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Alzheimer’s disease (AD) is a multifactorial and heterogeneous disorder, which makes early detection a challenge. Studies have
attempted to combine biomarkers to improve AD detection and predict progression. However, most of the existing work reports
results in parallel or compares normalized findings but does not analyze data simultaneously. We tested a multi-dimensional
network framework, applied to 490 subjects (cognitively normal [CN]= 147; mild cognitive impairment [MCI]= 287; AD= 56) from
ADNI, to create a single model capable of capturing the heterogeneity and progression of AD. First, we constructed subject
similarity networks for structural magnetic resonance imaging, amyloid-β positron emission tomography, cerebrospinal fluid,
cognition, and genetics data and then applied multilayer community detection to find groups with shared similarities across
modalities. Individuals were also followed-up longitudinally, with AD subjects having, on average, 4.5 years of follow-up. Our
findings show that multilayer community detection allows for accurate identification of present and future AD (≈90%) and is also
able to identify cases that were misdiagnosed clinically. From all MCI participants who developed AD or reverted to CN, the
multilayer model correctly identified 90.8% and 88.5% of cases respectively. We observed similar subtypes across the full sample
and when examining multimodal data from subjects with no AD pathology (i.e., amyloid negative). Finally, these results were also
validated using an independent testing set. In summary, the multilayer framework is successful in detecting AD and provides
unique insight into the heterogeneity of the disease by identifying subtypes that share similar multidisciplinary profiles of
neurological, cognitive, pathological, and genetics information.
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INTRODUCTION
Dementia is characterized by a progressive deterioration of all
cognitive domains, with Alzheimer’s disease (AD) accounting for the
majority of cases [1–3]. Detecting at-risk individuals early can allow
for more effective treatment and therapy and delay the onset and
slow down disease progression. Hence, past research has largely
focused on establishing AD-related biomarkers during preclinical
stages [4–6]. Several biomarkers have been identified using
neuroimaging, genetics, and behavioral data. These include risk
factors such as inheritance of the ε4 allele of the apolipoprotein E
(APOE ε4) gene [7, 8], age [2, 9], family history [10, 11], and lifestyle
[12–14], but also imaging biomarkers based on positron emission
tomography (PET) and magnetic resonance imaging (MRI) [15, 16].
Amyloid and tau burden, which correspond to the accumulation of
amyloid-β (Aβ) plaques and tau neurofibrillary tangles (NFTs)
respectively, can be detected through PET and in cerebrospinal
fluid (CSF) [17, 18]. Brain atrophy measured with structural MRI is
also a well-established marker of AD and correlates with disease
severity [19, 20]. In addition – and given that cognitive problems
are a validated characteristic of the disease – cognitive performance
measurements, especially of episodic memory but also perceptual

speed and executive functioning, are commonly used in
diagnosis [21–23].
These advances have shifted our understanding of AD from a

purely clinical and symptom-based disease to a biological
construct that is both multifactorial and heterogenous. The
above-mentioned modalities have, individually or in conjunction
with others, been shown to predict AD to different extents and at
different stages of development, which suggests that each
modality conveys unique variance but also indicates the need
for a multifactorial approach [1, 3, 5, 19, 24–27]. In line with this
are postmortem findings of elderly individuals with high amyloid
burden and NFTs deposition but without clinical AD signs [28–31].
These, together with studies that utilized different machine
learning algorithms [32–34], confirm that AD cannot be explained
by any single biomarker. Furthermore, despite the wealth of
available data, it remains challenging to find an adequate balance
between data availability, model complexity, and interpretability.
There are numerous studies combining data from different
biomarkers, but a limitation of such approaches is that they
typically report results in parallel or compare normalized findings
but do not analyze them simultaneously [35].
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Here, we aimed to test a multi-dimensional network framework
which aggregates data across a range of modalities into a single
model capable of capturing the heterogeneity of AD. The super-
iority of this technique over standard approaches has been
demonstrated in other fields, namely cancer, where it has been
able to identify cancer subtypes and predict survival [36]. We
applied this framework to 490 subjects from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) who had data across five modalities
including MRI, PET, CSF, genetics, and cognition at baseline. These
modalities were chosen with the goal of covering well-established
AD markers while ensuring a reasonable sample size. Overall, we
hypothesized that, by detecting common as well as complementary
signals across modalities and minimizing the effect of different
scales and noise, the multilayer network framework would provide
unique insight regarding AD development and progression. We also
validated our findings by dividing the sample chronologically into a
training and testing set to ensure results were reliable.
The current consensus on AD dementia is that individuals are first

in a preclinical stage (e.g., asymptomatic) and later move on to mild
cognitive impairment (MCI) and finally AD [27]. Individuals with MCI
were categorized into early (EMCI) or late (LMCI) MCI, depending on
how poorly they performed on cognitive screening tools [37]. LMCI
has the highest risk of developing AD, with EMCI displaying the
lowest conversion rate [37–39]. The need for a definition of early
and late MCI relates to the fact that cognitive deficits in AD are
initially subtle and, thus, not detected via traditional cognitive
assessments but become more evident the closer one is to
diagnosis. This classification allows for a logical progression from
cognitively normal (CN) to preclinical, prodromal, and finally AD
dementia [38, 40]. We expect to be able to accurately detect present
and future CN, MCI, and AD cases across the sample, but also
provide novel information into the biological underpinnings that
lead to AD. As such, we also divided subjects into amyloid positive
and negative groups using baseline amyloid-β PET and analyzed
them separately. This was done under the assumption that amyloid
positive individuals already display severe AD-related pathology as
measured by PET. Given that one of our primary goals is detecting
the disease early on, these subsamples allow us to test the model at
different stages of disease severity.

MATERIALS AND METHODS
Participants
Data used in preparation of this work were obtained from the ADNI
database (http://adni.loni.usc.edu). ADNI is a multicenter study launched in
2003, designed with the goal of developing and validating biomarkers for
early detection and treatment of AD. Details on overall inclusion and
exclusion criteria can be found elsewhere [41]. Informed consent was
obtained from all participants or their authorized representatives.
The study was based on 490 subjects (age 71.80 ± 7.07, 55–90.3, 231

women) who had data across five modalities at baseline and which are

described in the following sections. The sample was comprised of CN, MCI,
and AD individuals (for details on participants’ characteristics at baseline
see Table 1). An MCI diagnosis was based on the Petersen criteria such that
individuals showed a Mini-Mental State Examination (MMSE) [42] score
between 24–30, subjective memory concerns, abnormal memory function
measured by the Logical Memory II subscale of the Wechsler Memory Scale
[43], a clinical dementia rating of 0.5 [44], absence of significant
impairment in other cognitive domains, and absence of dementia. The
subdivision between EMCI and LMCI was done based on an episodic
memory test. Participants were considered EMCI or LMCI if their memory
scores were between 1–1.5 SD or at least 1.5 SD below their education-
adjusted means, respectively. Nomenclature has changed over the years,
but LMCI can be considered amnestic MCI. Participants were considered
AD if they met the NINCDS-ADRDA criteria for probable AD [45, 46].

Modalities included in the multilayer network framework
Structural MRI. Structural images were acquired using a standardized 3 T
protocol in a GE, Siemens, or Phillips scanner with a 32-channel coil. Cortical
reconstruction and volumetric segmentation were performed with FreeSurfer
(version 5.1) by the University of California, San Francisco (UCSF) Medical
Center team [47, 48] and are available on the ADNI website. For further details
regarding MRI acquisition, preprocessing pipeline, and quality control
procedures, see the UCSF FreeSurfer Methods (https://ida.loni.usc.edu). For a
summary table of the regions of interest [ROIs] used see S1.

Amyloid-β PET. Baseline Aβ data were obtained using 18F-AV-45
(florbetapir) PET. Details on the acquisition protocol and preprocessing
are available on the ADNI website (http://adni.loni.usc.edu/methods/pet-
analysis-method/pet-analysis/). In summary, florbetapir scans were co-
registered to each subject structural MRI scan and standardized uptake
value ratios (SUVR) were extracted from each ROI. A reference region (i.e.,
whole cerebellum) was used for normalization [49, 50]. We also divided the
sample into amyloid positive/negative individuals by applying a cutoff of
1.11 [51] (see S1 for ROIS used).

CSF. This modality was comprised of amyloid-β (Aβ1-42), total Tau (Tau),
and phosphorylated p-TAU181p (pTau). All samples, taken from lumbar
punctures performed as described in the ADNI manual, were shipped to
the ADNI Biomarker Core at the University of Pennsylvania School of
Medicine [52, 53]. CSF concentrations were measured using the multiplex
xMAP Luminex platform (Luminex Corp., TX, USA) with the INNO-BIA
AlzBio3 kit (Innogenetics, Belgium). Details on the standardized protocol
for CSF analysis are also available elsewhere (http://www.adni-info.org).

Cognition. Cognitive data included the Rey Auditory Verbal Learning Test
[54], Trail Making Test [55], Everyday Cognition and Study Partner [56], and
Functional Assessment Questionnaire [57]. These reflect domain-specific
measures of memory, executive functioning, self- and study partner reports
of cognitive function, and daily independence. We purposefully refrained
from including scores of global cognition such as the MMSE, Montreal
Cognitive Assessment (MoCA) [58], or Clinical Dementia Rating Scale Sum of
Boxes (CDRSB) as these are typically used for diagnostic purposes (see
Participants) and would, therefore, lead to high specificity but be biased and
of circular nature when included in the multilayer network. As a form of

Table 1. Baseline characteristics by group.

CN MCI AD Group differences

n 147 287 56

Mean age ± SD 73.12 ± 5.92 70.63 ± 7.12 74.11 ± 8.33 CN vs. MCI: p < 0.001
CN vs. AD: p= 0.445
MCI vs. AD: p= 0.001

Sex (female/male) 78/69 130/157 23/33 CN vs. MCI: p= 0.193
CN vs. AD: p= 0.127
MCI vs. AD: p= 0.561

Years of education ± SD 16.56 ± 2.52 16.37 ± 262 15.64 ± 2.68 CN vs. MCI: p= 0.472
CN vs. AD: p= 0.024
MCI vs. AD: p= 0.059

Mean MMSE score ± SD 29.07 ± 1.11 28.16 ± 1.69 23.32 ± 1.85 CN vs. MCI: p < 0.001
CN vs. AD: p < 0.001
MCI vs. AD: p < 0.001
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validation and to interpret the multilayer communities, we report group
differences for these cognitive scores in the results.

Genetics. This layer included participants APOE information and their
polygenic hazard score (PHS). This score is derived from 31 single
nucleotide polymorphisms (SNPs) and has been shown to reliably identify
those who are at risk for AD at any age [59]. It also provides additional
information beyond the risk associated with the APOE ε4 allele.

Multilayer network construction
Before carrying out network construction, all data underwent three
preprocessing steps: mean centering, regressing out covariates, and normal-
ization. This was done separately for each modality. For structural MRI and

amyloid-β PET, age, gender, and total intracranial volume (ICV) were used as
covariates, whereas for CSF and cognition only age and gender were
considered and, for genetics, only gender was used. Max normalization (data
divided by max value across subjects) was carried out to scale data between 0
and 1, except for genetics in which z-scores were used instead. The normalized
data for each modality were used to create a subject similarity network with
nodes representing individuals and edges representing the similarity of
individuals across features quantified using pair-wise correlations.
Next, a multi-dimensional network framework (i.e., a multilayer network)

was constructed based on the work by Mucha et al., 2010 [60], where the
authors generalized the concept of community detection for multiplex
networks. This algorithm has been shown to detect communities that are
robust relative to null models. Each node represents the manifestation of a

Fig. 1 Overview of the multilayer network framework used in the study and resulting communities. a The first column displays each
individual modality included in the multilayer network model (subjects x features), while the second column shows the corresponding
similarity networks (subjects x subjects). In the third column, the multilayer network is displayed, with each diamond representing a layer,
solid lines representing intralayer interactions, and dotted lines representing interlayer interactions. Nodes are connected across and within
layers. The last column exemplifies multilayer community detection, where two communities are identified based on communalities in the
data. b Multilayer network communities and distribution for each diagnosis group across the entire sample, (c) in the amyloid negative
subsample, and (d) in the amyloid positive subsample. The matrices represent the similarity between subjects across features quantified using
pair-wise correlations.
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given entity (i.e., subject) at a given layer (i.e., modality) with edges
representing connections within and between layers. All individuals were
present at each layer, but their interactions were allowed to vary across
modalities. Several metrics can be derived to describe such networks but,
given that one of the study goals was to explore AD heterogeneity,
modularity is of particular importance since it captures strength of
partition in the network. Modularity was derived using an iterative
generalized Louvain (GenLouvain) community detection algorithm which
is optimized for the study of multilayer/multiplex networks. The modularity
quality function (Q) is defined as:

Q ¼ 1
2μ

X

ijlr

Aijl � γlMijl
� �

δlr þ δijωjlr
� �

δ gil ; gjr
� �� �

where the matrix of layer l has components Aijl and Mijl gives the
corresponding components for the optimization null model. The structural
resolution or scaling parameter (γ) of layer l is γl , gil and gjr are the
community assignments of node i in layer l and node j in layer r, ωjlr
corresponds to the interlayer coupling strength parameter connecting
node j in layers l and r. Finally, μ is the total edge weight in the network.
For additional details, see S2.

Statistical analyses
We used analysis of variance (ANOVAs), independent-sample t-tests, chi-
square tests and Whitney–Mann U tests to compute differences between
communities in the variables of interest. These included age, education, and
APOE status, but also cognitive measurements such as the MMSE, MoCA,
CDRSB, Alzheimer’s Disease Assessment Scale (ADAS-Cog13) [61, 62], and
ADNI’s scores using Item Response Theory for memory and executive
functioning [63, 64]. In addition, we compared subjects’ brain volume in the
hippocampus, entorhinal cortex, and whole brain as well as amyloid load
using PET and tau, pTau, and amyloid using CSF. When appropriate, ANOVAs
were followed by post-hoc t-tests corrected for multiple comparisons using
Bonferroni correction (pcorrected < 0.05). A validation analysis was carried out
by splitting the sample and building a model using the older data (collected
between 06/2010 and 04/2012) and tested on more newly acquired data
(collected between 04/2012 and 10/2013).

RESULTS
Multilayer network identifies healthy and Alzheimer’s disease
cases accurately
The multilayer network divided the sample into two communities
(Fig. 1a, b; see Table 2 for an overview of subjects’ baseline
characteristics), one including 91.1% of all AD cases and the other
the majority (82%) of CN individuals (S3 for monolayer results).
Sensitivity and specificity for CN and AD individuals were 92.98% and
76.19% (95% CI: 83–98.05 and 68.47–82.82) at baseline and 91.1% and
82% (95% CI 84.99–95.32 and 74.9–87.79) for final diagnosis,
respectively. We investigated how the communities were distinct
from each other, with comparisons being regarded as significant if
they survived Bonferroni correction (p= 0.00357). The communities
differed in a multitude of relevant characteristics for AD, including
APOE status (χ(4)= 127.885, p= 1.10 × 10−26), with those in commu-
nity 1 having less participants with one or two ε4 allele(s). However,
they were not different in age (t(488)=−2.542, p= 0.011) or
education (t(488)= 2.230, p= 0.026). We also compared them on a
range of clinical and cognitive assessments, with community

2 showing worse performance in the MMSE (t(368.102)= 10.250,
p= 7.46 × 10−22), MoCA (t(435.405)= 8.759, p= 4.423 × 10−17),
CDRSB (χ(15)= 115.65, p= 1.31 × 10−17), and ADAS13
(t(395.127)=−11.562, p= 7.83 × 10−27). The same pattern was
observed in memory (t(460.267)= 13.339, p= 1.5 × 10−35) and
executive functioning (t(480)= 9.314, p= 1.86 × 10−18). In addition,
the groups differed in brain imaging measurements with community
2 showing more signs of atrophy in the hippocampus
(t(434.516)= 8.924, p= 1.27 × 10−17), entorhinal cortex
(t(465.730)= 7.159, p= 3.18 × 10−12) and in the whole brain
(t= 3.09, p= 0.002). Those in community 2 also had higher CSF
concentrations of tau (t(305.314)=−14.568, p= 7.3 × 10−37) and
pTau (t(378.678)=−15.099, p= 1.18 × 10−40), and lower amyloid-β
(t(408.280)= 25.382, p= 5.55 × 10−86). Finally, community 2 had a
higher Aβ burden (t(323.571)=−30.122, p= 0.002) measured by PET.
Although the distribution of MCI was more skewed towards

including these subjects in community 1, they were still rather split
(56.8% vs. 42.3%). As such, we examined MCI subtypes and found
that 69.5% of LMCI, which have the highest probability of
progressing to AD, were part of community 2. The opposite was
true for EMCI, with only 30.5% of individuals belonging to this same
community. Out of the 26 participants who, at their final available
follow-up had reverted to CN, 88.5% were part of community 1,
suggesting that those with more severe pathology were correctly
identified as part of the second community. Likewise, individuals
who were possibly misdiagnosed or had an MCI unrelated to AD
had a higher likelihood of being categorized in community 1.
We then examined how communities differed in progression to AD

(Fig. 2). Overall, the average follow-up period for CN individuals was
6 ± 2.7 years and for MCI/AD individuals was 4.5 ± 2.5 years. From all
MCI participants who developed AD, 9.2% belonged to community 1
and 90.8% belonged to community 2, indicating that the multilayer
method was not only able to detect present but also future AD.
Community 2 included most subjects who remained with AD
throughout the study but also those who progressed to AD from a
CN or an MCI status. Of note, even though community 1 included
more stable MCI individuals (57.1%), many of these were EMCI (61.7%
in community 1). This was expected since subjects who were both
MCI at baseline and part of community 2 eventually progressed to AD
(42.7%). Still, for a comparison of stable MCI between community 1
and 2, see S4.
Next, we focused on outlier subjects, i.e., those whose diagnosis

did not match their community allocation. AD subjects who were
“misclassified” and placed in community 1 (n= 12) had a distinctive
signature compared to those in community 2 (i.e., AD dominant;
n= 123). These subjects correspond to a small group of individuals
and, as such, we report descriptive statistics and nonparametric tests
(see S5) when comparing them to the rest of the AD sample. In
summary, these 12 AD individuals displayed lower CSF tau and pTau,
higher CSF amyloid-β, and lower amyloid accumulation in the brain
when compared to AD cases in community 2 (Fig. 3). Even when
compared to CN (M= 1.03, SD= 0.01) and MCI (M= 1.04, SD= 0.08)
individuals within their own community, this group displayed lower
amyloid-β concentrations. This suggests that the multilayer metho-
dology is sensitive in identifying individuals who, although
diagnosed as AD based on neuropsychological assessments, did
not meet other AD criteria, and was able to label them as part of the
CN-dominant community.
We also investigated mismatched subjects who were part of

community 2 but were deemed as CN. There were 27 subjects
who were CN (18%) in community 2 and 123 (82%) in community
1. Given the difference in sample size, we compared the groups
using nonparametric statistics and reported descriptive values
(see S5). Interestingly, healthy subjects in community 2 had higher
CSF tau and pTau, lower CSF amyloid-β, and higher amyloid-β
accumulation in the brain when compared to their CN counter-
parts in community 1 (Fig. 3). Importantly, the validation analysis
also confirmed the results obtained across the full sample (see S6).

Table 2. Summary of results.

Multilayer communities

1 2 Total

Diagnosis CN
% within diagnosis

123
82%

27
18%

150
100%

MCI
% within diagnosis

113
56.8%

86
43.2%

199
100%

AD
% within diagnosis

12
8.9%

123
91.1%

135
100%
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Likewise, we followed up our sample yearly from 12 to 48 months
and at final diagnosis and found that the model was successful in
distinguishing MCI conversion to AD and reversion to CN over
time. For converters and reverters, specificity, sensitivity, and
accuracy were all above 85% at final diagnosis (S7).
We further examined whether communities showed differential

spatial patterns in amyloid and volumetric estimates. Results showed
that the AD-dominant community had a higher amyloid burden
across most of the brain compared to the CN-dominant community
(Fig. 4a). This distributed pattern was also present in CN and AD
mismatched findings (Fig. 4a, b for amyloid and structural MRI
measures respectively). Among regions showing the largest differ-
ences in the full sample were the precuneus, parts of orbitofrontal,
superior frontal, rostral anterior cingulate and middle frontal, left
posterior cingulate, left frontal pole, right inferior parietal, and right
middle temporal cortex. A similar scenario was seen in CN-
mismatched individuals, where CN subjects allocated to the AD-
dominant community showed the highest amyloid differences when
compared to CN in the “healthier” community in many of the same
regions. These included the precuneus, parts of the orbitofrontal,
rostral middle frontal, posterior cingulate, right inferior parietal and
middle temporal cortex. Several of these areas are established as
parts of the brain where amyloid first starts to accumulate. When
comparing AD mismatched subjects, the largest differences included
some overlap with the full sample (e.g., rostral middle frontal, right
superior frontal, right posterior cingulate) but several of the regions
were not the same, including the temporal sulcus, caudal middle
frontal and supramarginal gyrus, superior temporal cortex, and insula.
We also found that across the sample, the AD-dominant

community showed lower volume in the precuneus, basal ganglia
(e.g., nucleus acccumbens, left putamen), medial temporal lobe (e.g.,
amygdala, hippocampus, parahippocampus, entorhinal cortex),
temporal sulcus, fusiform, inferior and middle temporal, inferior
parietal, left superior temporal and left frontal, and left supramarginal
gyrus. CN individuals in the AD-dominant community also showed
lower volume in partially the same regions (Fig. 4b “CN mismatch”),
such as the right precuneus, basal ganglia (e.g., right pallidum,
nucleus accumbens), medial temporal lobe (e.g., right amygdala, right
entorhinal cortex), inferior temporal and left superior frontal gyrus.
Other regions included the right superior frontal gyrus, ventral DC,
lateral orbitofrontal and posterior cingulate cortex, left thalamus and
transverse temporal gyrus. No differences survived correction for
multiple comparisons in the AD-mismatched subsample.

Multilayer network in amyloid negative subjects identifies
different stages of cognitive impairment and brain pathology
Applying the multilayer method to the amyloid negative sample
(n= 226) resulted in three communities (Fig. 1c). Community 1 had

the largest number of CN subjects (52%), followed by community 2
(28.6%) and 3 (19.4%). The opposite was true for MCI, with community
1 having the smallest number of individuals (19.4%), followed by
community 2 (29.8%). Thus, slightly more than half of all MCI cases
(50.8%) were categorized as part of community 3. Both the number of
EMCI and LMCI increased from community 1 (EMCI: 24.7%; LMCI: 3.2%)
to 2 (EMCI: 29%; LMCI: 32% 3) and 3 (EMCI: 46.2%; LMCI: 64.5%) in a
stepwise fashion. Given that these are individuals with a low amyloid
burden, the number of AD cases was small but were all part of
community 3 (n= 4; 100%).
We performed ANOVAs to test between-group differences, with

comparisons being significant if they survived Bonferroni correction
(p= 0.00313), followed by post-hoc t-tests when applicable. For
most variables, there was a clear step-by-step pattern of increased
pathology and lower behavioral performance from community 1 to
community 3 (for a distribution of these variables see S8). Age
(F(2,223)= 0.118, p= 0.889), education (F(2,223)= 0.709,
p= 0.493), and APOE (χ(8)= 6.207, p= 0.624) were not different
between groups, but MMSE (F(2,223)= 8.434, p= 0.0003), MoCA
(F(2,220)= 21.424, p= 3.15 × 10−9), memory (F(2,221)= 47.916,
p= 5.17 × 10−18), executive functioning (F(2,221)= 30.317,
p= 2.32 × 10−12), ADAS13 (F(2,223)= 29.127, p= 5.77 × 10−12),
and CDRSB (F(2,223)= 12.3, p= 9 × 10−6) were. Likewise, volume
in the hippocampus (F(2,203)= 7.36, p= 0.001) was significantly
different between communities, but entorhinal (F(2,223)= 4.115,
p= 0.018) and whole brain (F(2,223)= 0.937, p= 0.393) volumes
were not. Finally, CSF tau (F(2,221)= 13.172, p= 4 × 10−6) and
amyloid PET (F(2,223)= 5.845, p= 0.003) showed significant
differences but this was not the case for pTau (F(2,223)= 0.586,
p= 0.558) and CSF amyloid (F(2,223)= 2.911, p= 0.056). In
summary, for MMSE, scores in community 1 were not different
than those in community 2, but subjects in community 3 had lower
scores compared to 1 and 2. For memory, executive functioning,
MoCA, and ADAS13, all communities were different from each
other, with community 1 showing the best performance and
3 showing the worst. In CDRSB, there was an incremental increase,
with community 1 and 2 showing similar scores, and 3 scoring the
worst. Hippocampal volume was lower in community 3 compared
to 1 and 2, but community 1 and 2 were identical. Of note, for both
tau and amyloid PET, a different pattern emerged with community
2 showing the lowest mean values while community 1 and 3 were
identical. For details on p-values for each comparison, see Table 3.
Longitudinally, results were similar to the full sample. Community

1 corresponded to the healthiest group, with few CN subjects
progressing to MCI. Community 2 seemed to reflect an intermediate
stage with MCI individuals who remained stable, reverted to CN, or
progressed to AD. Community 3 included all AD at baseline and the
largest number of those who progressed to AD (S9).

Fig. 2 Community 1 and 2 divided by change in diagnosis across the full sample. Percentages correspond to the proportion of individuals
within each category that belong to community 1 or 2.
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Multilayer network in amyloid positive subjects mimics
findings on the full sample but with higher level of cognitive
impairment and brain pathology
Our final analyses focused on the amyloid positive sample (Fig. 1d),
where there was a similar trajectory to what was reported for the
amyloid negative and full sample, albeit with a more pronounced
pathology level given the higher amyloid burden (S10). Most
healthy individuals were part of community 1 (75.5%) and most AD
subjects (all but 1) were in community 3 (88.5%). Similarly,
community 1 had the smallest number of AD cases (1.9%) and
community 3 had only 16.3% of CN individuals. MCI was, again,
relatively split between groups (47.2% vs. 43.6%) but the majority of
participants with EMCI were in community 1 (62.9%), whereas the
majority of LMCI were in community 2 (60.8%).
We found that, compared to those in community 3, individuals in

community 1 had a better APOE profile (χ(4)= 28.659, p= 9 × 10−6),
and higher behavioral performance measured by MMSE
(t(184.792)= 10.410, p= 3 × 10−20), MoCA (t(213.612)= 9.718,
p= 1.01 × 10−18), memory (t(232)= 13.863, p= 3.08 × 10−32), execu-
tive functioning (t(232)= 7.863, p= 1.41 × 10−13), ADAS13
(t(210.479)=−12.510, p= 2.27 × 10−27), and CDRSB (χ(15)= 76.952,
p= 2.51 × 10−10). They also had higher hippocampal (t(220)= 9.66,
p= 1.2 × 10−18) and entorhinal (t(232.577)= 6.827, p= 7.5 × 10−11)
volumes, but whole brain volume (t(236)= 2.762, p= 0.006) did not
survive Bonferroni correction. Additionally, they had lower CSF tau
(t(198.599)=−8.611, p= 2.2 × 10−15) and pTau (t(237.683)=−6.516,
p= 4.26 × 10−10) and, similar to what was reported for the full sample,
those in community 1 had higher CSF amyloid (t(177.818)= 8.193,
p= 4.84 × 10−14) and lower amyloid PET (t(238)=−8.269,
p= 9.57 × 10−15). Age was not different between groups
(t(231.832)=−0.465, p= 0.642). Community 3 included the majority
of MCI cases that progressed to AD. Community 1 included most
stable CN but also most individuals who progressed to MCI and,
although all individuals were amyloid positive, had a small number of
AD subjects (S9).
Of note, the results included three communities, not two. Both 1

and 3 are reported above. Community 2 is smaller (n= 24) and
seemed to mimic the relative distribution of community 3 with
few healthy subjects (n= 4), followed by a larger number of MCI
(n= 15) and a comparatively large number of AD cases (n= 5). It
seems to be a rather heterogenous group that, for most measures,
falls between community 1 and 3.

DISCUSSION
Our results indicate that the multilayer technique is promising for
both capturing the heterogeneity that exists across the AD
spectrum and determining which subjects have or will develop
AD. Moreover, we were able to predict conversion from MCI to CN.
The advantages of such a network compared with traditional
approaches is that it models each modality as a layer of a multi-

dimensional network and, as such, is equipped to handle
interactions across modalities and find relationships which might
otherwise have been overlooked. Thus, similarly to what has been
reported in other fields [36], we were able to predict with high
accuracy and with only baseline data the individuals who
remained cognitively healthy and those who did not.
The majority of CN and MCI cases who eventually progressed to

AD were allocated to the AD-dominant community. In particular,
the ability to successfully discriminate MCI converters (e.g., those
who progressed to AD) and reverters (e.g., those who returned to
a CN status) using only baseline multimodal data is noteworthy.
This is a difficult task and literature shows that individuals who
revert to CN can fluctuate and be, once again, classified as MCI at a
follow-up examination. However, in our study, almost all MCI
individuals who reverted to a CN status and remained as such
were correctly identified as belonging to the CN-dominant
community. This suggests that the multilayer model was able to
identify cases of MCI unrelated to AD dementia and those
displaying signs of “healthy aging” [37, 65–69]. Remarkably, we
also followed up our sample yearly from 12 to 48 months and at
final diagnosis and found that the model was successful in
distinguishing MCI conversion to AD and reversion to CN over
time. For converters and reverters, specificity, sensitivity, and
accuracy were all above 85% at final diagnosis (S7).
By exploring the composition of the identified communities, we

found that they differed in measurements relevant for diagnosis,
including cognitive scores and brain biomarkers [2, 15, 16, 24].
Results were consistent across neuropsychological assessment
tools, which is noteworthy given that common AD screening tests
were not included in the model [70]. Our findings were also
consistent across volumetric and Aβ and tau proxies
[19, 25, 26, 71]. Even when dividing the sample into amyloid
positive and negative, similar patterns identified for the full
sample emerged, albeit with more or less pronounced levels of
pathology. We can understand these findings by considering that
the multilayer network labelled communities as representing
individuals with low levels of pathology and good cognitive
performance and who, therefore, maintained a “healthy aging”
status, versus those who, comparatively, had higher levels of
pathology and lower behavioral performance and were consid-
ered as showing more evidence of “AD-related aging” [72].
Importantly, the model was able to use this information to predict
not only which individuals with cognitive impairment would
develop AD, but also those who did not. We emphasize AD
specifically because that is what the modalities are tailored to
identify. If, instead, the goal had been to detect other types of
dementia, the focus of each modality (e.g., cognitive assessments)
or the modality itself (e.g., PET with a different radioligand) would
have to change as well and be adjusted to detect those disorders
instead. The fact that most LMCI cases were part of the AD-
dominant community and that almost all of those who reverted to

Fig. 3 Amyloid and tau load. a PET amyloid load (av45), (b) CSF tau, and (c) CSF pTau for community 1 and 2 by diagnosis group.
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CN were part of the “healthier” community gives strength to the
premise that the method is specifically detecting AD and not age-
related neurodegeneration or cognitive decline in general
[37, 73, 74]. It is also possible that the few mismatched cases of
AD might be explained by other types of dementia that are
sometimes confounded with AD itself [69, 75, 76].
In line with this premise is the fact that the communities did not

entirely overlap with diagnosis from the NINCDS-ADRDA criteria.
When examining “mismatched” CN controls and AD patients, it
became apparent that they displayed a distinct signature when
compared to others within their diagnosis group. AD cases in the CN-
dominant community showed better outcomes than AD cases in the
AD-dominant community for almost all comparisons, but also lower
Aβ burden. This suggests that the multilayer framework identified
subjects who did not meet AD criteria in regard to non-cognitive
markers and labelled them as part of the healthier community
[28, 30, 31]. Similarly, CN participants in the AD-dominant community
showed worse outcomes in most variables of interest, including
higher deposition of Aβ and tau in the brain [17, 77]. The spatial
patterns identified by amyloid and structural MRI are consistent with
this evidence. Amyloid burden across the brain was higher in the AD-
dominant community, but also higher in CN individuals allocated to
that same community when compared to their CN counterparts in

community 1. Several of these areas are well-known parts of the brain
where amyloid and even tau first start to accumulate such as the
precuneus, inferior temporal gyrus, amygdala or entorhinal cortex
[78–80]. Similar results can be found for volume, although to a lesser
extent. Such findings suggest that the multilayer network recognized
non-AD subjects who showed a similar signature to those who already
have AD dementia and allocated them to the same community.
Amyloid is known to accumulate decades before the presence of any
cognitive symptoms. Thus, aberrant accumulation of amyloid and
NFTs might indicate that these individuals are at a higher risk of
developing AD [28, 81, 82].
We also investigated AD heterogeneity across different stages

of disease severity by splitting the sample into amyloid positive
and negative [83, 84]. For amyloid positive, results mimicked the
full sample, albeit with a higher level of cognitive and brain
deficits. For amyloid negative, the multilayer model identified
three communities with a stepwise decrease in behavioral
performance and an increase in brain pathology. Specifically, for
most cognitive assessments, community 2 showed an intermedi-
ate position so that its subjects showed worse scores compared to
community 1 (i.e., “healthiest” community) but better than those
in community 3 (i.e., displaying most signs of “AD-related aging”).
Exceptions to these were MMSE and CDRBSB, where the scores of

Fig. 4 Differences across the brain in. a PET amyloid load and (b) volume. The full sample compares all subjects in community 1 (i.e., CN
dominant) to all subjects in community 2 (i.e., AD dominant), whereas CN and AD mismatches compare only CN (N= 123 vs. 27) or AD (N= 12
vs. 123) cases between communities. U-values were scaled (divided by maximum U) for ease of interpretation. Results were Bonferroni
corrected unless otherwise stated (all except for volumetric findings in CN mismatched cases, which were FDR corrected instead). Masks were
weighted using results of t-tests or Whitney–Mann U tests. These were based on ROIs from the Desikan-Killiany Atlas, and included the
amygdala, nucleus accumbens, hippocampus, pallidum, thalamus, caudate, and ventral diencephalon (ventral DC).
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community 2 were identical to those in community 1. The same
occurred for volumetric brain markers, where community 2 was
identical to community 1 in hippocampal volume. A deviation from
this pattern was seen for CSF tau and amyloid PET, where the
“intermediate” community 2 showed lower values than both
community 1 and 3. This appears to indicate that those in community
3 have an objectively higher degree of deficits in most measure-
ments, while those in community 2 might be part of a transitional
state where there is not a high level of damage yet. Thus, this could
explain why they show equivalent scores to community 1 in some
measures but worse in others, while still having some CSF and PET
markers within normal range [24, 71, 85, 86]. Perhaps subjects in
community 2 are those for which interventions can work best. These
findings, together with how the multilayer network separated early
and lateMCI across the full sample, might help answer questions such
as “who is more likely to benefit from cognitive training or
pharmacological interventions?”
Limitations of this study include the lack of individuals with

different kinds of neurodegenerative disorders. Future work is
necessary to test how the proposed multilayer network framework
performs in distinguishing frontotemporal, mixed, and vascular
dementia, or Parkinson’s disease, among others. Further, the AD
and MCI diagnoses in our study were based on clinical consensus.
AD can only be diagnosed with certainty after death and,
although ADNI has a subsample with postmortem data and
neuropathologic diagnosis, none of the current participants have
this information. Finally, we acknowledge that there is inherent
circularity in using cognition as a layer of our model, and therefore
tried to circumvent this issue by not adding tests that were
directly used for AD characterization in this layer. However,
despite our efforts, these measures are still strongly correlated

with those used for diagnostic purposes (e.g., MMSE and FAQ
r=−0.61 p < 0.001). This might reduce interest in the model’s
ability to differentiate between CN and AD but it is an intrinsic
limitation of including cognition as part of a multilayer framework
focused on identifying and predicting AD.
AD cannot be captured by any single modality due to its

heterogeneity and multifactorial nature. Our study includes a myriad
of different biomarkers and accounts for possible relationships
among them, which is an advancement compared to previous
research. This is because, although some markers have larger
contributions than others for detecting AD and its progression, these
markers are typically detached from each other [19, 25–27, 87]. We
acknowledge that not all modalities have equal contributions, but
they might relate to each other in complex ways. Our findings show
that the multilayer framework is successful in capturing the complex
relationship between different AD biomarkers and provides insight
into the heterogeneity of the disease by identifying groups of
intermediate and advanced levels of neurological and behavioral
deficits. The fact that the model assigns a select number of CN
participants to AD-dominant communities with concomitant volu-
metric decrease and Aβ and tau deposition further confirms this idea.
By showing that considering relationships within and across
modalities results in highly accurate predictions, our work indicates
that AD is a good example of the well-known axiom “the whole is
greater than the sum of its parts”.
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Table 3. Post-hoc t-tests among communities in amyloid negative subjects.

Community 1 Community 2 Community 3 Group differences

Age 70.12 ± 6.2 70.63 ± 7.14 70.56 ± 7.43 1 vs. 2: p= 0.651
1 vs. 3: p= 0.683
2 vs. 3: p= 0.957

MMSE 29.20 ± 0.99 28.94 ± 1.40 28.30 ± 17.4 1 vs. 2: p= 0.211
1 vs. 3: p= 7.4 × 10−5

2 vs. 3: p= 0.017

MoCA 26.36 ± 2.11 24.86 ± 283 23.49 ± 3.15 1 vs. 2: p= 0.001
1 vs. 3: p= 5.3 × 10−10

2 vs. 3: p= 0.007

Memory 1.28 ± 0.55 0.88 ± 0.66 0.37 ± 0.56 1 vs. 2: p= 0.0002
1 vs. 3: p= 2.26 × 10−19

2 vs. 3: p= 1 × 10−6

EF* 1.35 ± 0.75 0.822 ± 0.87 0.40 ± 0.72 1 vs. 2: p= 0.0002
1 vs. 3: p= 7.11 × 10−14

2 vs. 3: p= 0.001

ADAS13 7.88 ± 3.55 11.08 ± 5.48 14.17 ± 6.16 1 vs. 2: p= 0.0001
1 vs. 3: p= 3.1 × 10−13

2 vs. 3: p= 0.002

CDRSB 0.41 ± 0.74 0.70 ± 0.78 1.17 ± 1.25 1 vs. 2: p= 0.028
1 vs. 3: p= 6 × 10−6

2 vs. 3: p= 0.005

Hippocampus 7714.55 ± 962.65 7608.20 ± 817.24 7102.93 ± 1212.92 1 vs. 2: p= 0.5
1 vs. 3: p= 0.001
2 vs. 3: p= 0.005

CSF Tau 62.69 ± 27.85 44.28 ± 14.83 62.22 ± 25.69 1 vs. 2: p= 2 × 10−6

1 vs. 3: p= 0.912
2 vs. 3: p= 3.32 × 10−7

PET amyloid-β 1.02 ± 0.054 1.00 ± 0.48 10.2 ± 0.052 1 vs. 2: p= 0.015
1 vs. 3: p= 0.414
2 vs. 3: p= 0.001

*EF executive functioning.
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