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Studies have shown cortical alterations in individuals with autism spectrum disorders (ASD) as well as in individuals with high
polygenic risk for ASD. An important addition to the study of altered cortical anatomy is the investigation of the underlying brain
network architecture that may reveal brain-wide mechanisms in ASD and in polygenic risk for ASD. Such an approach has been
proven useful in other psychiatric disorders by revealing that brain network architecture shapes (to an extent) the disorder-related
cortical alterations. This study uses data from a clinical dataset—560 male subjects (266 individuals with ASD and 294 healthy
individuals, CTL, mean age at 17.2 years) from the Autism Brain Imaging Data Exchange database, and data of 391 healthy
individuals (207 males, mean age at 12.1 years) from the Pediatric Imaging, Neurocognition and Genetics database. ASD-related
cortical alterations (group difference, ASD-CTL, in cortical thickness) and cortical correlates of polygenic risk for ASD were assessed,
and then statistically compared with structural connectome-based network measures (such as hubs) using spin permutation tests.
Next, we investigated whether polygenic risk for ASD could be predicted by network architecture by building machine-learning
based prediction models, and whether the top predictors of the model were identified as disease epicenters of ASD. We observed
that ASD-related cortical alterations as well as cortical correlates of polygenic risk for ASD implicated cortical hubs more strongly
than non-hub regions. We also observed that age progression of ASD-related cortical alterations and cortical correlates of polygenic
risk for ASD implicated cortical hubs more strongly than non-hub regions. Further investigation revealed that structural
connectomes predicted polygenic risk for ASD (r= 0.30, p < 0.0001), and two brain regions (the left inferior parietal and left
suparmarginal) with top predictive connections were identified as disease epicenters of ASD. Our study highlights a critical role of
network architecture in a continuum model of ASD spanning from healthy individuals with genetic risk to individuals with ASD. Our
study also highlights the strength of investigating polygenic risk scores in addition to multi-modal neuroimaging measures to
better understand the interplay between genetic risk and brain alterations associated with ASD.
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INTRODUCTION
Neuroimaging studies have consistently shown alterations in
cortical anatomy in individuals with autism spectrum disorders
(ASD) [1–10]. For example, a recent large-scale study out of the
ENIGMA consortium (3222 individuals, 1571 with AUTISM) showed
increased cortical thickness in the frontal cortex (Cohen’s d= 0.20)
and decreased thickness in the temporal cortex (Cohen’s d=−0.21)
in individuals with ASD [7]. Interestingly, the ASD-related cortical
alterations extend beyond those with clinical diagnosis to the
general population [11–14], consistent with an emerging framework
that conceptualizes ASD as a continuum model (with a normal
distribution of autistic tendencies in the general population where a
full diagnosis is at the severe tail of the distribution [12, 13, 15–21]).
For example, cortical thickness of the frontal and parietal regions
were dimensionally related to genetic risk for ASD in general

population, and were also part of the cortical alterations associated
with ASD in clinical population [22].
An important addition to the study of altered cortical anatomy

in ASD is the investigation of the underlying brain network
architecture that may reveal brain-wide mechanisms in ASD. Such
an approach has been proven useful in other psychiatric disorders
by revealing that brain network architecture shapes (to an extent)
the disorder-related morphological alterations [23, 24]. Of
particular interest is the study of brain hubs (regions with several
connections that serve as information relay centers [25, 26]) which
have been implicated in several psychiatric disorders [23, 27–29].
These studies revealed that cortical alterations associated with the
disorders were greater in the hubs compared to the peripheral
regions (with only local connections), possibly due to the high
metabolic activity and their links with several brain networks
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[24, 27, 30]. In addition to examining hubs, recent studies have
also identified disease epicenters, defined as regions whose
network architecture play central role in the whole-brain
manifestation of psychiatric disorders [23, 24, 31–33]. Taken
together, investigation of hubs and disease epicenters may
provide novel insights into how patterns of ASD-related cortical
alterations may be configured by the brain network architecture.
We, therefore, set out to examine the relation between brain

network architecture and ASD-related alterations in cortical
anatomy. Extending this goal in the context of the continuum
model, we also set out to examine the link between brain network
architecture and cortical correlates of polygenic risk for ASD. For
this, (i) ASD-related cortical alterations (group difference, ASD-CTL
in cortical thickness) using a clinical cohort and (ii) cortical
correlates of polygenic risk for ASD using a general population,
were first computed. Next, using normative structural brain
networks derived from diffusion magnetic resonance imaging
(dMRI) data from general population, we then tested the
hypothesis—whether there was a selective vulnerability of hub
regions that parallel the ASD-related cortical alterations as well as
the cortical correlates of polygenic risk for ASD. Lastly, we set out
to investigate whether polygenic risk for ASD could be predicted
by structural brain networks, and whether the top predictors of
the model corresponded with the disease epicenters of ASD.

METHODS
Subjects
Data for the study were taken from two publicly available databases: (i) a
clinical cohort: the Autism Brain Imaging Data Exchange (ABIDE) database
[34], and (ii) a general population cohort: the Pediatric Imaging,
Neurocognition and Genetics (PING) study [35]. While ABIDE is an
agglomerative dataset of MRI scans of healthy individuals and individuals
with ASD [34], the PING study comprises of neuroimaging, cognition and
genetic data from 1493 typically developing children and adolescents
collected from ten different sites across the United States [35]. As
mentioned in [35], written parental informed consent was obtained for all
PING individuals below the age of 18, and for all PING individuals between
the ages of 7 and 17, child assent was obtained.

Genomic data and computation of polygenic risk scores
The PING dataset includes 550,000 single nucleotide polymorphisms (SNPs)
genotyped from saliva samples using Illumina Human660W-Quad Bead-
Chip. Computation of polygenic risk scores (PRS) followed steps similar to
that of our previous study [22]. Summary of steps include: preparation of
the data for imputation using the “imputePrepSanger” pipeline (https://
hub.docker.com/r/eauforest/imputeprepsanger/) and implemented on
CBRAIN [36] using Human660W-Quad_v1_A-b37-strand chip as reference.
The next step involved data imputation with Sanger Imputation Service
[37], using default settings and the Haplotype Reference Consortium, HRC
(http://www.haplotype-reference-consortium.org/) as the reference panel.
Using Plink 1.9 [38], the imputed SNPs were then filtered with the inclusion
criteria: (i) SNPs with unique names, (ii) only ACTG and (iii) MAF > 0.05. All
SNPs that were included had INFO scores R2 > 0.9 with Plink 2.0. Next, using
polygenic score software PRSice 2.1.2 [39] additional ambiguous variants
were excluded, resulting in 4,696,385 variants being available for polygenic
scoring. We filtered individuals with 0.95 loadings to the European principal
component (GAF_Europe variable provided with the PING data), resulting in
526 participants. These participants were then used to compute 20
principal components with Plink 1.9. The polygenic risk score for ASD was
based on ASD GWAS trained on 18,381 independent individuals with ASD
and 27,969 controls [40]. Similar to our previous study [22], the data were
clumped based on PRSice default settings (clumping distance= 250 kb,
threshold r2= 0.1), using p= 0.001 cut-off criterion. After matching with
available variants in the data, the polygenic risk score for ASD was based on
1245 variants.

Image pre-processing and quality control
Details of image acquisition are included in Supplementary Material S1. For
structural MRI data (of both the ABIDE and PING datasets), we used the
CIVET processing pipeline, (https://mcin.ca/technology/civet/) developed

at the Montreal Neurological Institute to compute cortical thickness
measurements at 81,924 regions covering the entire cortex. Summary of
steps include; non-uniformity correction of the T1-weighted image and
then linear registration to the Talairach-like MNI152 template (created with
the ICBM152 dataset). After repeating the non-uniformity correction using
template mask, the non-linear registration from the resultant volume to
the MNI152 template is computed, and the transform used to provide
priors to segment the image into GM, WM, and cerebrospinal fluid. Inner
and outer GM surfaces are then extracted using the Constrained Laplacian-
based Automated Segmentation with Proximities algorithm. Cortical
thickness is then measured in native space using the linked distance
between the two surfaces at 81,924 vertices. In order to impose a normal
distribution on the corticometric data and to increase the signal to noise
ratio, each individual’s cortical thickness map was blurred using a
30millimeter full width at half maximum surface-based diffusion smooth-
ing kernel. Two independent reviewers performed quality control (QC) of
the data, and only scans with consensus of the two reviewers were used.
Exclusion criteria for QC procedure include - data with motion artifacts, a
low signal to noise ratio, artifacts due to hyperintensities from blood
vessels, surface-surface intersections, or poor placement of the gray or
white matter (GM and WM) surface for any reason. Details of QC procedure
are included in Supplementary Material S2.
For diffusion MRI data (of the PING dataset), we used the FSL pipeline

(FMRIB Software Library v5.0.9) [41] for pre-processing. Summary of steps
include; correction of the distortion effects induced by eddy currents,
inter-volume movements and susceptibility of the diffusion data; rigid
alignment of the individual unweighted image with the structural image
using flirt; non-linear registration to transform individual structural image
to an MNI152 standard T1-weighted template using fnirt; computing the
forward and backward warp field images between individual dMRI and
MNI T1 spaces by concatenating (or inverting) the rigid transformation
matrix and the warp field image. Diffusion parameters at each voxel were
estimated by using Markov Chain Monte Carlo (MCMC) sampling [42, 43].
Details of the MCMC sampling are given in Supplementary Material S3. In
this step, up to 2 possible fiber populations were modeled for each voxel
after 2000 iterations. Quality control of the data was performed by
checking the structural image and the average of the non-diffusion-
weighted images for each individual, and then evaluation of the results of
registration by visual inspection. Exclusion criteria of QC include – if
signal-noise-rate of structural image or unweighted-diffusion image was
lower than 800, and data with >2 mm frame-wise displacements of
the dMRI.

Sample characteristics
For the clinical cohort (ABIDE dataset), apart from the QC procedure, there
were additional exclusion criteria namely insufficient number of individuals
in each diagnostic group (ASD and CTL) to determine group difference, too
few females resulting to excluding all females, and excluding individuals
over 35 years of age due to insufficient numbers. The final sample
consisted of 560 male individuals, 266 individuals with ASD (17.2 ± 6.4
years) and 294 controls (17 ± 6.4 years) (Table 1A). The cortical thickness
data for both ASD and CTL groups followed normal distribution
(Supplementary Material S6). In terms of variation of the cortical thickness
data within groups, there was no significant difference (Fstat= 1.02,
p= 0.82) between the variance of ASD data (var= 0.0187) and variance of
CTL data (var= 0.0182).
For the general population (PING dataset), of the total 1493 individuals,

filtering for individuals with 0.95 loadings to the European principal
component resulted in 526 individuals. Of these, 95 individuals did not
have MRI data and 2 subjects did not have information about age,
resulting in 429 subjects. Next, 13 subjects were excluded before any
processing (raw data) due to severe motion and slicing artifacts. A
subsequent 25 subjects failed CIVET pipeline (for a number of reasons
including presence of bright blood vessels and poor contrast) and were
excluded in further analysis. The final sample consisted of 391 participants
(males/females= 207/184, age= 12.1 ± 4.7 years) (Table 1B). The cortical
thickness data for PING as well as the PRS-ASD data followed normal
distribution (Supplementary Material S6).

Determination of structural connectivity matrices
Structural connectivity between two brain regions was computed as the
mean of the streamlines between the two regions. There were 62 regions
of interest (ROI), and as such the resulting structural connectivity matrix
was (62 × 62). The list of ROIs are included in Supplementary Material S5.
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The ventricles were used as exclusion mask. Zero connections were not
omitted. The subcortical regions were removed prior to analysis. The fiber
counts were not log-transformed.

Determination of hubs
The structural connectivity matrices were used to determine hubs (regions
with several connections that serve as information relay centers) by
computing centrality maps based on graph-theoretic measures (e.g.,
degree centrality) [44]. In one of the pioneer papers on the definition of
hubs in the field of neuroscience, Sporns et al. identified hubs and
characterized their network contributions by examining centrality indices
for all regions within the cerebral cortices [44]. Measures of centrality
(including degree, betweenness, closeness, eigenvector and pagerank
centrality) identified brain regions that lie on many of the shortest paths
between parts of the network. Among these, the simplest graph measure
that has been used for identifying hubs is the node degree, also called
degree centrality, which is equal to the number of edges that are
maintained by each node [26]. In terms of empirical results, degree
centrality has shown a central role for the precuneus and superior frontal
gyrus [45], findings shown to be consistent with classic work on the
functional importance of these regions. With relevance to the current
manuscript, recent studies have shown the utility of degree centrality in
inferring nodal stress models for brain disorders such as epilepsy [46].
Nodal stress models were derived from spatial correlation analyses
between cortical syndrome-specific atrophy profiles and normative
weighted degree centrality maps. In consistent with these studies, we
used degree centrality to define hubs and correspondingly in the analysis
of nodal stress models. Computations were done using the Brain
Connectivity Toolbox https://sites.google.com/site/bctnet/.

Statistical analysis
General linear model for group difference (ASD-CTL) in cortical thickness
(using ABIDE dataset). As in our previous publication [4], we built a
general linear model (GLM) for finding the group difference (ASD-CTL) in
cortical thickness. Cortical thickness was modeled as:

Ti ¼ intercept þ β1Siteþ β2Groupþ β3Ageþ εi

where i is a vertex, Age is mean-centered, ε is the residual error, Group
denotes the diagnostic groups (autism spectrum disorder, ASD and
controls, CTL), and the intercept and the β terms are the fixed effects.
Several studies have shown significant effects of age and site/scanner on
cortical thickness [8, 47–49], and therefore they are included as covariates
in the GLM. All statistical analyses were done with GLMs using the SurfStat
toolbox (http://www.math.mcgill.ca/keith/surfstat/).

General linear model for the association of polygenic risk for ASD and cortical
thickness (using PING dataset). Similar to our previous publication [22],
cortical thickness was modelled as:

Ti ¼ intercept þ β1Ageþ β2PRSþ β3PC20þ β4Scanner þ β5Sex þ εi

where i is a vertex, Age is mean-centered, ε is the residual error, PRS is the
polygenic risk score, and the intercept and the β terms are the fixed
effects. To minimize the chance of population structure explaining the
polygenic score results, we extracted 20 first principal components (PC20)

and used them as covariates. Without controlling for those principal
components, random differences in population genomic signature can
explain outcomes, if different populations also happen to differ in the
outcome [50]. Since there were 9 sites but 13 scanners, device serial
number (unique for each scanner, provided in PING) was put as covariate
in the analyses.

General linear model for interaction of age and group difference (ASD-CTL) in
cortical thickness (using ABIDE dataset). As in our previous publication [4],
we built a GLM for finding the effect of age on group difference (ASD-CTL)
in cortical thickness. Cortical thickness was modeled as:

Ti ¼ intercept þ β1Siteþ β2Groupþ β3Ageþ β4 Age ´Groupð Þ þ εi

where i is a vertex, Age is mean-centered, ε is the residual error, Group
denotes the diagnostic groups (ASD and CTL), and the intercept and the β
terms are the fixed effects.

General linear model for the association of polygenic risk for ASD and cortical
thickness (using PING dataset). Similar to our previous publication [22],
cortical thickness was modelled as:

Ti ¼ intercept þ β1Ageþ β2PRSþ β3PC20þ β4Scanner þ β5Sex

þ β4 Age ´ PRSð Þ þ εi

where i is a vertex, Age is mean-centered, ε is the residual error, PRS is the
polygenic risk score, and the intercept and the β terms are the fixed
effects.
Instead of including the covariates in our GLM analyses, we also ran

ComBat [51] on the raw cortical thickness data. The resulting data was then
used to perform all the GLM analyses as before.

Statistical analysis of regional overlap
Since hub regions have been shown to be more susceptible to disorder-
related cortical alterations than non-hub regions, we next investigated
whether the observed cortical differences were influenced by the network
connectivity of brain regions. For this, we statistically checked regional
overlap between (i) map of the group difference (ASD-CTL) in cortical
thickness (using the ABIDE dataset) and (ii) centrality map. In a similar
manner, we statistically checked regional overlap between (i) map of the
association of polygenic risk for ASD and cortical thickness (using the PING
dataset) and (ii) centrality map. The statistical comparisons were done
using the spin test developed by [52]. In short, the method, using a spatial
permutation framework, generates null models of overlap by applying
random rotations to spherical representations of the cortical surface. As in
previous studies [53], 1000 surface rotations of the PING map were
generated, and the statistical overlap was checked by comparing whether
the observed cross-vertex correlation between two maps was statistically
greater (p < 0.05) than those with 1000 rotations. Similar analysis was done
for statistically comparing the centrality maps and (i) map of age*(ASD-
CTL) on cortical thickness (using the ABIDE dataset) and (ii) map of
age*(PRS) on cortical thickness (using the PING dataset).

Connectome predictive modeling of polygenic risk for ASD
With structural connectivity data as input, we used the connectome
predictive modeling (CPM) approach to investigate whether structural

Table 1. Description of study sample.

A. ABIDE sample B. PING sample

Number of subjects, N 560 Number of subjects, N 391

Males 560 Males/females 207/184

ASD/CTL 266/294 Age (in years) 12.1 ± 4.7

Age-ASD (in years) 17.2 ± 6.4 PRS 5.5e-03 ± 5.8e-04

Age-CTL (in years) 17.0 ± 6.4 NTCB Reading score 134.4 ± 70.6

FSIQ-ASD 106.4 ± 15.8 NTCB Flanker score 7.8 ± 1.7

FSIQ-CTL 111.4 ± 12.1 NTCB DCCS score 7.8 ± 1.3

A) Clinical sample from the ABIDE dataset, (B) General population sample from the PING dataset. Note, age is given as mean ± std, ABIDE= Autism Brain
Imaging Data Exchange, PING= Pediatric Imaging, Neurocognition and Genetics, PRS= Polygenic risk score, FSIQ= full-scale intelligence quotient,
NTCB= The NIH Toolbox Cognition Battery.

B. Khundrakpam et al.

1212

Molecular Psychiatry (2023) 28:1210 – 1218

https://sites.google.com/site/bctnet/
http://www.math.mcgill.ca/keith/surfstat/


connectomes can be used to predict PRS-ASD. Recently introduced, CPM
approach [54, 55] is a data-driven framework which utilizes cross-validation
to build predictive models of brain-behavior associations from connectivity
data. Comprising of four steps—feature selection, feature summarization,
model building and computation of prediction significance [54, 55], the
framework has been validated and used in predicting anxiety [56],
attention [57], maternal bonding [58], etc. The accuracy of the prediction
model was assessed by computing correlation between the true and
predicted PRS-ASD scores. Next, the top predictors of the model were
visualized using the BrainNet Viewer [59].

Computation of disease epicenters of ASD
In order to check whether the top predictors of the model were identified
as disease epicenters of ASD, we first compared each brain region’s
structural connectivity with the ASD-related cortical alterations. Next, we
used spin permutation tests to compute the significance of the
correlations. Brain regions with statistically significant correlations were
identified as disease epicenters of ASD. Lastly, we checked whether any of
the identified disease epicenters of ASD corresponded with the top
predictors of PRS-ASD.

Power analysis. For the ABIDE dataset, we performed a power analysis
and found that, based on an alpha level of 0.05 (two-tailed test), a sample
size of 253 individuals with ASD was needed to yield an estimated power
of at least 0.80 to compute group difference (ASD-CTL) in cortical thickness.
For the PING dataset, based on our previous publication [22], we estimated
a correlation of r= 0.2 between PRS-ASD and cortical thickness. For this r
value (effect), power for the sample (N= 391) was 0.97. Power analysis was
performed using ‘sampsizepwr’ and ‘binofit’ in MATLAB.

RESULTS
Hub organization is associated with ASD-related cortical
alterations as well as cortical correlates of polygenic risk for
ASD
We asked whether network organization was associated with ASD-
related cortical alterations (group difference in cortical thickness
between ASD and CTL). For this, we used structural connectivity
data (derived from diffusion-weighted tractography) from the
PING dataset. Using structural connectome data, hubs (brain
regions with larger degree centrality) were identified. As in earlier
studies of network centrality maps in healthy individuals [26, 60],
hubs were localized in the medial prefrontal, superior parietal and

superior temporal regions (Fig. 1A). ASD-related cortical difference
maps were obtained by computing the group difference (ASD-
CTL) in cortical thickness using the ABIDE dataset (for details, see
Methods). Consistent with previous studies [4], greater cortical
thickness was observed in several brain regions including the left
parietal and lateral frontal and bilateral temporal regions in
individuals with ASD (Fig. 1A). Analysis of spatial similarity
between ASD-related cortical difference pattern and degree
centrality map was compared through correlation analysis (and
statistically assessed via non-parametric spin permutation tests,
see Methods), and revealed that ASD-related cortical difference
implicated cortical hubs (r= 0.31, pspin= 0.015) more strongly
than non-hub regions (Fig. 1A). Cortical correlates of polygenic risk
for ASD (association of cortical thickness and PRS for ASD) also
implicated cortical hubs (r= 0.37, pspin= 0.003) more strongly
than non-hub regions (Fig. 1B).

Hub organization is associated with cross-sectional
progression of ASD-related cortical alterations as well as
cortical correlates of polygenic risk for ASD
The interaction of age and difference in cortical thickness for
individuals with ASD compared to controls can give insights into
the cross-sectional progression of ASD-related cortical alterations.
By extension, the interaction of age and cortical correlates of
polygenic risk for ASD could indicate cross-sectional progression
of polygenic risk-related cortical correlates. Thus, using GLMs, we
first examined effect of age on (i) ASD-related cortical difference
map and (ii) cortical correlates of polygenic risk for ASD.
Comparison of the age interaction patterns of ASD-related cortical
alterations and degree centrality maps showed significant
correlations with the cortical hubs (r= 0.38, pspin= 0.002, Fig. 2A).
Similarly, comparison of the age interaction patterns of cortical
correlates of polygenic risk for ASD and degree centrality maps
showed significant correlations with the cortical hubs (r= 0.43,
pspin= 0.0005, Fig. 2B).

Connectome predictors of polygenic risk for ASD relate to
disease epicenters of ASD
Using the Connectome Predictive Modeling (CPM) framework,
structural connectivity data predicted polygenic risk for ASD with
r= 0.30, p < 0.0001 (Fig. 3A) suggesting that ~9% of the variance

Fig. 1 Association of structural hub organization and ASD-related cortical alterations and cortical correlates of polygenic risk for ASD.
A Significant correlation (rspin= 0.31, p= 0.015) was observed between centrality and ASD-related cortical difference maps (group difference,
ASD-CTL, in cortical thickness). B Significant correlation (rspin= 0.37, p= 0.003) was observed between centrality and cortical correlates of
polygenic risk for ASD (association of cortical thickness and polygenic risk for ASD) maps. ASD= autism spectrum disorders, CTL= controls,
PRS= polygenic risk score.
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in PRS-ASD may be explained by structural connectivity. Further
investigation revealed the most predictive features (brain
connections) comprising of ipsilateral connections (the left
frontal-frontal, parietal-parietal connections and right temporal-
temporal connections) and bilateral postcentral connections
(Table 2, Fig. 3B, Supplementary Fig. S1). More specifically, these

connections corresponded to white matter tracts including the
superior longitudinal fasciculus (connecting the inferior parietal
and supramarginal gyri with the pars triangularis), the inferior
longitudinal fasciculus (connecting the caudal cingulate with the
lingual gyrus), the anterior commissure (connecting the temporal
regions), the U-fibers (connecting the pars orbitalis and the pars

Fig. 2 Association of structural hub organization and cross-sectional progression of ASD-related cortical alterations and cortical correlates
of polygenic risk for ASD. A Significant correlation (rspin= 0.38, p= 0.002) was observed between age interaction patterns of ASD-related
cortical alterations and degree centrality maps. B Significant correlation (rspin= 0.43, p= 0.0005) was observed between age interaction
patterns of cortical correlates of polygenic risk for ASD and degree centrality maps. ASD= autism spectrum disorders, CTL= controls,
PRS= polygenic risk score.

Fig. 3 Relation of connectome predictors of PRS-ASD and disease epicenters of ASD. A Connectome predictive modeling using structural
connectivity resulted in accurate prediction of PRS-ASD (r= 0.30, p < 0.0001 between true and predicted PRS-ASD). B Top predictors of the
model included ipsilateral connections (the left frontal-frontal, parietal-parietal connections and right temporal-temporal connections) and
bilateral postcentral connections. C,D Of these top predictors, two regions—SMG.L and IPL.L were found to be epicenters of ASD where
connectivity of the region were significantly related to ASD-related cortical alterations (see Methods). ASD= autism spectrum disorders,
CTL= controls, PRS= polygenic risk score, SMG.L= left supramarginal gyrus, IPL.L= left inferior parietal lobule, L= left hemisphere, R= right
hemisphere.

B. Khundrakpam et al.

1214

Molecular Psychiatry (2023) 28:1210 – 1218



triangularis, and within the frontal regions) and the callosal fibers
(connecting the bilateral postcentral gyri) [45, 61–63]. We next
checked whether any of these regions (with top predictive
connections) were identified as epicenters of ASD. For this, as
outlined in Methods, disease epicenters for ASD were computed
(Fig. 3D). We found that two of the identified epicenters (left
inferior parietal and left suparmarginal) corresponded with
regions with top predictive connections (Fig. 3D). In these two
regions, ASD-related cortical alterations were significantly asso-
ciated with seed-based structural connectivity of the regions
(Fig. 3C).

Comparison of findings with ComBat-run cortical thickness
data
We observed similar findings between our original analyses and
analyses using ComBat-run cortical thickness data (details are
given in Supplementary Material S4).

DISCUSSION
In this study, using large-scale MRI data from a clinical cohort and
a general population sample, we examined whether there were
links between brain network architecture and ASD-related cortical
alterations. In addition, on the basis of the context of the
continuum model, we also investigated whether brain network
architecture also has links with cortical correlates of polygenic risk
for ASD. We observed that ASD-related cortical alterations
implicated cortical hubs more strongly than non-hub regions.
Similarly, cortical correlates of polygenic risk for ASD also
implicated cortical hubs more strongly than non-hub regions.
Comparison of the age interaction patterns of ASD-related cortical
alterations with degree centrality maps showed significant
correlations with the cortical hubs. Similarly, comparison of the
age interaction patterns of cortical correlates of polygenic risk for
ASD with degree centrality maps showed significant correlations
with the cortical hubs. Further investigation revealed that
structural connectivity predicted polygenic risk for ASD (r= 0.30,
p < 0.0001) suggesting that ~9% of the variance in polygenic risk
for ASD may be explained by structural connectivity. Further
investigation revealed two of the disease epicenters (the left
inferior parietal and left suparmarginal) as regions with the top
predictive connections. Taken together, our findings suggest a
critical role of network architecture in ASD-related cortical
alterations and in cortical correlates related to polygenic risk
for ASD.
Several studies have consistently shown cortical alterations in

individuals with ASD [1–10]. Our findings add to the extant
literature of ASD research by revealing how brain network
architecture is linked with the cortical alterations associated with

ASD. Firstly, we observed that regions with more hub character-
istics (greater centrality) showed greater ASD-related cortical
alterations, in consistent with previous studies that have
implicated hubs in brain disorders [23, 27–29]. Secondly, in
consistent with previous studies [23, 33], we observed that brain
regions with the largest ASD-related cortical alterations denote
disease epicenters for ASD (Fig. 3D). Thirdly, we observed that
brain regions with high degree centrality exhibited greater cross-
sectional progression of ASD-related cortical alterations (Fig. 2D).
The epicenters identified in our study encompass somatosen-

sory, motor and visual areas along with regions involved in
auditory processing and low-level sensory integration (Fig. 3D).
Individuals with ASD usually show impairments in motor
behaviors, responses to tactile, auditory, and visual stimuli, and
in their processing of language and nonlinguistic social stimuli
[64–68]. More interestingly, the two epicenters (suparmarginal
gyrus and inferior parietal lobule) identified as top predictors of
polygenic risk for ASD are involved in visuospatial processing.
These brain regions, located at the intersection of the visual,
auditory and somatosensory cortices, comprise of neurons with
multimodal properties which can process several stimuli concur-
rently. Inferior parietal lobule is involved in integration and
interpretation of sensory information, emotional perception of
sensory stimuli. The inferior parietal lobule, with its connections to
both Broca’s area and Wernicke’s area, may serve as information
relay center between these areas for language-related functions.
The inferior parietal lobule, part of the social brain system, is also
involved in social perception [69] and executive attention [70]. Not
surprisingly, alterations in the connectivity of the inferior parietal
lobule are linked with deficits in social cognition in ASD [1, 71].
Lastly, altered white matter in the inferior parietal lobule has been
shown in children with ASD [72] which in turn has been associated
with impaired motor performance [73].
The mechanisms behind the influence of brain network

architecture on ASD-related cortical alterations are not clear. In
terms of cortical alterations, several factors including larger
neurons, increased number of neurons [74], greater microglial
cell density and somal volume [75] and greater number of
synaptic spines and reduced developmental synaptic pruning [76]
have been associated with increased cortical thickness in
individuals with ASD. On the other hand, alterations in white
matter connectivity in ASD might be due to increased packing
density [77], increased oedema from inflammation [78] and
reduced thickness of myelin [79]. In addition, reduced synaptic
pruning seen in children with ASD might hinder axonal
remodeling resulting in altered connectivity [76, 80]. Further,
abnormalities in social perception and executive attention (which
are considered broad phenotypes for ASD) might impact
processing of neural information, which in turn might alter brain
structure and connectivity [81].
Our findings that network architecture is linked to ASD-related

cortical alterations in clinical cohort as well as cortical correlates of
ASD polygenic risk in general population highlight an emerging
consensus that psychiatric disorders including ASD may be viewed
as continuum models as opposed to conventional diagnostic
groups. Traditionally, psychiatric disorders are categorized as
diagnostic groups: individuals with disorder (case) and healthy
individuals (control). However, recent studies have indicated that
psychiatric disorders may be viewed as a continuum with a normal
distribution of psychiatric tendencies in the general population,
where a full diagnosis is at the severe tail of the distribution
[12, 13, 15–21]. Evidence toward this has come from behavioral
and imaging studies. For instance, autistic traits (e.g., social and
communications deficits) extend beyond diagnostic groups into
the general population [19]. In terms of imaging, brain alterations
have been observed not only for case-control differences [6–9, 82],
but also for autistic traits in the general population [11–14]. One
such study found significant negative association of cortical

Table 2. Brain connections which were identified as top predictors of
PRS-ASD.

Region Region

Left Caudal Anterior Cingulate Left Lingual

Left Pars Orbitalis Left Pars Triangularis

Left Inferior Parietal Left Postcentral

Left Caudal Middle Frontal Left Superior Frontal

Left Rostral Middle Frontal Left Superior Frontal

Left Pars Triangularis Left Supramarginal

Left Postcentral Right Postcentral

Right Lateral Orbito-Frontal Right Posterior Cingulate

Right Inferior Temporal Right Superior Temporal

ASD autism spectrum disorders, PRS polygenic risk score.
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thickness (in the right superior temporal cortex) and a continuous
measure of autistic traits in a large longitudinal sample of normally
developing youths [83]. In another study, Blanken et al. observed
significant association of gyrification and autistic traits along a
continuum in a large population-based sample of children [12].
Recently, we found that cortical correlates of polygenic risk for
ASD in general population overlap with the cortical alterations
seen in individuals with ASD [22]. Extending these previous
studies, our findings indicate that brain network architecture is
linked to ASD-related cortical alterations in clinical population as
well as cortical correlates of ASD polygenic risk in general
population. Our observation that structural connectivity could
accurately predict polygenic risk for ASD and more importantly,
that two of the top predictor regions were identified as disease
epicenters of ASD lends more credence on the continuum model
of ASD spanning from healthy individuals with genetic risk to
individuals with ASD.
In conclusion, our study highlights a critical role of network

architecture in ASD-related cortical alterations and in cortical
correlates of polygenic risk for ASD. Our study underscores the
need for investigating PRS in addition to multi-modal neuroima-
ging measures to better understand the interplay between
genetic risk and brain abnormalities associated with ASD.
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