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Genome-wide association studies (GWAS) of suicidal thoughts and behaviors support the existence of genetic contributions.
Continuous measures of psychiatric disorder symptom severity can sometimes model polygenic risk better than binarized
definitions. We compared two severity measures of suicidal thoughts and behaviors at the molecular and functional levels using
genome-wide data. We used summary association data from GWAS of four traits analyzed in 122,935 individuals of European
ancestry: thought life was not worth living (TLNWL), thoughts of self-harm, actual self-harm, and attempted suicide. A new trait for
suicidal thoughts and behaviors was constructed first, phenotypically, by aggregating the previous four traits (termed “suicidality”)
and second, genetically, by using genomic structural equation modeling (gSEM; termed S-factor). Suicidality and S-factor were
compared using SNP-heritability (h2) estimates, genetic correlation (rg), partitioned h2, effect size distribution, transcriptomic
correlations (ρGE) in the brain, and cross-population polygenic scoring (PGS). The S-factor had good model fit (χ2= 0.21, AIC= 16.21,
CFI= 1.00, SRMR= 0.024). Suicidality (h2= 7.6%) had higher h2 than the S-factor (h2= 2.54, Pdiff= 4.78 × 10−13). Although the
S-factor had a larger number of non-null susceptibility loci (πc= 0.010), these loci had small effect sizes compared to those
influencing suicidality (πc= 0.005, Pdiff= 0.045). The h2 of both traits was enriched for conserved biological pathways. The rg and
ρGE support highly overlapping genetic and transcriptomic features between suicidality and the S-factor. PGS using European-
ancestry SNP effect sizes strongly associated with TLNWL in Admixed Americans: Nagelkerke’s R2= 8.56%, P= 0.009 (PGSsuicidality)
and Nagelkerke’s R2= 7.48%, P= 0.045 (PGSS-factor). An aggregate suicidality phenotype was statistically more heritable than the
S-factor across all analyses and may be more informative for future genetic study designs interested in common genetic factors
among different suicide related phenotypes.
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INTRODUCTION
Death by suicide is responsible for more than 700,000 deaths per
year [1]. The World Health Organization invested in global
advocacy and awareness programs toward reducing stigma and
increasing access to care. However, death by suicide ranks as the
fourth leading cause of death among teens and young adults [2].
Twin, family, and adoption studies show a heritability (i.e.,
phenotypic variation explained by genetic differences) of suicidal
thoughts and behaviors between 30 and 50% [3].
Large genome-wide association studies (GWAS) of individual

thoughts and behaviors associated with death by suicide
demonstrate small but robust heritability estimates attributed to
common genetic variation (h2): 1.25% for attempted suicide (AS)
in the Million Veteran Program (MVP) [4], 1.9–4.6% in a Danish
study of AS with and without considering mental health diagnoses
[5], 5.7–6.8% in two large meta-analyses of AS lead by the
International Suicide Genetics Consortium [1, 6]. When consider-
ing comorbid psychiatric diagnoses, the Psychiatric Genomics
Consortium has previously reported a genetic signal for AS that is
independent of major depressive disorder (MDD), schizophrenia,

and bipolar disorder [1]. Furthermore, the literature varies on the
degree of genetic and clinical overlap between suicidal ideation,
suicidal planning, non-suicidal self-injury, suicidal self-injury,
suicide attempt, and death by suicide. These phenotypes are
heterogeneous, and many studies support studying them as
discrete items to dissect the unique genetic factors associated
with each [7–10]. However, all of these trait associate with death
by suicide, which warrants assessment of the genetic features
shared among suicidal thoughts and behaviors. It remains unclear
how these traits genetically overlap with one another and to
mental health diagnoses.
Other suicidal behaviors occur well before AS and may include

ideation and planning the attempt to end one’s life. Though death
by suicide is not a diagnosis, these thoughts and behaviors may
be modeled as a severity continuum termed ‘suicidality’ analo-
gous to symptom severity measures used for formal DSM
diagnoses. Among GWAS of psychiatric disorders and conditions
associated with AS and death by suicide, continuous measures of
symptom severity appear to better model polygenic risk than
binarized case-control items, leading to increased statistical power
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in gene discovery [11, 12]. This is especially true for traits strongly
correlated with suicidal thoughts and behaviors such as posttrau-
matic stress disorder [11] and MDD [13]. It therefore stands to
reason that a suicidality measure capturing continuous variation
across suicidal thoughts and behaviors would be more statistically
powerful than any individual dichotomized definition. Straw-
bridge, et al. reported a genome-wide association study of one
definition of suicidality in the UK Biobank (UKB) and reported an
h2 of 7.6% in a sample substantially smaller than the most
contemporary meta-analyses of AS [1, 4, 6, 14, 15].
Though showing higher h2 than individual thoughts and

behaviors associated with death by suicide, aggregating these
items at the phenotype level may induce phenotypic hetero-
geneity that limits the potential discovery of genome-wide
significant loci and biological processes relevant for discrete, yet
related, behaviors. A primary limitation of some recently
introduced phenotypically aggregated suicidality measures is the
equal contribution of each questionnaire item to the final
suicidality rating regardless of the heritability of each item or
the relationship between items. Genomic structural equation
modeling (gSEM [16, 17]) is a multivariate method that permits
building factor structure(s) that account for the heritability of each
indicator and the relationship between indicators. For example,
gSEM has been used previously to describe how the 10-item
Alcohol Use Disorder Identification Test reflects a correlated two-
factor structure of problematic use and consumption [18].
This study asked whether there is any benefit to studying a

gSEM derived “S-factor” in addition to a questionnaire-derived
suicidality measure to inform suicide biology. We report h2

differences between suicidality and S-factor and compare these
trait definitions on the basis of genetic correlation with other
psychopathologies and mental health diagnoses, functional
enrichment underlying their h2 estimates, and transcriptomic
signatures across various relevant brain regions. Our findings
reinforce the greater statistical power of a phenotypically-derived
suicidality factor and demonstrate a systematic reduction of signal
in all analyses when analyzing the S-factor.

METHODS
S-factor modeling
The gSEM method models the multivariate genetic architecture of sets of
traits by incorporating genetic covariance structure into multivariate
GWAS. Using gSEM [16, 17], common factor GWAS was performed on the
S-factor linking four traits describing the thoughts and behaviors
associated with death by suicide and range in severity from ideation to
attempt to end one’s life. The four common factor indicators were
questions from the UKB self-harm behaviors section of the online Mental
Health Questionnaire and have been previously described by Strawbridge,
et al. [15]: thought life was not worth living (TLNWL), thoughts of self-harm or
suicide (TSH), actual self-harm (ASH), and AS. Note that participants could
respond to ASH with “yes” for deliberate acts of self-harm whether or not
they intended to end their own lives.
We hypothesized that a single factor explained the four indicator

variables and as such no exploratory factor analysis was performed.
Multivariable linkage disequilibrium score regression (LDSC) was used to
obtain a genetic covariance and corresponding sampling matrix based on a
European ancestry linkage disequilibrium reference panel reflecting the
1000 Genomes Project EUR superpopulation. All factor modeling used
diagonally weighted least squares estimation and promax rotation. Four
model fit statistics were evaluated: chi-squared (χ2), comparative fit index
(CFI), Akaike information criterion (AIC), and standardized root mean square
residual (SRMR). Briefly, χ2 indexes whether the modelled genetic covariance
matrix differs from the empirical matrix. CFI tests whether the proposed
model fits better than a model that assumes all indicators are heritable but
uncorrelated. AIC measures relative model fit and can be used to compare
multiple models. SRMR is a measure of approximate model fit calculated as
the standardized root mean square difference between model implied and
observed correlations among covariance matrices. Each fit statistic has its
strengths and weaknesses, so we considered several features in deciding

the best model. We declared a model superior if it had a lower AIC value,
lower SRMR, and higher CFI.

Trait description
The UKB is a population-based cohort of >500,000 participants with deep
phenotyping of lifestyle factors, mental and physical health outcomes,
anthropometric measurements, and other traits. Our analysis used the self-
harm behavior GWAS summary data from unrelated European ancestry
participants adjusted for age, sex, genotyping chip, and within ancestry
genetic principal components. TLNWL (UKB Field ID 20479) and TSH (UKB
Field ID 20485) asked participants to respond “No,” “Yes, once,” or “Yes,
more than once” to questions about thought/contemplation of self-harm.
These items were dichotomized into “no” and “yes” for GWAS [15]. ASH
(UKB Field ID 20480) and AS (UKB Field ID 20483) asked participants to
respond with “no” or “yes” to questions about ASH behavior. These four
items also were aggregated into a single ordinal trait termed “suicidality”
such that participants responding “no” to all four questions were assigned
“0” and each “yes” increased the participants’ suicidality score up to 4
(most severe). UKB participants with death-by-suicide ICD codes X60-X84
(classified as intentional self-harm) were excluded from GWAS. Further
description of these variables has been published previously [15, 19, 20].
The use of UKB individual-level data has been conducted through the

application reference number 58146. UKB has approval from the North
West Multi-center Research Ethics Committee as a Research Tissue Bank
(RTB) approval. This approval means that researchers do not require
separate ethical clearance and can operate under the RTB approval.

Linkage disequilibrium score regression (LDSC)
LDSC was used to estimate the h2-SNP of the S-factor based on the 1000
Genomes Project European ancestry reference panel. Stratified-LDSC (S-
LDSC) was implemented in GenomicSEM for >51 genomic annotations
(baseline annotation v2.2 with flanking and continuous annotations
excluded) related to allele frequency strata, genomic conservation,
evolutionary selective pressure, epigenomic regulatory sites, etc [21–24].
The major histocompatibility complex region was excluded from these
analyses due to its complex linkage disequilibrium structure.
LDSC also was used to estimate the genetic correlation (rg) between

suicidality and the S-factor relative to various suicide-associated traits and
risk factors including large GWAS of psychiatric disorders. These were:
TLNWL, TSH, ASH, and AS reported by Strawbridge, et al. [15], suicide
attempt among bipolar disorder, schizophrenia, and major depression
cases from Mullins, et al.; [14] psychiatric disorder GWAS from the
Psychiatric Genomics Consortium including ADHD [25], anorexia nervosa
[26], obsessive compulsive disorder [27], schizophrenia [28], Tourette
syndrome [29], and the MVP including problematic alcohol use [30],
posttraumatic stress disorder and its symptom domains [11], broad
depression [13], and generalized anxiety disorder [31]; personality domains
from the Genetics of Personality Consortium including extraversion,
agreeableness, conscientiousness, openness [32]; and other related
variables from the Social Science Genetic Association Consortium including
subjective well-being [33], neuroticism [33], risky behavior [34], risk
tolerance [34], cognitive performance [35], education years [35], and
educational attainment [35]. We corrected the genetic correlation analysis
for multiple testing using a false discovery rate of 5% to account for the
known genetic and phenotypic overlap between the traits selected for this
analysis.

Effect size distribution
The R package GENESIS [36] was used to estimate common variant effect
size distributions for suicidality and the S-factor. Effect size distributions are
characterized by three statistics: πc describes the proportion of suscept-
ibility SNPs, σ2 describes the variance in effect size for non-null SNPs, and α
describes residual effects not captured by the variance of effect-sizes such
as population stratification, underestimated effects of extremely small
effect size SNPs, and/or genomic deflation. We performed 2-component
modeling to specify the effect of non-null SNPs [24, 36, 37]. GWAS data
were filtered to (i) include only HapMap3 SNPs (excluding the major
histocompatibility complex due to its complex linkage disequilibrium
structure), (2) exclude SNPs with Z2 > 80, and (3) exclude SNPs with
effective samples sizes <0.67-times the 90th percentile of the total sample.
We also included GWAS data for height [38] and broad depression [13].

Height was used as a model trait with broad effect size distribution
representing a relatively large proportion of non-null SNPs with relatively
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large effect sizes. MDD was used as a model trait with narrow effect size
distribution representing a relatively small proportion of non-null SNPs
with relatively small effect sizes.

GTEx v8 tissue enrichment
Tissue transcriptomic profile enrichment was evaluated using Multi-marker
Analysis of GenoMic Annotation (MAGMA) [39]. To identify tissue effects of
each phenotype, gene-property analyses were applied with Functional
Mapping and Annotation (FUMA) to test relationships between tissue-
specific gene expression profiles and disease-gene associations [40].

Transcriptome-wide association studies
Summary-based transcriptome-wide association studies (TWAS) of suicid-
ality and the S-factor were performed using the GTEx v8 TWAS expression
weights for cerebellar hemisphere, cerebellum, hippocampus, and
hypothalamus. Gene expression weights for 6091 features of the cerebellar
hemisphere are estimated in 157 individuals, for 7272 features of the
cerebellum are estimated in 188 individuals, for 3547 features of the
hippocampus is estimated in 150 individuals, and for 3543 features of the
hypothalamus are estimated in 156 individuals. FUSION [41] was used to
perform TWAS of suicidality and all four S-factor indicators. TWAS of the
S-factor was performed using gSEM and the TWAS summary association
data from FUSION for each S-factor indicator. Multiple testing correction
was applied using a Bonferroni threshold per tissue (P < 8.21 × 10−6= 0.05/
6091 genes for cerebellar hemisphere; P < 6.88 × 10−6= 0.05/7272 genes
for cerebellum; P < 1.41 × 10−5= 0.05/3547 genes for hippocampus;
P < 1.41 × 10−5= 0.05/3543 genes for hypothalamus). RHOGE was used
to estimate the genome-wide genetic correlation between suicidality and
the S-factor as a function of predicted cis gene expression effects on each
trait [42].

Cross-ancestry translation of European-ancestry polygenic
risk
We applied cross-ancestry polygenic scoring (PGS) in the UKB (Application
Number 58146) to evaluate how findings from individuals of European
ancestry extend to diverse communities. We derived suicidality in five
additional groups as described previously: African (AFR; N= 876), Admixed
American (AMR; N= 256), Central/South Asian (CSA; N= 1106), East Asian
(EAS; N= 599), and Middle Eastern (MID; N= 269) [15, 20]. Ancestry groups
were defined using a random forest classifier based on genetic principal
components relative to a combined reference panel from the 1000
Genomes Project Phase III and the Human Genome Diversity Project. This
procedure is described in detail at the Pan-Ancestry UKB web-page:
https://pan.ukbb.broadinstitute.org/docs/qc.
Suicidality and S-factor polygenic scores (PGS) with continuous

shrinkage were calculated for individuals from each ancestry group using
PRS-CS [43]. PRS-CS is a Bayesian polygenic prediction method that
imposes continuous shrinkage priors on SNP effect sizes. LD-independent
SNPs were selected based on the UKB European ancestry reference panel.

We further required that each SNP have a minor allele frequency >5% in
the target ancestry group. Generalized linear models associating suicidality
with suicidality and S-factor polygenic scores included age, age2, sex × age,
sex × age2, and ten within-ancestry genetic principal components. We also
tested the association of polygenic scores with each suicidality indicator
trait (note that AS had too few observations to test) and depression
(endorsement of either UKB Field ID 2090 or 2100) [44], total neuroticism
score (inverse rank normalized, UKB Field ID 20127), and standing height
(in centimeters; UKB Field ID 50).

RESULTS
The S-factor structure
Using GenomicSEM, we constructed a common factor model that
we refer to as the S-factor as it reflects the multivariate effects of
the thoughts and behaviors proceeding death by suicide. We
considered four indicators in the S-factor: thought life not worth
living= “TLNWL,” thoughts of self-harm= “TSH,” actual self-
harm= “ASH,” and attempted suicide= “AS.” TLNWL, TSH, and
ASH had significant non-zero h2 (Table S1) but AS did not
(h2= 3.34%, P= 0.099) so we considered two S-factor models:
model-1 included TLNWL, TSH, ASH, and AS (Fig. 1A) and model-2
included only TLNWL, TSH, and ASH. Genetic correlations (rgs) for
each pair of indicators are shown in Table S2. Model-1
(χ2(2)= 0.21, AIC= 16.21, CFI= 1.00, SRMR= 0.024) had superior
fit statistics relative to model-2 (χ2(2)= 3.14, AIC= 19.14, CFI=
0.999, SRMR= 0.025) and was chosen for all subsequent S-factor
analyses (Table S3). TSH had the highest genetic correlation with
suicidality (rg= 0.989, P= 3.62 × 10−76) and was the indicator
most strongly loaded onto the S-factor (standardized
loading= 1 ± 0.17).

Genetic architecture of the S-factor
There were no loci associated with the S-factor at the level of
genome-wide significance (GWS, P < 5 × 10−8; Fig. 1). All three
suicidality loci from Strawbridge, et al. [15]. were nominally
replicated in the S-factor GWAS (Table S4) with no significant
difference in effect size between the two studies.
We quantified several metrics of genome-wide polygenicity

(Fig. 1B, C and Table S5A) using GENESIS [36]. Relative to
suicidality (πc= 0.005 ± 0.002), the S-factor has a significantly
higher proportion of non-null susceptibility SNPs (πc= 0.010 ±
0.001, Pdiff= 0.045; Fig. 1C and Table S5A). However, the
suicidality effect size distribution is broader than that of the S-
factor (Fig. 1B), suggesting that suicidality SNPs effect sizes are
generally greater and may require smaller samples sizes to detect

TLNWL TSH ASH AS

Sg

.81 (.20).57 (.15)1 (.17).84 (.15)

UTLNWL UTSH UASH UAS

1 111

.30 (.24) .00 (.32) .67 (.23) .34 (.59)

1AIC = 16.2
CFI = 1
SRMR = 0.02

A B

Fig. 1 Factor structure and genetic architecture of the S-factor. A The four thoughts and behaviors associated with death by suicide
(thought life not worth living= TLNWL, thoughts of self-harm= TSH, actual self-harm= ASH, and attempted suicide= AS) fit a single common
factor (S-factor fit statistics are shown in the top left corner). The TSH indicator loading was constrained to 1; Table S3 shows indicator loadings
before and after Heywood-case correction. B Genetic effect size distribution and associated statistics of the S-factor relative to suicidality using
height and broad depression as comparative traits with relatively large and small proportions of relatively high effect size SNPs, respectively.
AIC= Akaike information criterion, CFI= comparative fit index, SRMR= standardized root mean square residual, “pi_c” (πc)= proportion of
susceptibility SNPs, “sigma_sq” (σ2) variance in effect size for non-null SNPs, and “alpha” (α)= residual effects not captured by the variance of
effect-sizes (e.g., population stratification).
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by GWAS [15]. When projected sample sizes reach 500,000 (Table
S5B) the S-factor GWAS is estimated to remain uninformative
while the suicidality GWAS should yield 60 GWS SNPs (95% CI:
15–139). At projects of 1-million individuals, the S-factor remains
relatively uninformative (4 GWS SNPs, 95% CI: 0–18). Only when
projected to 5-million individuals does the S-factor GWAS become
an informative source of associated loci (539 GWS SNPs, 95% CI:
208–1117); however, the suicidality GWAS remained the more
lucrative study in terms of susceptibility loci discovered at all
projected sample sizes (Table S5B and S5C).

Heritability comparisons
The h2-SNP of the S-factor was 2.54% (P= 1.72 × 10−12) which is
significantly lower than the h2-SNP for a pooled suicidality
phenotype (h2-SNP= 7.6%, Pdiff= 4.78 × 10−13) [15]. Though
different with respect to phenotypic variance explained by
common genetic variation, the rg between the S-factor and
suicidality is almost perfect (rg= 0.996, P < 9.21 × 10−308).
S-LDSC was applied to quantify the overlap between genomic

annotation contributions to h2-SNP in the suicidality and S-factor
GWAS. We partitioned the h2-SNP of the S-factor three ways: with
LDSC, with gSEM S-LDSC using all indicators, and with gSEM
S-LDSC removing the least well-powered indicator (AS). This
approach permitted comparison across methods for robust
detection of enriched genomic categories using the various
strengths of each method (e.g., gSEM S-LDSC reports a Z-smooth
value quantifying the degree of smoothing applied to the data
with clear guidelines for enrichment interpretation given these
values). The most consistently enriched annotation described sites
conserved across primates as measured by PhastCons 46-way
alignment (converved_primate_phastcons46way, mean enrich-
ment= 19.80 ± 5.68, Fig. 2 and Table S6). Regardless of trait

definition or partitioning method applied, there were no
significant differences in genomic enrichment (P ≥ 0.147).

Genetic correlation
We next compared rg estimates of suicidality and the S-factor
relative to 32 mental health traits (Table S7), including other
genetic assessments of the thoughts and behaviors associated
with death by suicide. Because of the high genetic overlap
between the S-factor and suicidality, the rg estimates with other
mental health traits were nearly identical (adjusted R2= 0.984,
P= 8.55 × 10−188). Though not significantly different, the largest
magnitude of difference in rg estimates stems from comparisons
with TLNWL (rg with suicidality= 0.870, rg with S-factor= 0.941,
Pdiff= 0.284).

Comparison of brain region transcriptomic effects
Consistent with prior findings from this study, tissue transcrip-
tomic profile enrichments for suicidality and the S-factor are
highly correlated (R2= 0.861, P= 3.265 × 10−34). Though the S-
factor GWAS yielded two significant tissue transcriptomic profile
enrichments, there was no difference in effect size for the
enrichments derived from suicidality or the S-factor. Gene
expression weights from four brain tissues were used for TWAS
comparisons of suicidality and the S-factor due to their significant
enrichments (P < 0.05) in the suicidality GWAS: cerebellar hemi-
sphere, cerebellum, hippocampus, and hypothalamus (Table S8).
Though no gene reached GWS in any of the TWAS performed

(Table S9), the genetic correlation between genetically
predicted gene expression effects underlying suicidality and
the S-factor in each tissue was high: ρGE = 0.990,
P= 1.31 × 10−296 considering cerebellar hemisphere weights;
ρGE = 0.991, P < 9.21 × 10−308 considering cerebellum weights;
ρGE = 0.991, P= 8.96 × 10−175 considering hippocampus
weights; ρGE = 0.992, P= 1.81 × 10−193 considering hypothala-
mus weights. The most significant protein-coding gene
expression effects discovered from the more powerful suicid-
ality TWAS were RBM26 in the cerebellar hemisphere (suicid-
ality Z= 3.95, P= 7.53 × 10−5; S-factor Z= 2.78, P= 0.005)
and COLQ in the hippocampus (suicidality Z=−3.90,
P= 9.53 × 10−5; S-factor Z= 3.12, P= 0.001).

Cross-population polygenic scoring
Using SNP effect sizes estimated from large European-ancestry
GWAS, PGS for suicidality and the S-factor in diverse ancestries
were highly correlated (minimum Pearson’s r= 0.726,
P= 3.25 × 10−214 in AFR; maximum Pearson’s r= 0.824,
P= 1.92 × 10−121 in MID; Fig. 3A). PGS for suicidality associated
with suicidality (R2= 11.1%, P= 0.017), TLWNL (Nagelkerke’s
R2= 8.56%, P= 0.009), and ASH (Nagelkerke’s R2= 14.3%,
P= 0.034) in the AMR population; PGS for the S-factor associated
with TLNWL in AMR (Nagelkerke’s R2= 7.48%, P= 0.045) and with
ASH in MID (Nagelkerke’s R2= 7.71%, P= 0.046; Table S10 and
Fig. 3B). PGS for the S-factor also associated with neuroticism
scores and depression in several diverse populations but the
analogous test with suicidality PGS were generally not significant.
However, there were no differences in effect size for the PGS
regardless of the GWAS used to train them. In the CSA population,
suicidality (Nagelkerke’s R2= 4.39%, P= 0.048) and S-factor
(Nagelkerke’s R2= 4.31%, P= 0.048) PGS both associated with
depression (Table S10). As a null control, we observed no
relationship between PGS for suicidality or S-factor and height.

DISCUSSION
The use of continuous or ordinal phenotypes for GWAS of
psychiatric disorders and related psychopathologies has proven a
powerful way to identify risk loci and related biological pathways
underlying common diagnoses [11–13]. This approach has been
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Fig. 2 Genomic annotation enrichment. Enrichment of 9 genomic
annotations at least nominally enriched (asterisks indicate P < 0.05) in
the GWAS of suicidality and/or the S-factor. Genomic annotations
have been described previously [21, 22, 24]. All genomic annotation
enrichments are provided in Table S6. Definitions: Conserved_Prima-
te_phastCons46way= genomic regions conserved across primate
species [21], DHS_Trynka=DNase I hypersensitive sites reflecting
aggregated ENCODE and Roadmap data [59], non_synonymous=
non-synonymous SNPs, Conserved_LindbaldToH= genomic regions
conserved in mammals [60], Repressed_Hoffman= CTCF repressed
chromatin elements intersected from six cell lines from Hoffman,
et al. [61], Transcr_Hoffman= CTCF transcribed elements across six
cell lines from Hoffman, et al. [61], H3K4me3_peaks_Trynka= Cell-
type-specific H3K4me1, H3K4me, and H3K9ac data from Roadmap
[59], Promoter_UCSC= genomic regions contains in gene promoter
elements [62, 63], MAFbin9= loci with minor allele frequencies within
(37.73; 43.87] in the 1000 Genomes Project Phase 3 and (37.66; 43.76]
in UK 10k [64].
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previously applied to studies of suicidality that apply an equal
weight to each questionnaire item [15]. In other words, regardless
of the relationship between questionnaire items or the sensitivity
of those items for an outcome, each contributed equally to the
outcome. We compared this approach to capturing a suicidality
phenotype to gSEM-derived S-factor which explicitly considers the
relationship between each indicator variable in the model.
All four suicidal thoughts and behaviors significantly loaded

onto the observed S-factor. Relative to epidemiological data
supporting AS as the leading predictor of future death by suicide,
the genetic component of the S-factor was most associated with
TSH. AS was the least heritable indicator in this study but
removing AS from the S-factor reduced model fit suggesting that
this indicator is relevant on the genetic level. Therefore, AS may
require larger sample sizes to become highly relevant to the S-
factor structure. Instead, we suspect the major contribution of TSH
to the S-factor stem from a balance between (i) heritability and
power and (ii) increased specificity for suicidal thoughts and
behaviors. TLNWL was the most powerful indicator GWAS but has
previously shown extremely high phenotypic and genetic
correlation with MDD (rg= 0.46) and neuroticism (rg= 0.56) [15]
and is even a component of the Personal Health Questionnaire
9-item measure of depressive symptoms [45].
The potential for risk locus discovery in GWAS of suicidality and

the S-factor produced the most notable differences. Though the
S-factor had a significantly larger number of non-null SNPs, these
loci required substantially larger sample sizes to detect their
relatively small effect sizes. It would require an estimated 5-million
individuals with a similar prevalence of S-factor indicator
endorsement to yield GWS SNPs in numbers already surpassed
in GWAS of correlated traits like MDD [13] and schizophrenia [28].
The phenotypically aggregated suicidality item had an earlier
return on investment producing hundreds of GWS SNPs with
cohorts ranging from 500-thousand and 1-million participants. We
hypothesize that this difference between suicidality and the S-
factor future return on investment in part reflects aggregated
effects of low S-factor h2-SNP estimates, relatively high hetero-
geneity among the primary S-factor indicator traits, and lack of
non-null SNPs for the S-factor from which to model the non-null
SNP distribution and future projections. Furthermore, suicidality
had a significantly higher h2 estimate suggesting this phenotype is
more informative for inferring relevant biology through down-
stream in silico analyses. This is reinforced by a lack of significant
differences in SNP effect sizes between the GWAS of suicidality
and the S-factor and may stem from utilizing a linear regression
for the suicidality GWAS relative to the individual logistic
regressions performed for each of the UKB items contributing to

the S-factor GWAS. It should also be noted that the reduced h2 of
the S-factor may arise from its attempt to parse suicidal ideation
and self-harm ideation and therefore may not model the
distribution of thoughts and behaviors as expected. In other
words, ASH and AS may be too poorly represented in the model
due to h2, sample size, or substantially different genetic features
that cannot be accommodated by our hypothesized one-factor
model. The application of linear models to an ordinal trait like
suicidality complicates the interpretation of how GWS loci increase
or decrease risk for such thoughts and behaviors due to the forced
linear relationship in a non-linear space. An ordinal-trait aware
SNP-phenotype regression may better model the skew in ordinal
data commonly observed for traits ascertained through biobank
surveys [46]. Future work is necessary to understand the benefit of
explicitly modeling ordinal data in genotype-phenotype associa-
tions of suicidal thoughts and behaviors. For example, to better
understand how GWS loci increase or decrease risk for suicidality
in a potentially non-linear fashion across suicidality categories.
To our knowledge, the enrichment of SNP-annotations related

to conserved genomic regions is the first of its kind for traits along
the suicidality spectrum but was consistent across approaches.
The magnitude of enrichment also was consistent with those
reported for MDD [44] and across psychiatric disorders more
broadly [47]. In the context of loci identified in GWAS of major
depression, genes found in conserved regions of the genome
were part of networks relevant for organismal development and
function across the lifetime such as synaptic function and brain
development [48, 49]. These enrichments in major depression
GWAS suggest a rich interaction between genetic factors and the
environment that has been empirically demonstrated for suicid-
ality and select environments related to stress [20], substance use
[19], and depression [50].
Several tissue transcriptomic profiles from brain regions were

nominally enriched in the GWAS of suicidality but the S-factor
GWAS was underpowered to detect similar enrichments. We
further tested these enrichments using a TWAS approach in the
cerebellar hemisphere, cerebellum, hippocampus, and hypothala-
mus. There were extremely high correlations between the
suicidality and S-factor regardless of tissue; however, these
relationships were estimated using only cis-elements only [42].
We therefore cannot rule out the contribution of trans-regulatory
elements to gene expression differences between suicidality and
the S-factor.
Though no gene reached genome-wide significance, the two

most significantly associated genes harbor interesting functional
relevance worth discussing. RBM26 was associated with schizo-
phrenia in a recent study but only at a level of suggestive

Fig. 3 Cross-population polygenic scoring. A Linear relationships between suicidality and S-factor polygenic scores estimated using
European ancestry GWAS summary association data in five diverse ancestry groups. B Portability of suicidality and S-factor polygenic scores
into Admixed American suicidality data from the UK Biobank. Asterisks indicate a significant difference in polygenic score relative to the
control (suicidality scale= 0).
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significance (P= 3.41 × 10−7) [51]. Within the first decade of
diagnosis, people who suffer from schizophrenia are at the highest
risk for suicidality, with a total suicide rate of 10% [52]. Though
there are several factors contributing to decreased life expectancy
in schizophrenics, suicide is the largest one. COLQ is associated with
cardiovascular traits such as resting heart rate (P= 1.59 × 10−12)
[53]. An increased baseline resting HR of 10 beats per minute
increased the suicide rate by 19% in one study [54]. Though
accounting for many essential covariates such as smoking status,
sex, body mass index, stress, depressed mood, and use of
psychotropic medications, this study, to our knowledge, failed to
account for population stratification and socioeconomic status.
Though not directly related, RBM26 and COLQmay have pleiotropic
links to suicidality. Further research is required to untangle the
cause-effect relationships between these potential risk factors and
the severity of suicidal thoughts and behaviors.
We performed a cross-ancestry PGS analysis with respect

suicidality and the S-factor which showed (i) limited portability to
the AMR population with respect to suicidality measures, (ii) strong
portability to the CSA population with respect to the S-factor
indicator TLNWL, (iii) limited association between suicidality or S-
factor PGS with other mental health outcomes associated with
death by suicide, and (iv) lack of association between PGS and
height, an unrelated trait. These findings are in line with the limited
translation of EUR-derived PGS in existing cross-ancestry studies of
transdiagnostic mental health characteristics [55]. Of note from our
study is the relatively large variance explained by the PGS in some of
the diverse ancestries tested. This may partially be attributed to
methodological benefits of a Bayesian approach but may also
suggest consistent genetic architectures of suicidality across
populations. Large studies are ongoing to learn about the genetic
components of suicidal thoughts and behaviors in diverse ancestries
and will permit deeper investigation of the S-factor and suicidality.
We demonstrated that the genetic and transcriptomic signa-

tures of suicidality and the S-factor strongly overlap but our study
has some limitations to consider. First, this body of work relies on
large studies of European ancestry individuals clustered into this
grouping using genetic principal components. Our results support
limited translation of these results to diverse populations. It is well
documented that these communities experience (i) social and
cultural stigma surrounding suicidal thoughts, behaviors, and
associated death [56, 57] and (ii) vastly different face-to-face
interactions with the healthcare system [58]. For these reasons,
our findings may not translate across diverse communities that
disproportionately experience these thoughts and behaviors.
Dedicated community outreach, sample recruitment, and educa-
tional programs are necessary to perform robust studies of suicidal
thoughts and behaviors in other contexts, especially as they relate
to community stressors that may interact with underlying genetic
factors. Second, the UKB is limited by the potential for recruitment,
survivor, and recall bias as this cohort is generally older, wealthier,
and better educated than a general community sampling. This
cohort may therefore be depleted for the more extreme ends of
the suicidality spectrum and better reflect milder suicidality
ratings than those from a more representative sampling. Finally,
death by suicide and the preceding thoughts and behaviors
routinely co-occur with psychiatric diagnoses. The GWAS used to
construct the S-factor did not take into consideration the effects of
co-morbid depression, anxiety, chronic pain, or other necessary
experiences or diagnoses. There is evidence that genetic findings
related to suicidality are independent of psychiatric diagnoses
[1, 6, 14, 15] but it remains unclear how best to account for these
variables to make discoveries with as much specificity for suicidal
thoughts and behaviors as possible. Finally, we used dichotomous
measures of suicidality as indicator traits to construct the S-factor.
The construction of these items (e.g., the suicidal and non-suicidal
self-injury in the ASH phenotype) may underestimate heritability
and its contribution to the S-factor structure.

Despite these limitations, this study empirically investigated the
differences and similarities between definitions of suicidality.
Across all analyses presented, the phenotypically-aggregated
suicidality item was more statistically powerful and informative
than the S-factor for downstream in silico characterization of the
biology underlying this complex trait. In conclusion, our study
informs one path forward for the analysis of participant responses
related to thoughts and behaviors associated with death by
suicide. By aggregating multiple informative items into a
suicidality phenotype, studies are likely to generate more
information about suicide biology compared to individual binary
items or a genetically-defined S-factor.

DATA AVAILABILITY
S-factor summary statistics can be accessed via Zenodo https://doi.org/10.5281/
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