Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Impact of membrane lipid polyunsaturation on dopamine D2 receptor ligand binding and signaling

A Correction to this article was published on 07 August 2023

This article has been updated

Abstract

Increasing evidence supports a relationship between lipid metabolism and mental health. In particular, the biostatus of polyunsaturated fatty acids (PUFAs) correlates with some symptoms of psychiatric disorders, as well as the efficacy of pharmacological treatments. Recent findings highlight a direct association between brain PUFA levels and dopamine transmission, a major neuromodulatory system implicated in the etiology of psychiatric symptoms. However, the mechanisms underlying this relationship are still unknown. Here we demonstrate that membrane enrichment in the n-3 PUFA docosahexaenoic acid (DHA), potentiates ligand binding to the dopamine D2 receptor (D2R), suggesting that DHA acts as an allosteric modulator of this receptor. Molecular dynamics simulations confirm that DHA has a high preference for interaction with the D2R and show that membrane unsaturation selectively enhances the conformational dynamics of the receptor around its second intracellular loop. We find that membrane unsaturation spares G protein activity but potentiates the recruitment of β-arrestin in cells. Furthermore, in vivo n-3 PUFA deficiency blunts the behavioral effects of two D2R ligands, quinpirole and aripiprazole. These results highlight the importance of membrane unsaturation for D2R activity and provide a putative mechanism for the ability of PUFAs to enhance antipsychotic efficacy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: D2R binding affinity in PUFA-enriched cell membranes shown by PWR.
Fig. 2: Lipid-protein contacts during MD simulations and effect on the structure of the D2R.
Fig. 3: Forskolin-stimulated cAMP production and β-arrestin2 recruitment upon D2R ligand stimulation and with different membrane PUFAs enrichment.
Fig. 4: Effect of n-3 PUFA deficiency in vivo on D2R signaling and associated behaviors.

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request. All MD simulation trajectories generated in this study can be visualized and inspected through the GPCRmd online resource [99]; GPCRmd IDs: 1239, 1240, 1241, 1242, and 1243.

Change history

References

  1. Rohrbough J, Broadie K. Lipid regulation of the synaptic vesicle cycle. Nat Rev Neurosci. 2005;6:139–50.

    Article  CAS  PubMed  Google Scholar 

  2. Bazinet RP, Layé S. Polyunsaturated fatty acids and their metabolites in brain function and disease. Nat Rev Neurosci. 2014;15:771–85.

    Article  CAS  PubMed  Google Scholar 

  3. Messamore E, McNamara RK. Detection and treatment of omega-3 fatty acid deficiency in psychiatric practice: rationale and implementation. Lipids Health Dis. 2016;15:1–13.

    Article  Google Scholar 

  4. Ohi K, Ursini G, Li M, Shin JH, Ye T, Chen Q, et al. DEGS2 polymorphism associated with cognition in schizophrenia is associated with gene expression in brain. Transl Psychiatry. 2015;5:1–6.

    Article  Google Scholar 

  5. Shimamoto C, Ohnishi T, Maekawa M, Watanabe A, Ohba H, Arai R, et al. Functional characterization of FABP3, 5 and 7 gene variants identified in schizophrenia and autism spectrum disorder and mouse behavioral studies. Hum Mol Genet. 2014;23:6495–511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Beltz BS, Tlusty MF, Benton JL, Sandeman DC. Omega-3 fatty acids upregulate adult neurogenesis. Neurosci Lett. 2007;415:154–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Calderon F, Kim HY. Docosahexaenoic acid promotes neurite growth in hippocampal neurons. J Neurochem. 2004;90:979–88.

    Article  CAS  PubMed  Google Scholar 

  8. Harayama T, Riezman H. Understanding the diversity of membrane lipid composition. Nat Rev Mol Cell Biol. 2018;19:281–96.

    Article  CAS  PubMed  Google Scholar 

  9. Dawaliby R, Trubbia C, Delporte C, Masureel M, Van Antwerpen P, Kobilka BK, et al. Allosteric regulation of G protein-coupled receptor activity by phospholipids. Nat Chem Biol. 2016;12:35–9.

    Article  CAS  PubMed  Google Scholar 

  10. Duncan AL, Song W, Sansom MSP. Lipid-dependent regulation of ion channels and g protein-coupled receptors: Insights from structures and simulations. Annu Rev Pharm Toxicol. 2020;60:31–50.

    Article  CAS  Google Scholar 

  11. Whitton AE, Treadway MT, Pizzagalli DA. Reward processing dysfunction in major depression, bipolar disorder and schizophrenia. Curr Opin Psychiatry. 2015;28:7–12.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bondi CO, Taha AY, Tock JL, Totah NKB, Cheon Y, Torres GE, et al. Adolescent behavior and dopamine availability are uniquely sensitive to dietary omega-3 fatty acid deficiency. Biol Psychiatry. 2014;75:38–46.

    Article  CAS  PubMed  Google Scholar 

  13. Chalon S. Omega-3 fatty acids and monoamine neurotransmission. Prostaglandins Leukot Ess Fat Acids. 2006;75:259–69.

    Article  CAS  Google Scholar 

  14. Ducrocq F, Walle R, Contini A, Oummadi A, Caraballo B, van der Veldt S, et al. Causal Link between n-3 polyunsaturated fatty acid deficiency and motivation deficits. Cell Metab. 2020;31:755–72.

    Article  CAS  PubMed  Google Scholar 

  15. Litman BJ, Mitchell DC. A role for phospholipid polyunsaturation in modulating membrane protein function. Lipids. 1996;31:193–7.

    Article  Google Scholar 

  16. Mitchell DC, Niu SL, Litman BJ. Enhancement of G protein-coupled signaling by DHA phospholipids. Lipids. 2003;38:437–43.

    Article  CAS  PubMed  Google Scholar 

  17. Salem N, Litman B, Kim H, Gawrisch K. Mechanisms of action of docosahexaenoic acid in the nervous system. Lipids. 2001;36:945–59.

    Article  CAS  PubMed  Google Scholar 

  18. Feller SE, Gawrisch K, Woolf TB. Rhodopsin exhibits a preference for solvation by polyunsaturated docosohexaenoic acid. J Am Chem Soc. 2003;125:4434–5.

    Article  CAS  PubMed  Google Scholar 

  19. Pitman MC, Grossfield A, Suits F, Feller SE. Role of cholesterol and polyunsaturated chains in lipid-protein interactions: molecular dynamics simulation of rhodopsin in a realistic membrane environment. J Am Chem Soc. 2005;127:4576–7.

    Article  CAS  PubMed  Google Scholar 

  20. Guixà-González R, Javanainen M, Gómez-Soler M, Cordobilla B, Domingo JC, Sanz F, et al. Membrane omega-3 fatty acids modulate the oligomerisation kinetics of adenosine A2A and dopamine D2 receptors. Sci Rep. 2016;6:1–13.

    Article  Google Scholar 

  21. Javanainen M, Enkavi G, Guixà-Gonzaléz R, Kulig W, Martinez-Seara H, Levental I, et al. Reduced level of docosahexaenoic acid shifts GPCR neuroreceptors to less ordered membrane regions. PLoS Comput Biol. 2019;15:1–16.

    Article  Google Scholar 

  22. Polozova A, Litman BJ. Cholesterol dependent recruitment of di22:6-PC by a G protein-coupled receptor into lateral domains. Biophys J. 2000;79:2632–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. De Smedt-Peyrusse V, Sargueil F, Moranis A, Harizi H, Mongrand S, Layé S. Docosahexaenoic acid prevents lipopolysaccharide-induced cytokine production in microglial cells by inhibiting lipopolysaccharide receptor presentation but not its membrane subdomain localization. J Neurochem. 2008;105:296–307.

    Article  PubMed  Google Scholar 

  24. Alves ID, Lecomte S. Study of G-protein coupled receptor signaling in membrane environment by plasmon waveguide resonance. Acc Chem Res. 2019;52:1059–67.

    Article  CAS  PubMed  Google Scholar 

  25. Salamon Z, Macleod HA, Tollin G. Coupled plasmon-waveguide resonators: a new spectroscopic tool for probing proteolipid film structure and properties. Biophys J. 1997;73:2791–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mueller P, Rudin DO. Resting and action potentials in experimental bimolecular lipid membranes. J Theor Biol. 1968;18:222–58.

    Article  CAS  PubMed  Google Scholar 

  27. Harté E, Maalouli N, Shalabney A, Texier E, Berthelot K, Lecomte S, et al. Probing the kinetics of lipid membrane formation and the interaction of a nontoxic and a toxic amyloid with plasmon waveguide resonance. Chem Commun. 2014;50:4168–71.

    Article  Google Scholar 

  28. Perez JB, Segura JM, Abankwa D, Piguet J, Martinez KL, Vogel H. Monitoring the diffusion of single heterotrimeric G proteins in supported cell-membrane sheets reveals their partitioning into microdomains. J Mol Biol. 2006;363:918–30.

    Article  CAS  PubMed  Google Scholar 

  29. Salamon Z, Tollin G. Graphical analysis of mass and anisotropy changes observed by plasmon-waveguide resonance spectroscopy can provide useful insights into membrane protein function. Biophys J. 2004;86:2508–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fernández R, Garate J, Tolentino-Cortez T, Herraiz A, Lombardero L, Ducrocq F, et al. Microarray and mass spectrometry-based methodology for lipid profiling of tissues and cell cultures. Anal Chem. 2019;91:15967–73.

    Article  PubMed  Google Scholar 

  31. Joffre C, Grégoire S, De Smedt V, Acar N, Bretillon L, Nadjar A, et al. Modulation of brain PUFA content in different experimental models of mice. Prostaglandins Leukot Ess Fat Acids. 2016;114:1–10.

    Article  CAS  Google Scholar 

  32. Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957;226:497–509.

    Article  CAS  PubMed  Google Scholar 

  33. Morrison WR, Smith LM. Preparation of fatty acid methyl esters and dimethylacetals from lipids. J Lipid Res. 1964;5:600–8.

    Article  CAS  PubMed  Google Scholar 

  34. Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graph. 1996;14:33–8.

    Article  CAS  PubMed  Google Scholar 

  35. Webb B, Sali A. Comparative protein structure modeling using MODELLER. Curr Protoc Bioinforma. 2016;54:5.6.1-5.6.37.

  36. Mayol E, Garcia-Recio A, Tiemann JKS, Hildebrand PW, Guixa-Gonzalez R, Olivella M, et al. Homolwat: a web server tool to incorporate ‘homologous’ water molecules into gpcr structures. Nucleic Acids Res. 2020;48:W54–W59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2009;31:455–61.

  38. Jo S, Kim T, Im W. Automated builder and database of protein/membrane complexes for molecular dynamics simulations. PLoS One. 2007;2:e880.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wu EL, Cheng X, Jo S, Rui H, Song KC, Dávila-Contreras EM, et al. CHARMM-GUI membrane builder toward realistic biological membrane simulations. J Comput Chem. 2014;35:1997–2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Harvey MJ, Giupponi G, De Fabritiis G. ACEMD: Accelerating biomolecular dynamics in the microsecond time scale. J Chem Theory Comput. 2009;5:1632–9.

    Article  CAS  PubMed  Google Scholar 

  41. Huang J, Rauscher S, Nawrocki G, Ran T, Feig M, De Groot BL, et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat Methods. 2016;14:71–3.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Doerr S, Harvey MJ, Noé F, De Fabritiis G. HTMD: high-throughput molecular dynamics for molecular discovery. J Chem Theory Comput. 2016;12:1845–52.

    Article  CAS  PubMed  Google Scholar 

  43. Stone JE, Vandivort KL, Schulten K. GPU-accelerated molecular visualization on petascale supercomputing platforms. In: Proceedings of the 8th International Workshop on Ultrascale Visualization, 2013. Association for Computing Machinery, New York, NY, USA, Article 6, 1–8.

  44. Wickham H. Ggplot2: elegant graphics for data analysis. Springer-Verlag New York, 2016.

  45. Song W, Corey RA, Ansell TB, Cassidy CK, Horrell MR, Duncan AL, et al. PyLipID: a python package for analysis of protein−lipid interactions from molecular dynamics simulations. J Chem Theory Comput. 2022;18:31.

    Article  Google Scholar 

  46. Lin J. Divergence measures based on the Shannon entropy. IEEE Trans Inf Theory. 1991;37:145–51.

    Article  Google Scholar 

  47. Vögele M, Thomson NJ, Truong ST, McAvity J, Zachariae U, Dror RO. Systematic Analysis of Biomolecular Conformational Ensembles with PENSA. arXiv:2212.02714v1 [q-bio.BM]. https://doi.org/10.48550/arXiv.2212.02714.

  48. Stillwell W, Wassall SR. Docosahexaenoic acid: membrane properties of a unique fatty acid. Chem Phys Lipids. 2003;126:1–27.

    Article  CAS  PubMed  Google Scholar 

  49. Alves I, Park C, Hruby V. Plasmon resonance methods in GPCR signaling and other membrane events. Curr Protein Pept Sci. 2005;6:293–312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. De Jong LAA, Grünewald S, Franke JP, Uges DRA, Bischoff R. Purification and characterization of the recombinant human dopamine D2S receptor from Pichia pastoris. Protein Expr Purif. 2004;33:176–84.

    Article  PubMed  Google Scholar 

  51. Malmberg A, Mohell N. Characterization of [3H]quinpirole binding to human dopamine D(2A) and D3 receptors: effects of ions and guanine nucleotides. J Pharm Exp Ther. 1995;274:790–7.

    CAS  Google Scholar 

  52. Albizu L, Cottet M, Kralikova M, Stoev S, Seyer R, Brabet I, et al. Time-resolved FRET between GPCR ligands reveals oligomers in native tissues. Nat Chem Biol. 2010;6:587–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Maurel D, Comps-Agrar L, Brock C, Rives ML, Bourrier E, Ayoub MA, et al. Cell-surface protein-protein interaction analysis with time-resolved FRET and snap-tag technologies: application to GPCR oligomerization. Nat Methods. 2008;5:561–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Alves ID, Cowell SM, Salamon Z, Devanathan S, Tollin G, Hruby VJ. Different structural states of the proteolipid membrane are produced by ligand binding to the human δ-opioid receptor as shown by plasmon-waveguide resonance spectroscopy. Mol Pharm. 2004;69:1248–57.

    Article  Google Scholar 

  55. Alves ID, Delaroche D, Mouillac B, Salamon Z, Tollin G, Hruby VJ, et al. The two NK-1 binding sites correspond to distinct, independent, and non-interconvertible receptor conformational states as confirmed by plasmon-waveguide resonance spectroscopy. Biochemistry. 2006;45:5309–18.

    Article  CAS  PubMed  Google Scholar 

  56. Boyé K, Pujol N, D Alves I, Chen YP, Daubon T, Lee YZ, et al. The role of CXCR3/LRP1 cross-talk in the invasion of primary brain tumors. Nat Commun. 2017;8:1–20.

    Article  Google Scholar 

  57. Boyé K, Billottet C, Pujol N, Alves ID, Bikfalvi A. Ligand activation induces different conformational changes in CXCR3 receptor isoforms as evidenced by plasmon waveguide resonance (PWR). Sci Rep. 2017;7:1–11.

    Article  Google Scholar 

  58. Lee J, Welti R, Roth M, Schapaugh WT, Li J, Trick HN. Enhanced seed viability and lipid compositional changes during natural ageing by suppressing phospholipase Dα in soybean seed. Plant Biotechnol J. 2012;10:164–73.

    Article  CAS  PubMed  Google Scholar 

  59. Takahashi D, Imai H, Kawamura Y, Uemura M. Lipid profiles of detergent resistant fractions of the plasma membrane in oat and rye in association with cold acclimation and freezing tolerance. Cryobiology. 2016;72:123–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Beaulieu JM, Gainetdinov RR, Caron MG. The Akt-GSK-3 signaling cascade in the actions of dopamine. Trends Pharm Sci. 2007;28:166–72.

    Article  CAS  PubMed  Google Scholar 

  61. Lafourcade M, Larrieu T, Mato S, Duffaud A, Sepers M, Matias I, et al. Nutritional omega-3 deficiency abolishes endocannabinoid-mediated neuronal functions. Nat Neurosci. 2011;14:345–50.

    Article  CAS  PubMed  Google Scholar 

  62. Mizumura T, Kondo K, Kurita M, Kofuku Y, Natsume M, Imai S, et al. Activation of adenosine A2A receptor by lipids from docosahexaenoic acid revealed by NMR. Sci Adv. 2020;6:8544–62.

    Article  Google Scholar 

  63. Grossfield A, Feller SE, Pitman MC. A role for interactions in the modulation of rhodopsin by ω-3 polyunsaturated lipids. Proc Natl Acad Sci USA. 2006;103:4888–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Soubias O, Teague WE, Gawrisch K. Evidence for specificity in lipid-rhodopsin interactions. J Biol Chem. 2006;281:33233–41.

    Article  CAS  PubMed  Google Scholar 

  65. Guixà-González R, Albasanz JL, Rodriguez-Espigares I, Pastor M, Sanz F, Martí-Solano M, et al. Membrane cholesterol access into a G-protein-coupled receptor. Nat Commun. 2017;8:1–12.

    Article  Google Scholar 

  66. Carrillo-Tripp M, Feller SE. Evidence for a mechanism by which ω-3 polyunsaturated lipids may affect membrane protein function. Biochemistry. 2005;44:10164–9.

    Article  CAS  PubMed  Google Scholar 

  67. Bruno MJ, Koeppe RE, Andersen OS. Docosahexaenoic acid alters bilayer elastic properties. Proc Natl Acad Sci USA. 2007;104:9638–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Caires R, Sierra-Valdez FJ, Millet JRM, Herwig JD, Roan E, Vásquez V, et al. Omega-3 fatty acids modulate TRPV4 function through plasma membrane remodeling. Cell Rep. 2017;21:246–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Antonny B, Vanni S, Shindou H, Ferreira T. From zero to six double bonds: phospholipid unsaturation and organelle function. Trends Cell Biol. 2015;25:427–36.

    Article  CAS  PubMed  Google Scholar 

  70. Gawrisch K, Eldho NV, Holte LL. The structure of DHA in phospholipid membranes. Lipids. 2003;38:445–52.

    Article  CAS  PubMed  Google Scholar 

  71. Jacobs ML, Faizi HA, Peruzzi JA, Vlahovska PM, Kamat NP. EPA and DHA differentially modulate membrane elasticity in the presence of cholesterol. Biophys J. 2021;120:2317–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Alves I, Staneva G, Tessier C, Salgado GF, Nuss P. The interaction of antipsychotic drugs with lipids and subsequent lipid reorganization investigated using biophysical methods. Biochim Biophys Acta Biomembr 2011;1808:2009–18.

    Article  CAS  Google Scholar 

  73. Tessier C, Nuss P, Staneva G, Wolf C. Modification of membrane heterogeneity by antipsychotic drugs: an X-ray diffraction comparative study. J Colloid Interface Sci. 2008;320:469–75.

    Article  CAS  PubMed  Google Scholar 

  74. Lolicato F, Juhola H, Zak A, Postila PA, Saukko A, Rissanen S, et al. Membrane-dependent binding and entry mechanism of dopamine into its receptor. ACS Chem Neurosci. 2020;11:1914–24.

    Article  CAS  PubMed  Google Scholar 

  75. Lemel L, Nieścierowicz K, García-Fernández MD, Darré L, Durroux T, Busnelli M, et al. The ligand-bound state of a G protein-coupled receptor stabilizes the interaction of functional cholesterol molecules. J Lipid Res. 2021;62:1–17.

    Article  Google Scholar 

  76. Malnoe A, Milon H, Reme C. Effect of in vivo modulation of membrane docosahexaenoic acid levels on the dopamine‐dependent adenylate cyclase activity in the rat retina. J Neurochem. 1990;55:1480–5.

    Article  CAS  PubMed  Google Scholar 

  77. Murphy MG. Effects of exogenous linoleic acid on fatty acid composition, receptor-mediated cAMP formation, and transport functions in rat astrocytes in primary culture. Neurochem Res. 1995;20:1365–75.

    Article  CAS  PubMed  Google Scholar 

  78. Yu JZ, Wang J, Sheridan SD, Perlis RH, Rasenick MM. N-3 polyunsaturated fatty acids promote astrocyte differentiation and neurotrophin production independent of cAMP in patient-derived neural stem cells. Mol Psychiatry. 2021;26:4605–15.

    Article  CAS  PubMed  Google Scholar 

  79. Latorraca NR, Venkatakrishnan AJ, Dror RO. GPCR dynamics: structures in motion. Chem Rev. 2017;117:139–55.

    Article  CAS  PubMed  Google Scholar 

  80. Weis WI, Kobilka BK. The molecular basis of G protein-coupled receptor activation. Annu Rev Biochem. 2018;87:897–919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Chapkin RS, Wang N, Fan YY, Lupton JR, Prior IA. Docosahexaenoic acid alters the size and distribution of cell surface microdomains. Biochim Biophys Acta - Biomembr. 2008;1778:466–71.

    Article  CAS  Google Scholar 

  82. Levental KR, Lorent JH, Lin X, Skinkle AD, Surma MA, Stockenbojer EA, et al. Polyunsaturated lipids regulate membrane domain stability by tuning membrane order. Biophys J. 2016;110:1800–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Stillwell W, Shaikh SR, Zerouga M, Siddiqui R, Wassal SR. Docosahexaenoic acid affects cell signaling by altering lipid rafts. Reprod Nutr Dev. 2005;45:559–79.

    Article  CAS  PubMed  Google Scholar 

  84. Charest PG, Bouvier M. Palmitoylation of the V2 vasopressin receptor carboxyl tail enhances β-arrestin recruitment leading to efficient receptor endocytosis and ERK1/ 2 activation. J Biol Chem. 2003;278:41541–51.

    Article  CAS  PubMed  Google Scholar 

  85. Hawtin SR, Tobin AB, Patel S, Wheatley M. Palmitoylation of the vasopressin V1a receptor reveals different conformational requirements for signaling, agonist-induced receptor phosphorylation, and sequestration. J Biol Chem. 2001;276:38139–46.

    Article  CAS  PubMed  Google Scholar 

  86. Karnik SS, Ridge KD, Bhattacharya S, Khorana HG. Palmitoylation of bovine opsin and its cysteine mutants in COS cells. Proc Natl Acad Sci USA. 1993;90:40–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Moffett S, Mouillac B, Bonin H, Bouvier M. Altered phosphorylation and desensitization patterns of a human β2-adrenergic receptor lacking the palmitoylated Cys341. EMBO J. 1993;12:349–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Palmer TM, Stiles GL. Identification of threonine residues controlling the agonist- dependent phosphorylation and desensitization of the rat A3 adenosine receptor. Mol Pharm. 2000;57:539–45.

    Article  CAS  Google Scholar 

  89. Pickering DS, Taverna FA, Salter MW, Hampson DR. Palmitoylation of the GluR6 kainate receptor. Proc Natl Acad Sci USA. 1995;92:12090–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lally CCM, Bauer B, Selent J, Sommer ME. C-edge loops of arrestin function as a membrane anchor. Nat Commun. 2017;8:1–12.

    Article  Google Scholar 

  91. Cho D, Zheng M, Min C, Ma L, Kurose H, Park JH, et al. Agonist-induced endocytosis and receptor phosphorylation mediate resensitization of dopamine D2 receptors. Mol Endocrinol. 2010;24:574–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lan H, Teeter MM, Gurevich VV, Neve KA. An intracellular loop 2 amino acid residue determines differential binding of arrestin to the dopamine D 2 and D 3 receptors. Mol Pharm. 2009;75:19–26.

    Article  CAS  Google Scholar 

  93. Zhang X, Choi BG, Kim KM. Roles of dopamine D2 receptor subregions in interactions with β-arrestin2. Biomol Ther. 2016;24:517–22.

    Article  Google Scholar 

  94. Donthamsetti P, Gallo EF, Buck DC, Stahl EL, Zhu Y, Lane JR, et al. Arrestin recruitment to dopamine D2 receptor mediates locomotion but not incentive motivation. Mol Psychiatry. 2020;25:2086–2100.

    Article  CAS  PubMed  Google Scholar 

  95. Gallo EF, Meszaros J, Sherman JD, Chohan MO, Teboul E, Choi CS, et al. Accumbens dopamine D2 receptors increase motivation by decreasing inhibitory transmission to the ventral pallidum. Nat Commun. 2018;9:1–13.

    Article  Google Scholar 

  96. Berger GE, Proffitt T-M, McConchie M, Yuen H, Wood SJ, Amminger GP, et al. Ethyl-eicosapentaenoic acid in first-episode psychosis: a randomized, placebo-controlled trial. J Clin Psychiatry. 2007;68:1867–75.

    Article  CAS  PubMed  Google Scholar 

  97. Robinson DG, Gallego JA, John M, Hanna LA, Zhang JP, Birnbaum ML, et al. A potential role for adjunctive omega-3 polyunsaturated fatty acids for depression and anxiety symptoms in recent onset psychosis: Results from a 16 week randomized placebo-controlled trial for participants concurrently treated with risperidone. Schizophr Res. 2019;204:295–303.

    Article  PubMed  Google Scholar 

  98. Amminger GP, Schäfer MR, Schlögelhofer M, Klier CM, McGorry PD. Longer-term outcome in the prevention of psychotic disorders by the Vienna omega-3 study. Nat Commun. 2015;6:1–7.

    Article  Google Scholar 

  99. Rodríguez-Espigares I, Torrens-Fontanals M, Tiemann JKS, Aranda-García D, Ramírez-Anguita JM, Stepniewski TM, et al. GPCRmd uncovers the dynamics of the 3D-GPCRome. Nat Methods. 2020;17:777–87.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the biochemistry facility of the Bordeaux Neurocampus for the access to the blot imaging system, JJ. Toulmé for use of the fluorescence spectrometer (TECAN), JL. Banères for providing D2R expressing Pichia pastoris and the Bordeaux Metabolome Facility-MetaboHUB (ANR-11-INBS-0010). This study was supported by INRAE, CNRS and the University of Bordeaux; University of Bordeaux’s IdEx “Investments for the future” program/GPR BRAIN_203 (PT), Idex Bordeaux “chaire d’installation” (ANR-10-IDEX-03-02) (PT), NARSAD Young Investigator Grants from the Brain and Behavior Foundation (PT), ANR “SynLip” (ANR-16-CE16-0022) (PT), ANR “FrontoFat” (ANR-20-CE14-0020) (PT), ANR “PolyFADO” (ANR-21-CE44-0019-02) (IA and PT), Region Nouvelle Aquitaine 2014-1R30301-00003023 (PT), Région Nouvelle Aquitaine (2011 13 04 002) (IA), PEPS Emergence Idex Bordeaux (2012) (IA), NIH grant MH54137 (JAJ), the Instituto de Salud Carlos III FEDER (PI18/00094) and the ERA-NET NEURON & Ministry of Economy, Industry and Competitiveness (AC18/00030) (JS), the European Research Network on Signal Transduction (https://ernest-gpcr.eu) (COST Action CA18133) (BM, RG-G, JS), the Swiss National Science Foundation, grant no. 192780 (RG-G).

Author information

Authors and Affiliations

Authors

Contributions

M-LJ, VDP, RG-G, IDA and PT conceived and supervised the study. JS, GB-G, EM, TD and JAJ provided expertise, reagents and supervised specific experiments. M-LJ, VDP, FD, AO, RB, M-FA, MHP, BM-L, JS, SM, SV, TT-C, SG and RG-G performed experiments and analyzed the data. M-LJ, VDP, RG-G, IDA and PT wrote the original version of the manuscript. All authors discussed the results and reviewed the manuscript.

Corresponding authors

Correspondence to Ramon Guixà-González, Isabel D. Alves or Pierre Trifilieff.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: In Fig. 3E of this article, the X-axis of the graph was mislabeled.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jobin, ML., De Smedt-Peyrusse, V., Ducrocq, F. et al. Impact of membrane lipid polyunsaturation on dopamine D2 receptor ligand binding and signaling. Mol Psychiatry 28, 1960–1969 (2023). https://doi.org/10.1038/s41380-022-01928-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-022-01928-6

This article is cited by

Search

Quick links