dependent phenomena, which happen according to some
pattern of electrical stimulation. In general, aging is associated
with certain levels of hippocampal LTP impairment [68–73].
Interestingly, aging-related LTP deficit may depend on whether
the animals show cognitive shortage [74]. As non-invasive brain

stimulation methods have been increasingly useful in extending
the science of LTP to humans as well [75], paired associative
stimulation has shown a reduced LTP-like plasticity in the motor
cortex of elderly humans [76, 77]. Alternatively to transcranial
magnetic stimulation, photic tetanus induced a LTP-like visual
plasticity that was not properly augmented in older humans [78].
On the other hand, older rats seem to be more sensitive to
hippocampal LTD induction or LTP reversal [72, 79–81]. Strikingly,
serial electron microscopy of the CA1 synapses highlighted the
existence in aged mice of multi-innervated dendritic spines, which
would otherwise rarely be seen [82]; while 3D reconstructions of
somatic, dendritic and axonal mitochondria in DG and CA1 found
niche-specific morphological alterations by comparing aged to
young adult mice [83]. Both respective findings could somehow,
at least partially, explain the previously described age-related
changes in synaptic strength. For example, multi-innervated
dendritic spines may be redundant and their assembly appears
to compete for downstream signaling linked to LTP induction [82].
Besides, mitochondria play a pivotal role in Ca2+ buffering and
therefore tune neuronal communication and plasticity, in addition
to defining axonal and dendritic growth according to their
location [83].

Disturbances of cell proliferation in the aged brain
Although the brain’s cell proliferation program is extensively
abolished throughout neurodevelopment, still some neuronal
niches retain their proliferative precursors and thus are continually
capable of producing adult-born neurons. That is particularly true
for the subventricular zone of the lateral ventricles (SVZ) and the
subgranular zone of the hippocampal DG (SGZ). While SVZ
neuroblasts advance along the rostral migratory stream to mainly
reach the olfactory bulb and differentiate into interneurons, SGZ
neuroblasts shortly migrate to adjacent granular cell layer to
differentiate into excitatory neurons [84]. To make this topic brief
and of easier reading, below we will focus on the SGZ as it is of
greater interest to humans and better studied than the SVZ.
Subpopulations of neural stem cells (NSC) in the SGZ switch

from a mitotically active to a quiescent state in aged mice [85],
which likely accounts for the progressive age-related impairment
of proliferation, and consequently also for the disruption of either
the survival, migration or differentiation of DG newborn cells
[86–91]. However, both the quiescent and amplifying NSCs were
actually found to continuously decrease over aging, once after
exiting the quiescent state the NSC sustains a journey of
asymmetric divisions to establish neuronal progenies before
definitively becoming a mature astrocyte [92]. Such an interesting
model to simultaneously explain aging-related phenomena
involving the emergence of new astrocytes, the wane of
neurogenesis and the decay of hippocampal NSCs. A prominent
and progressive age-related decline in DG neurogenesis has also
been found from non-human primates [93–95]. A comparison
among different rodent strains and three other non-human
primate species suggests that the decline in NSC proliferation,
to a lesser extent also the decline in neurogenesis, actually follows
absolute rather than relative age [96]. Hence, a sharp decrease in
postnatal neurogenesis appears in rodents at intermediate to
older phases whereas in non-human primates this happens at
much earlier stages. Since a groundbreaking study revealed that
the human hippocampus keeps generating neurons throughout
life [97], adult neurogenesis has become a hot topic in human
research. Likewise non-human primates, studies have observed in
human DG that the number of neuroblasts decreases drastically
over the early postnatal years, but that those remaining into
adulthood still moderately decay with aging [98–100]. Making of
neurogenesis actually a burning topic, some studies have contra-
dictorily claimed that if DG neurogenesis happens during
adulthood, it is nevertheless extremely rare [101, 102]. Although
negative results from immunohistological post-mortem samples

Fig. 1 The overflowing unmatured brain - a pruning-based
window of opportunities. Although the unmatured brain over-
flows with synaptic connections, such a developmental program
goes beyond any triviality. Excessive synapses are extremely
important for the brain to be able to readily fine-tune idiosyncratic
connections to the demands of a rather “naïve” brain. In this way,
seemingly superfluous connections make the brain prone to
adapt, evolve and be molded around the behavioral repertoires
that best predict continued future success. Within a concept, the
time frame of promiscuous synapses could be understood as a
window of opportunity in which the set of actions involving
synaptic disconnections would be the tools that really makes this
a good and profitable occasion. So, since the very newborn brain
beginning, connections are ready to be plastically refined under
the guidance of neuronal activities that mirror the nearby niche of
an ever-changing environment. Furthermore, from an evolutionary
perspective, pruning-based neuronal refinement of a redundant
brain is likely a highly conserved mechanism as it can be found
from insects to humans.
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were argued to not have been optimized for detecting adult DG
neurogenesis [103], even small neurogenesis levels are hypothe-
sized to provide a reservoir of cells that would operate like a
bottleneck within the reverberated hippocampal circuitry [104] as
immature attributes of adult-born DG neurons appear to be long-
lasting in human [105] and nonhuman primates [106] while
holding a critical period of improved synaptic plasticity [107–109].

Network-related changes in the human aged brain
By detecting and correlating activity oscillations in segregated
areas, functional magnetic resonance imaging (fMRI) studies have
consistently found older humans with lower connectivity between
regions of the default mode network (DMN), which includes the
lateral parietal cortex, precuneus, posterior cingulate (Cg) cortex,
hippocampus and medial PFC - mPFC [110, 111]. The DMN
maintains strong connectivity and functional organization during
ongoing resting state, but decreases its functionality (intrinsic
activity) under attention-demanding tasks [112]. DMN activity has
been associated to several cognitive skills, in addition to assist
emotional processing, recall of previous experiences and self-
referential mental activities [112, 113], and reduced DMN
functional connectivity in healthy aging predicts poorer perfor-
mance on memory tasks and executive functions [114–116].
Resembling social networks, brain is a complex large-scale
network, topologically proficient and anatomically wired to
balance energetic costs, that covers subnetworks or systems/
modules of highly intricate nodes - neurons or brain areas [117].
Regions of interest (ROI)- and graph theoretical-based fMRI
connectome analyses broadly agree that elders at rest exhibit
lower within- and higher between-modules functional connectiv-
ity than younger adults [118, 119], which suggests some level of
shortage regarding the independence of brain systems. Accord-
ingly, aging comprises less subnetworks segregation, and the

lower the system specialization the worse the episodic memory
scores [120]. A longitudinal study used a linear mixed modeling-
based fMRI analysis to assess the complex brain networks of
healthy older adults along 4 years and found that the gradual
erosion of subnetworks segregation at rest correlated with aging-
associated decline in cognitive performance [121]. Moreover, older
adults also appear to have less modularity and less local efficiency
compared to youngers [122, 123]. Modularity (number of
functional modules) and local efficiency are fairly related to each
other as denser local connections between the topologically
closest neighbors of a node are prone to make the brain network
more modular, which would favor local efficiency by enabling
better adaptability of specialized information processing and its
segregated transfer within reasonably autonomous dynamic brain
subnetworks [117].
Age-related differences in the structural white matter con-

nectome bring patterns of results similar to those of functional
connectivity studies. For example, based on graphical theoretical
indices derived from diffusion MRI tractography, older individuals
were noted to have poorer anatomical organization related to
global cortical connectivity (i.e. bigger network cost) and local
efficiency [124]. Using a similar method, global/local network
efficiency and strength of intra/inter-modular connections were
observed to peak around the third decade of life to then
progressively decline with aging, whereas hub (nodes with high
degree of network connectivity) integration and long-range
connections linearly diminished throughout aging [125]. Indeed,
long-range functional connectivity density was proposed to be
more susceptible to the intrinsic effects of healthy aging [126].
Tract-based spatial statistics analysis of diffusion tensor imaging
data also disclosed a profile of larger extracellular volumes and
lower membrane densities as a consequence of a widely disrupted
white matter in a diverse set of brain structures in older compared

Fig. 2 The aged and shrunken brain. After a period of developmental neural refinement based on synaptic pruning, all organisms undergo
non-pathological, cumulative, and irreversible synaptic deterioration as they age. Morphological changes in aged brains may be subtle as they
are region-specific and often restricted to neuronal types or dendritic branches, usually resulting in synaptic strength deficits and some sort of
brain shrinkage. Although synaptic corrosion in the elderly is usually associated with some level of cognitive decline, healthy aging is
expected to be unrelated to any pathological problem. However, even for healthy aging, a small cognitive decline associated with synaptic
pruning can be a burden in practice as it makes the individual less able to readily adapt to the surrounding environment.
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with younger adults [127, 128]. Therefore, whether by structural or
functional connectome, integrity of the brain’s network seems to
undergo an overall and solid decline from midlife onwards.

SYNAPTIC DISRUPTION AS A CONSEQUENCE OF STRESS
Unlike to intrinsic factors driving synaptic pruning throughout
neurodevelopment and aging, the ongoing art of living also
includes a myriad of extrinsic factors, such as life stressors, still
capable of disconnecting the brain. Stress could be conceptua-
lized as a perception of threat, real or imagined, actual or
anticipated, emotional or physical, where an individual undergoes
some level of emotional discomfort and physiological changes
that might lead to maladaptive behavioral adjustments. Stress
responses are rather complex and dynamic, comprising a
symphony of molecular and neuronal rearrangements that are
coordinated at multiple levels to ideally orchestrate an optimal
response to threatening challenges [129]. Thus, the stress
response has originally evolved to bring the organism back to
body homeostasis, protecting individuals from acute stress and
maintaining their fundamental sense of well-being [130]. Addi-
tionally, in its optimal construct, the stress response may even be
crucial for an individual’s optimal adaptation to the environment
by triggering better experience-based homeostatic power [130].
However, prolonged exposure to stress often unbalances the
stress response system towards a maladaptive homeostasis, from
which several neuropsychiatric illnesses could be precipitated,
including depression and post-traumatic stress disorder – PTSD
[131]. Below, some stress-related brain changes. For a brief
overview of the topic, see Fig. 3.

Macrostructural changes in a stressed brain
Lifelong stress exposure may induce cumulative brain structural
changes, including frontoparietal network disturbances and
decreased PFC/insula gray/white matter [132–134]. Shrinkage of
several cortical structures has also been reported in children who
have suffered physical/sexual assault [135, 136]. Childhood stress
also promotes lasting brain changes beyond youth as retrospective
and prospective studies detail how early life adversities can cause
the thinning of various cortical structures in adulthood [137–141].
Strikingly, personal experiences of abuse may head brain changes
specifically to regions involved with that particular adverse sensory
input. Accordingly, cortical structures relevant to self-awareness and
self-assessment were thinner in the case of adult women
emotionally abused in childhood, while early sexual abuse was
mainly associated with thinning of the genital representation field
lying over the primary somatosensory cortex [142]. In addition,
adults exposed to parental verbal abuse during childhood showed
loss of integrity in neuronal pathways involved with language
development [143]. Also, the gray matter of the visual cortex is
shrunken in young adults who have been sexually abused or
witnessed domestic violence during childhood [144, 145]. The
hippocampus of adult individuals was also found to be smaller the
greater their lifetime exposure to stressful situations, including
financial problems [146–148]. Additionally, the higher the level of
perceived stress or the earlier the adverse experience, the lower the
hippocampal volumes in adolescents [149, 150]. Also, a thorough
analysis showed that adults who experienced childhood trauma
had lower volumes of all hippocampal subfields [151, 152].
Therefore, a myriad of different stressors is capable of inducing

neuronal disconnection, especially those carried early on life.
Importantly, each type of stressor may induce specific synaptic
disruption, but keep in mind that brain rearrangement goes
further, as some neurocircuits are actually reinforced rather than
weakened. It’s also worth noting that although we have focused
primarily on data about cortical and subcortical areas, such as
hippocampus, the stress-triggered changes are in fact pervasive
throughout the brain [153].

Microstructural changes in hippocampal neurons triggered by
adulthood stress
Strikingly, animal studies have found that volumetric brain
distortions are positively coupled to neuronal remodeling, thus
convincingly demonstrating that regional shifts in spine density and
dendritic arborization likely underlie gray matter changes [154, 155].
So, in accordance to previous human data, hippocampus seems to
be particularly damaged after stress exposure. For example, rats
exposed daily to a restraint [156, 157] or immobilization [158] stress
had a decrease in the total length and branch points of the CA3
hippocampal apical dendrites. The same changes were observed in
tree shrews daily subordinated to a dominant male [159].
Hippocampus is a complex structure, with a reverberant circuitry
where apical dendrites of CA3 pyramidal neurons accumulate
spines or thorny excrescences along their proximal segments to
synapse mossy fiber inputs from DG granule neurons [160]. Hence,
those previous findings probably reflect ultrastructural changes in
DG-CA3 synapses, once rats chronically restraint-stressed exhibited
rearrangements in vesicle clusters and mitochondrial occupancy of
mossy fiber terminals [161], along with a retraction in postsynaptic
thorny excrescences and reduction of their endosome-like struc-
tures [162]. Accordingly, rats chronically restraint-stressed showed
extensive loss of mossy fiber contacts on CA3 thorny excrescences
[163]. In fact, a thorough reorganization has been observed across
all hippocampal subfields in rats under a mild but chronic and
unpredictable stress regime, changes which include atrophy,
decreased spine density and dendritic length [164–166]. Long-
itudinal MRI of rats before and after a chronic restraint stress
schedule corroborated a 3% reduction in hippocampal volume
[167]. Even a short resident-intruder stress paradigm promoted a
prolonged decrease in dendritic length and spine density of CA1
pyramidal neurons in socially defeated rats [168]. Hippocampal cell
death has also been observed short-transiently after one-day stress
or long-lasting after a chronic unpredictable stress protocol [89].
Another study found increased levels of apoptosis in DG and
entorhinal cortex of subordinate tree shrews who underwent to
resident-intruder model [169]. Importantly, although stress can
affect hippocampal neuroplasticity similarly in its most dorsal and
ventral part [170], some effects may appear stronger in the ventral
hippocampus [171], what would be in line with its predominant
functional role in modulating neuroendocrine and emotional/
motivational responses to stress [172].

Hippocampal cell proliferation disturbances induced by
adulthood stress
Although the functional role of SGZ adult-born neurons is still a
matter of debate, several studies suggest that these neurons are
important for neuronal pattern separation and contextual
discrimination [173]. Focusing on hippocampus, hypothetically
neurogenesis bias neuronal coding by avoiding proactive inter-
ferences and generalizations, making thus the brain capable of
accurately updating spatiotemporal information (cognitive flex-
ibility) to further build a proper stress response and adapt to the
demands of an ever-changing environment [174]. So, it is not a
surprise that stress disrupts DG neurogenesis. Accordingly, 6 weeks
of rat restraint stress decreased the proliferation of DG precursor
cells, attenuated the survival of adult-newborn neurons, while
concurrently decreased the number of granule cells and conse-
quently granule cell layer volume [175]. Furthermore, seven days
after inescapable shocks, or 24 h after a 45-min restraint stress, rats
exhibited a reduction in DG cell proliferation [176]. Indeed,
escapable shocks immediately reduced DG cell proliferation
while inescapable shocks induced a longer-lasting detrimental
effect [177]. A 6 weeks protocol of chronic mild stress robustly
attenuated DG neurogenesis by about 40% [165]. Interestingly,
a day of stress affected DG cell proliferation for no longer than
24 h, however a 3-week regimen of chronic unpredictable stress
induced a lasting impairment with only an incomplete recovery
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around the third week of no further stress [89]. Chronic mild stress
also suppressed cell proliferation and reduced the total number of
granule cells in the rat ventral granule cell layer [178]. Marmoset
monkey’s brain is also vulnerable to stress, as a single exposure to
a resident conspecific for 1 h reduced DG cell proliferation [179].

Impairment of hippocampal synaptic strength by stress
Since there are 5000 times more synapses than neurons in the
brain [180], many studies report stress largely affecting functional

synaptic plasticity as well. Accordingly, the induction of LTP in
adult rats, specifically from stimulation of medial perforant inputs
to DG or commissural pathways to CA3, was suppressed after a 21-
day schedule of restraint stress [181]. A single exposure of adult
rats to an elevated platform for 30min was able to impair
hippocampal CA1 LTP in vivo and favor the appearance of a
reliable LTD, which under control conditions would not occur
[182]. Interestingly, prejudice in CA1 LTP was more pronounced in
mature animals exposed to uncontrollable Morris water maze

Fig. 3 The stressed brain. As an extrinsic factor capable of altering the brain, the concept of stress is based on nothing more than our bodily
ability to perceive threats, real or imagined, actual or anticipated, emotional or physical. Such a realization is then accompanied by a sense of
emotional inconvenience and extensive physiological changes that should, in principle, help us orchestrate the best adaptive behavior for
survival, but which may actually lead to maladaptive behavioral adjustments. Indeed, a myriad of conditions can be perceived as stressful and
the extent of brain effects may vary depending on the interplay between individual resilience and how long that stress lasts. Such effects
include microstructural and subsequent macrofunctional changes, both of which are usually, but not only, coupled with the triggering of
synaptic disconnections. Interestingly, stress-induced brain morphofunctional changes are generally recoverable. The effects of stress can
overlap with the effects of neurodevelopment and aging on the brain, as we are all susceptible to stressors throughout our lives.
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stress (no platform), when compared to the controllable stress
group whose platform was present [183]. An impairment of CA1
and DG LTP was also observed in ex vivo hippocampal slices of
grown-up animals previously stressed in a 21-day variable stress
paradigm [184]. Early-postnatal stress (fragmented maternal care)
also had an impact over aging rats, as middle-aged, but not young
adults, presented an impairment of ex vivo CA3 LTP and a
decrease in the hippocampal complexity of CA1 dendritic tree
[185]. It is important to pinpoint, though, that stress will not
always induce a loss in LTP, actually it may be even enhanced, or
unchanged, depending on many factors such as the feature
of stress and stress response phase [186]. Besides, for a long time
LTP and LTD were conceived as electrophysiological phenomena
predominantly implicated in brain areas whose role was
associated with memory processing, such as the hippocampus.
However, now it is well known that LTP and LTD are indeed
widespread, from spinal cord to neocortex, and that memory
storage is much more complex than previously thought and
requires a large and integrative brain network [180].

General effects of adulthood stress on cortical disconnection
The mPFC includes different subregions such as the Cg, prelimbic
(PrL) and infralimbic (IL) areas, and the preclinical evidence
gathered so far poses that all of these structures are largely
affected by stress as well. For instance, in addition to shortening
spine density, chronic daily restraint stress reduced the total
length and branch numbers of the apical dendrites in Cg and PrL
pyramidal neurons [187–190], an outcome that likely mirror the
atrophy of terminals branches [191]. On closer examination, the
same stress scheme reduced the volume, length and surface area
of these apical dendritic spines, overall decreasing the density of
the larger dendritic spines while increasing those of the thinner
ones [192]. Seven days of daily brief restraint-stress was still
capable of inducing a substantial shrinkage of the Cg apical
dendrites [193]. Moreover, ten days of daily immobilization stress
was sufficient to shoot down IL branch points and the overall
length of apical dendrites from randomly selected or entorhinal
cortex-projecting neurons [194]. Even a single exposure to the
stressful forced swim [195] or elevated platform [196] arouse a
retraction in apical dendrites of IL pyramidal neurons. Addition-
ally, a chronic model of unpredictable stress led to a large
volumetric shrinkage of the mPFC, as it includes all subregions,
and additionally disrupted the PrL LTP acquired from high-
frequency stimulation of the ventral hippocampus CA1 [197].
Excess of glucocorticoid is supposed to underlie the stress effects,
at least partially, on synaptic disconnections [198]. Therefore, it is
noteworthy that the brain changes triggered by corticosteroid
treatment resemble those described previously for stressed
animals [199].

IMPORTANCE OF DOWNWARD PLASTICITY FOR MEMORY
Memory is an essential cognitive function that, due to complexity,
is often described apart into at least three main stages: acquisition
or encoding, consolidation and retrieval. During encoding, sensory
information is received by the brain, neuronal excitability is altered
and synaptic plasticity starts being established. Memory is then
progressively consolidated through changes in synaptic connec-
tions as it is retained as a memory trace. Finally, under predictive
cues memory retrieval emerges [200, 201].
Since we are all surrounded by an ever-changing environment

and constantly subject to routine bodily sensory updating, after
retrieving a memory multiple destinies are still possible, such as
reconsolidation, extinction and forgetting [202]. By definition,
reconsolidation opens a novel temporal window of lability that
allows the original memory to be modified [203, 204]. On the
other hand, the extinction process occurs when a new memory
trace competes with the original one [205, 206]. Forgetting, in

turn, is characterized as a physiological phenomenon in which
unnecessary information decays over time [207].
Here, we will focus on studies showing that downward synaptic

plasticity is required for adulthood memory formation as well as
for post-retrieval processes to be established. Although counter-
intuitive, analogous to neurodevelopment, activity-dependent
synaptic disconnection is also important during the animal’s
adulthood so that its brain circuits, whose neuronal coding
underlies memory storage, are refined [208]. Also, suppressing
neuronal ensembles associated with the foundation of a previous
memory may favor subsequent learning/memory by reducing any
potential interference [209]. For a brief overview of the topic, see
Fig. 4.

Impairment of synaptic strength for learning and memory
Classical studies correlate learning and memory with increased
synaptic efficacy [210]. However, there is currently no doubt that
decrement in synaptic efficacy may also support memory
formation [211–214]. Accordingly, spatial learning triggered
endogenous LTD [215, 216]. While LTD and LTP share some
molecular mechanisms that are required for memory formation,
e.g. activation of N-methyl-D-aspartate receptors (NMDARs), unlike
LTP, LTD requires endocytosis of α-amino-3-hydroxy-5-methyl-4-
isoxazole propionic acid receptors (AMPARs), which are generally
found in postsynaptic density [211, 217, 218]. Hence, blocking the
GluN2B subunit of NMDARs, or AMPAR endocytosis, disrupted
both LTD- and hippocampus-dependent learning and memory
[219–222]. Additionally, it was demonstrated that LTD mediated
by GluA2 (AMPAR subunit) endocytosis in the apical inputs to CA1
neurons is crucial for the establishment of place fields during
spatial learning [223]. At the circuitry level, it was shown that new
experiences activate the locus coeruleus to release noradrenaline
into the hippocampus, mediating thus spatial learning through
LTD along Schaffer collaterals-CA1 synapses [224]. Therefore, it
is clear that synaptic weakening and its underlying cellular
mechanisms are essential for shaping hippocampus-dependent
spatial memories.

Weakening of synaptic strength during memory extinction
and forgetting
Extinction and forgetting may involve functional and structural
reorganization of synapses that were potentiated throughout the
original learning [207, 225]. First, be aware that the neurobiolo-
gical mechanism underpinning the reduction in synaptic strength,
in addition to LTD, might also imply depotentiation (induction of
synaptic depression following LTP) and LTP decay [226]. Recent
studies, in fact, have shown that the blockade of NMDARs in the
hippocampus prevents forgetting [227] and also the LTP decay
[228, 229], indicating that forgetting actually takes place as an
active rather than a passive process. In addition, NMDAR-mediated
calcium entry activates calcineurin [229] and synaptotagamin-3
[230], both of which ultimately lead to the removal of GluA2-
AMPARs from hippocampal synapses and cause a reduction in
synaptic strength [230, 231], then favoring forgetting. Likewise,
blocking synaptic removal of GluA2-AMPARs prevented depoten-
tiation [231]. Comparably to forgetting, GluA2-AMPAR endocytosis
has also been implied on memory extinction [232]. Accordingly,
extinction reduced the surface expression of AMPAR subunits to
pre-conditioning levels whereas depotentiated the conditioning-
induced synaptic potentiation from the internal capsule to
the lateral amygdala in a NMDAR-dependent manner [233].
The neuronal response to fear conditioned tone was indeed
shown to return to baseline levels after extinction, thus indicating
that the synaptic connection from auditory sensory input to the
lateral amygdala is somehow reset by extinction [234]. Extinction
memory was also shown to suppress the reactivation of
contextual fear engram cells while activating another distinct
ensemble in the hippocampus [235]. At last, synaptic depression
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of basolateral amygdala (BLA) inputs to PrL and IL mPFC improved
extinction memory as it led to a more efficient reduction in fear
expression [236].
Although we have focused on describing how the decreased

synaptic strength/activity of a previously fear consolidated memory
might be a crucial mechanism for extinction and forgetting, it is
worth mentioning that all memory phases are regulated by a
complex and integrated brain circuit. Part of which might involve
different input/output or modulatory pathways that would alter-
natively be enhanced [237–239].

Structural modifications underlying synaptic weakening and
memory
Plenty of studies have associated shrinkage and elimination of
dendritic spines with synaptic LTD [240–242]. In detail, an
optically-induced LTD provoked a homogeneous lowering of
hippocampal synaptic function, followed over days by synaptic
refinement, as synapses most likely to release neurotransmitters
regained their function over time whereas low-probability ones
were removed [208]. On the other hand, repetitive induction of
chemical LTD on consecutive days resulted in substantial
retraction of mushroom spines, whose subtype is considered the
most stable [243]. Additionally, mutant animals lacking the GluN2B
subunit of NMDAR, in addition to deficits in learning and LTD
expression, had an expressive reduction on dendritic spine density
in CA1 neurons [219]. When it comes to memory-related dendritic
shrinkage, structural alterations were supposed to engender the
synaptic refinement vital for stablishing memory once fear
conditioning induced a reduction in spine density specifically in
hippocampal neurons that were active during learning, but not in

those inactive [244]. Besides, fear conditioning was found to
induce spine elimination also in other brain regions such as motor
[245] and frontal association cortex [246]. The neurobiology
of extinction memory has also been grounded on a complex
structural remodeling that involves several brain areas. Although it
is widely accepted that extinction has its foundations built on a
new memory, following studies have implied that the original
conditioned trace may still be affected by extinction as, in addition
to the increase in number, all the structural spine changes of the
anterior Cg, IL, BLA and auditory cortex were found reset back to
preconditioning levels by extinction [247–249]. Overall, spine
or dendritic removal/shrinkage underlies functional synaptic
weakening during some particular phases of memory, such a
scenario that gets more complex when entangled with upward
neuroplasticity.

THE DOWNWARD FLOW OF HOMEOSTATIC PLASTICITY
The intracellular measurement of excitatory and inhibitory
synaptic input ratios establishes the key principle of excitatory
and inhibitory (E/I) synaptic balance, a concept which helps to
better understand how the neuronal firing rate is sustained within
a physiological range and under a neurocircuitry perspective to
maintain accurate and reliable any transmission of information. E/I
ratios are kept stable over time despite fluctuating external
interferences, and the mechanisms underlying its maintenance are
diverse and intricate [250]. Tight coupling with a counterweight is
thought to regulate how quickly and accurately neurons can
respond to a stimulus, once it would function as gain and
selectivity mechanisms so that it might favor output refinement

Fig. 4 Negative plasticity is the sine qua non of memory. Downward structural changes such as spine removal and/or dendritic shrinkage
underlie the functional weakening of synaptic strength that happens during LTD and in some specific phases of memory. Each memory phase
has its particular cellular mechanism, however some of them are shared. The bottom figure abridges how AMPAR/GluA2 internalization
triggered by NMDAR/GluN2B-mediated LTD is a fundamental shared cellular mechanism by which synaptic weakening happens in all these
memory processes.

C.R.A.F. Diniz and A.P. Crestani

984

Molecular Psychiatry (2023) 28:977 – 992



while expanding the operational range necessary to drive
neuronal activity [251].
Within the perspective of a single neuron the firing rate is

homeostatically regulated by neuronal intrinsic excitability via
voltage-dependent inward and outward currents [252], as such
adjustment dictates how easily neurons will reach spike threshold
[253]. Furthermore, postsynaptic activity dynamically adjusts the
induction of plasticity through a sliding threshold between
potentiation and depression so that it also happens to modulate
subsequent plasticity - i.e., metaplasticity [254, 255]. When past
activity is low, the synaptic threshold slides down and favors LTP
induction, conversely higher overall activity slides the threshold
up and favors LTD induction [256]. Additionally, it is assumed that
homeostatic adjustments in synaptic strength are accompanied
by changes in the accumulation of postsynaptic receptors such as
NMDAR and AMPAR, characterizing synaptic scaling [257, 258]. All
these changes can occur locally, at synaptic sites, or globally
throughout the entire dendritic arborization. An important hall-
mark of synaptic scaling is that the number of synaptic receptors is
modified following a multiplicative scaling factor so that preserves
the relative differences between synaptic weights and properly
conserves the information stored [259–261].
At a spine structural level, competitive interactions between

spines are expected to maintain total excitatory inputs constant,
within a dynamic range, as increased spine density was followed
by decreased spine volume and individual synaptic response [262]
and theta burst stimulation-induced LTP increased spine size while
decreased overall spine density [263]. Indeed input-specific
synaptic potentiation induced with high-frequency glutamatergic
uncaging led to structural growth of the local dendritic spine of
hippocampal CA1 pyramidal neurons, but shrank and weakened
nearby unstimulated spines [264]. The same pattern of such
heterosynaptic shrinkage of inactive and adjacent spines was
witnessed in the principal neurons of the basolateral amygdala
[265]. Accordingly, efficacy of spontaneous transmission in both
cortical and hippocampal individual synapses was regulated by
the extent of nearby synaptic co-activity [266]. Interestingly,
activity-driven shrinkage of neighboring spines was limited to
10 µm radius inter-spine distance and the closest ones had the
greatest shrinkage [267]. It is thought that heterosynaptic spine
elimination could contribute to the compartmentalization of
dendritic segments by clustering synaptic inputs, thus favoring
the dendritic branch as a fundamental functional unit able of
performing local computations and memory storage [268, 269].
From the standpoint of an entangled brain, this complex set of

homeostatic regulatory mechanisms is important for modulating
synaptic weights and neuronal activity in order to maintain
neuronal network homeostasis at both spatial and temporal scales
[259]. Although data on homeostatic plasticity are scarce when
not focused to its own neurophysiological mechanisms, to make a
better sense of this topic as an extension of our other topics we
next describe some studies in which homeostatic plasticity has
someway been involved with some aspect related to neurodeve-
lopment, aging, stress and memory. For a brief overview of the
topic, see Fig. 5.

Neurodevelopment - homeostatic plasticity entailed to low
brain activity
The extent which and location where homeostatic control takes
place may be impacted by circuit maturation throughout neural
development as in the visual cortex it is triggered by visual
experience. For example, at postnatal day 16 to 21, layers 4 and 6
are under synaptic scaling regulation [270], while on later ages
scaling switches to layers 2/3 [271, 272]. Disturbances of activity in
the developing network may also be restored to normal levels with
inhibitory and/or excitatory adjustments. Consistently, the density
of inhibitory synapses decreased when a glutamate receptor
antagonist was applied to the organotypic culture of the developing

hippocampus [273]. In addition, homeostatic plasticity may involve
specific cell-types as developing hippocampal granule cells
exhibited reduced inhibitory input from parvalbumin-positive
basket interneurons when excitatory drives were absent [274].
Pyramidal neurons in layer 4 of the visual cortex dynamically
adjusted excitatory and inhibitory inputs, respectively, up and down
to compensate for the reduction in sensory cues [275].

Homeostatic plasticity involved with high brain activity of
adult animals
Memory. Based on the central idea that learning induces an
increase in neuronal excitability a study observed that the
compensatory reduction in hippocampal neuronal excitability,
induced with the delivery of a high-frequency spike train
specifically to fear engram cells, facilitated memory extinction
while decreased the density of dendritic spines and increased the
number of inhibitory synapses [276]. Contrary to the idea that
neurons with higher excitability are more likely to be recruited for
learning while learning itself would increase neuronal excitability
[277–279], learning-induced hyperexcitability actually happened
to rapidly trigger a counteracting force sufficient to decrease
neuronal excitability [280]. However, in this case such homeostatic
plasticity was suggested to be critical for consolidating memories
without interference. Another study found that synaptic refine-
ment induced by homeostatic downscaling sculpted an accurate
associative taste memory after taste aversion conditioning initially
induced a generalized response as synapses in the gustatory
cortex were potentiated [281].

Stress. Homeostatic control might act as a protective physiolo-
gical mechanism that supports appropriate coping strategy during
stressful circumstances by maintaining the dynamics of behavioral

Fig. 5 Homeostatic mechanisms controlling fluctuations on brain
activity. Homeostatic plasticity is a global mechanism that
comprises several forms of controlling brain activity within adequate
physiological levels. Hyperactivity mobilizes downward homeostatic
mechanisms that act by braking down and constraining neuronal
activity over a physiological range. On another hand, a counter-
acting upward homeostatic force is recruited following hypoactivity.
Regular cognitive process such as memory are tempered by
homeostatic plasticity. The same regulation happens when indivi-
duals have to deal with stressful challenges. Since neurodevelop-
ment, homeostatic mechanisms are observed and expressed in
particular ways depending on the brain area, cell-type and age
investigated. Also, homeostatic dysregulation may explain some of
the aging-related phenomena such as hyperexcitability.
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and physiological adjustments within an optimal range through a
precise E/I neuronal balance [282]. On the other hand, failure of
homeostatic controls during stress might favor depression and
anxiety-like behaviors [283]. Interesting, a study has demonstrated
that resilient mice expressed an up-regulated hyperpolarization-
activated current (Ih) in the dopaminergic neurons of the ventral
tegmental area (VTA) after chronic stress. This Ih current was
higher than the upregulation usually observed in depressed mice
and it drove an excitatory force that was countered by an increase
in K+ channel currents, a cell-specific compensatory mechanism
that reduced VTA DA excitability to control levels [284].

Aging. Accumulating evidence demonstrates that neuronal hyper-
excitability and hyperexcitable networks are hallmarks of normal
[285, 286] and pathological aging [287]. Also, hyperexcitability
in different brain regions as the hippocampus [285, 286, 288]
and cortex [289] is associated with cognitive deficits [290, 291].
Many factors may account for hyperexcitability, including dysho-
meostasis in Ca2+ [287, 291], alterations of GABAergic [292, 293] or
glutamatergic [286] circuitry with effects on the E/I balance, as well
as modifications on intrinsic excitability [288, 294]. Hypothetically,
these age-associated changes could underlie failures on homeo-
static control of excitability and influence neuronal firing rate [295].
Numerous proteins involved in AMPAR stabilization and AMPAR-
mediated signaling cascades are down- or upregulate in the whole
aging brain [296, 297], a potential mechanism for synaptic scaling
and homeostatic control failures.

CONCLUDING REMARKS
Since the brain was found to be somehow plastic, scientists urge for
boosting this power up. Misleadingly, this often means increasing
neuronal connections, once disconnections have been indiscrimi-
nately linked to all sorts of brain disorders. So, it is not uncommon to
find “neuroplasticity impairment” in the scientific literature when it
comes to data somehow related to synaptic disconnections - for an
interesting review about molecular mechanisms of dendritic spine
elimination, please see [242]. Although brain plasticity may have
different primary minimalist meanings for neurodevelopment
(redundancy and neuronal refinement), aging (synaptic deteriora-
tion and higher risk of neuronal disease), stress (adaptation or
higher risk of psychiatric illness), and memory (learning and
adaptability), it takes place on an interwoven continuum where
neuroplasticity is indeed beyond the boundaries of any biological
morality. Just as Bob Dylan criticizes how prior generation deals with
social evolution and ends up saying “the times they are a-changin”,
we propose a rationale for a paradigm shift that will hopefully shed
some light on how synaptic disconnections fit within the concept of
neuroplasticity.
Once aware of the broader picture regarding the role of brain

flexibility, we should primarily speak of neuroplasticity as a
balance between what we have named “upward” and “down-
ward” neuroplasticity. Just common binary words to describe each
path in which neuroplasticity could move along a direction vector.
So, whatever route neuroplasticity takes, including whatsoever
organically leads to synaptic disconnection or weakening, it does
as a consequence of the brain’s ability to change itself. One could
still say that once a synapse is gone, the brain would end up with
lower levels of neuronal matter for the next move of neuroplas-
ticity to take place. Indeed, neurodegenerative disorders make the
brain less flexible as brain mass losses become massive over the
course of the disease. So, for these cases it is unavoidable to think
of an impairment of neuroplasticity. The same could be said about
brain injury or stroke brain damage. However, under physiological
conditions such as neurodevelopment, healthy aging, stress
coping, memory and learning, synaptic turnover is part of a
contingency plan to optimize the flow of neural information on
demand. So, considering how complex the brain and its entangled

neurocircuitry are, it is not worth compartmentalizing it to refine
neuroplasticity concepts based on microniches as any change
might be directly or indirectly counteracted at the cellular or
neurocircuitry level by a completely opposite direction of
neuroplasticity.
While we attempt to reduce the bias related to any moral

judgment that could be even loosely associated with disconnection
of synapses, we are aware that this approach is just the beginning as
a paradigm shift has much more to deal with than handling sub-
concepts. Indeed, any bias depends on the guided experience of a

Fig. 6 Downward neuroplasticity within the larger and comple-
mentary perspective of an entangled brain. The main goal of this
review is to work on the idea of how neuroplasticity, in all its
complexity, should be conceptually understood as a balance
between what we have called here as “upward and downward
neuroplasticity”. Developing brains, and partially also the adult ones,
are flexible, moldable, and as it is, any capability for decreasing the
density levels or structural complexity of spines and/or dendrites
should be considered part of the neuroplasticity program, rather
than being a deficiency of it. Thus, comparable to how puzzles fit
together, upward and downward neuroplasticity work to comple-
ment each other so that the brain would eventually be able to
reshape its connections by neuronal tuning to optimize network’s
efficiency under certain demands. Within a broader landscape as
seen with assembled puzzles, although neuroplasticity happens at
first glance from the microscale changes of spines and dendrites
according to a neuronal perspective, its consequences expand
toward a macroscale outlook where individual orchestrated changes
integrate into the account of different neuronal populations and
neurocircuits. So, any cause or consequence neuroplastic change
from an entangled brain, whether up or down, may be directly or
indirectly connected to at least some other part of the brain that
could still show a completely opposite direction of neuroplasticity.
The orange, red and gray puzzles represent different populations of
neurons that in the sum of the events globally present upward
plasticity, while the green, yellow and purple puzzles represent
different populations of neurons that in the sum of the events
present global downward plasticity. Meanwhile, the blue and white
puzzles represent neurons with a balanced number of events that
represent both upward and downward neuroplasticity. Their
connections should maintain the brain largescale of neuroplasticity
at zero sum when considering downward and upward neuroplas-
ticity within the topography of neuronal matter.
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personal life, and therefore the concept of “downward” or “upward”
neuroplasticity might still have some negative or positive connota-
tion. We then want to make it as clear as possible that the idea of
using such sub-concepts comes from the neutral view of direction
vectors, an approach that should at least help to minimize any
personal moral bias towards neuroplasticity.
As the island of knowledge grows larger, so does its horizon.

The same happens when we include the “upward” and “down-
ward” concepts to neuroplasticity. So now more than ever is a
great opportunity to update the meaning of neuroplasticity, as
our current knowledge that plasticity is an intrinsic and
bidirectional property of neurons somewhat blurs the difference
between “neuroplasticity” and “neurophysiology”. Although it
sounds more of an epistemological issue, we propose that
neuroplasticity is the ability of the brain to change itself in such a
way that any gain or loss in brain function should be bigger or
lower than the sum of its lost or gained parts. So, brain
reorganization itself would not suffice to determine neuroplas-
ticity without an amplified gain or loss of brain function, provided
that the initial state of the brain is maintained and there is no
change in the specific function of one region that is sufficient to
reach and modify other areas of the brain. Such an updated
concept would fit better with the new findings that place any
single part of the brain directly or indirectly connected to any
other single part of the brain, making even a small change likely
to influence the entire brain in some way.
Therefore, upward and downward plasticity should at first be

understood as complementary to each other, including in cases of
psychiatric disorders. Both neuroplasticities co-exist, certainly
interact with each other and thus one has nothing more especial
than the other. Hence, it is important to give downward
neuroplasticity as much attention as upward neuroplasticity given
that brain flexibility would not be complete without one or the
other. For good or bad, downward modifications are part of the
neuroplasticity program, rather than being a deficiency of it. For a
brief overview of the conclusion, please see Fig. 6.
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