Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Could psychedelic drugs have a role in the treatment of schizophrenia? Rationale and strategy for safe implementation

Abstract

Schizophrenia is a widespread psychiatric disorder that affects 0.5–1.0% of the world’s population and induces significant, long-term disability that exacts high personal and societal cost. Negative symptoms, which respond poorly to available antipsychotic drugs, are the primary cause of this disability. Association of negative symptoms with cortical atrophy and cell loss is widely reported. Psychedelic drugs are undergoing a significant renaissance in psychiatric disorders with efficacy reported in several conditions including depression, in individuals facing terminal cancer, posttraumatic stress disorder, and addiction. There is considerable evidence from preclinical studies and some support from human studies that psychedelics enhance neuroplasticity. In this Perspective, we consider the possibility that psychedelic drugs could have a role in treating cortical atrophy and cell loss in schizophrenia, and ameliorating the negative symptoms associated with these pathological manifestations. The foremost concern in treating schizophrenia patients with psychedelic drugs is induction or exacerbation of psychosis. We consider several strategies that could be implemented to mitigate the danger of psychotogenic effects and allow treatment of schizophrenia patients with psychedelics to be implemented. These include use of non-hallucinogenic derivatives, which are currently the focus of intense study, implementation of sub-psychedelic or microdosing, harnessing of entourage effects in extracts of psychedelic mushrooms, and blocking 5-HT2A receptor-mediated hallucinogenic effects. Preclinical studies that employ appropriate animal models are a prerequisite and clinical studies will need to be carefully designed on the basis of preclinical and translational data. Careful research in this area could significantly impact the treatment of one of the most severe and socially debilitating psychiatric disorders and open an exciting new frontier in psychopharmacology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Friedman NP, Miyake A. The relations among inhibition and interference control functions: a latent-variable analysis. J Exp Psychol Gen. 2004;133:101–35.

    Google Scholar 

  2. Sawa A, Snyder SH. Schizophrenia: diverse approaches to a complex disease. Science 2002;296:692–5.

    CAS  Google Scholar 

  3. Chong HY, Teoh SL, Wu DBC, Kotirum S, Chiou CF, Chaiyakunapruk N. Global economic burden of schizophrenia: a systematic review. Neuropsychiatr Dis Treat. 2016;12:357–73.

    Google Scholar 

  4. Fasseeh A, Németh B, Molnár A, Fricke FU, Horváth M, Kóczián K, et al. A systematic review of the indirect costs of schizophrenia in Europe. Eur J Public Health. 2018;28:1043–9.

    CAS  Google Scholar 

  5. Ross CA, Margolis RL, Reading SAJ, Pletnikov M, Coyle JT. Neurobiology of Schizophrenia. Neuron 2006;52:139–53.

    CAS  Google Scholar 

  6. Andreasen NC. Negative symptoms in schizophrenia. Défin Reliab Arch Gen Psychiatry. 1982;39:784–8.

    CAS  Google Scholar 

  7. McCutcheon RA, Reis Marques T, Howes OD. Schizophrenia-An Overview. JAMA Psychiatry. 2020;77:201–10.

    Google Scholar 

  8. Andersen KAA, Carhart‐Harris R, Nutt DJ, Erritzoe D. Therapeutic effects of classic serotonergic psychedelics: a systematic review of modern‐era clinical studies. Acta Psychiatr Scand. 2021;143:101–18.

    Google Scholar 

  9. Reiff CM, Richman EE, Nemeroff CB, Carpenter LL, Widge AS, Rodriguez CI, et al. Psychedelics and psychedelic-assisted psychotherapy. Am J Psychiatry. 2020;177:391–410.

    Google Scholar 

  10. Patra S. Return of the psychedelics: psilocybin for treatment resistant depression. Asian J Psychiatry. 2016;24:51–2.

    Google Scholar 

  11. Melle I, Olav Johannesen J, Haahr UH, Ten Velden Hegelstad W, Joa I, Langeveld J, et al. Causes and predictors of premature death in first-episode schizophrenia spectrum disorders. World Psychiatry J World Psychiatr Assoc WPA. 2017;16:217–8.

    Google Scholar 

  12. Tiihonen J, Lönnqvist J, Wahlbeck K, Klaukka T, Niskanen L, Tanskanen A, et al. 11-year follow-up of mortality in patients with schizophrenia: a population-based cohort study (FIN11 study). Lancet 2009;374:620–7.

    Google Scholar 

  13. Chesney E, Goodwin GM, Fazel S. Risks of all-cause and suicide mortality in mental disorders: a meta-review. World Psychiatry J. 2014;13:153–60.

    Google Scholar 

  14. Ross CA, Margolis RL. Neurogenetics: insights into degenerative diseases and approaches to schizophrenia. Clin Neurosci Res. 2005;5:3–14.

    CAS  Google Scholar 

  15. Hanson E, Healey K, Wolf D, Kohler C. Assessment of Pharmacotherapy for Negative Symptoms of Schizophrenia. Curr Psychiatry Rep. 2010;12:563–71.

    Google Scholar 

  16. Stahl SM, Buckley PF. Negative symptoms of schizophrenia: a problem that will not go away. Acta Psychiatr Scand. 2007;115:4–11.

    CAS  Google Scholar 

  17. Foussias G, Siddiqui I, Fervaha G, Agid O, Remington G. Dissecting negative symptoms in schizophrenia: opportunities for translation into new treatments. J Psychopharmacol. 2015;29:116–26.

    Google Scholar 

  18. Milev P, Ho BC, Arndt S, Andreasen NC. Predictive values of neurocognition and negative symptoms on functional outcome in schizophrenia: a longitudinal first-episode study with 7-year follow-up. Am J Psychiatry. 2005;162:495–506.

    Google Scholar 

  19. Austin SF, Mors O, Budtz-Jørgensen E, Secher RG, Hjorthøj CR, Bertelsen M, et al. Long-term trajectories of positive and negative symptoms in first episode psychosis: a 10 year follow-up study in the OPUS cohort. Schizophr Res. 2015;168:84–91.

    Google Scholar 

  20. Díaz-Caneja CM, Pina-Camacho L, Rodríguez-Quiroga A, Fraguas D, Parellada M, Arango C. Predictors of outcome in early-onset psychosis: a systematic review. NPJ Schizophr. 2015;1:14005.

    Google Scholar 

  21. Ventura J, Subotnik KL, Gitlin MJ, Gretchen-Doorly D, Ered A, Villa KF, et al. Negative symptoms and functioning during the first year after a recent onset of schizophrenia and 8years later. Schizophr Res. 2015;161:407–13.

    Google Scholar 

  22. Best MW, Grossman M, Oyewumi LK, Bowie CR. Examination of the Positive and Negative Syndrome Scale factor structure and longitudinal relationships with functioning in early psychosis: PANSS factor structure and functioning. Early Interv Psychiatry. 2016;10:165–70.

    Google Scholar 

  23. Lieberman JA, Stroup TS, McEvoy JP, Swartz MS, Rosenheck RA, Perkins DO, et al. Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. N Engl J Med. 2005;353:1209–23.

    CAS  Google Scholar 

  24. Kirkpatrick B, Fenton WS, Carpenter WT, Marder SR. The NIMH-MATRICS consensus statement on negative symptoms. Schizophr Bull. 2006;32:214–9.

    Google Scholar 

  25. Laughren T, Levin R. Food and drug administration perspective on negative symptoms in schizophrenia as a target for a drug treatment claim. Schizophr Bull. 2006;32:220–2.

    Google Scholar 

  26. Fusar-Poli P, Smieskova R, Kempton MJ, Ho BC, Andreasen NC, Borgwardt S. Progressive brain changes in schizophrenia related to antipsychotic treatment? A meta-analysis of longitudinal MRI studies. Neurosci Biobehav Rev. 2013;37:1680–91.

    CAS  Google Scholar 

  27. Selemon LD, Goldman-Rakic PS. The reduced neuropil hypothesis: a circuit based model of schizophrenia. Biol Psychiatry. 1999;45:17–25.

    CAS  Google Scholar 

  28. Kaar SJ, Angelescu I, Marques TR, Howes OD. Pre-frontal parvalbumin interneurons in schizophrenia: a meta-analysis of post-mortem studies. J Neural Transm. 2019;126:1637–51.

    CAS  Google Scholar 

  29. Osimo EF, Beck K, Reis Marques T, Howes OD. Synaptic loss in schizophrenia: a meta-analysis and systematic review of synaptic protein and mRNA measures. Mol Psychiatry. 2019;24:549–61.

    CAS  Google Scholar 

  30. Yan J, Cui Y, Li Q, Tian L, Liu B, Jiang T, et al. Cortical thinning and flattening in schizophrenia and their unaffected parents. Neuropsychiatr Dis Treat. 2019;15:935–46.

    Google Scholar 

  31. Winterburn JL, Voineskos AN, Devenyi GA, Plitman E, de la Fuente-Sandoval C, Bhagwat N, et al. Can we accurately classify schizophrenia patients from healthy controls using magnetic resonance imaging and machine learning? A multi-method and multi-dataset study. Schizophr Res. 2019;214:3–10.

    Google Scholar 

  32. Jiang Y, Luo C, Li X, Duan M, He H, Chen X, et al. Progressive reduction in gray matter in patients with schizophrenia assessed with MR Imaging by using causal network analysis. Radiology 2018;287:633–42.

    Google Scholar 

  33. Kelly S, Jahanshad N, Zalesky A, Kochunov P, Agartz I, Alloza C, et al. Widespread white matter microstructural differences in schizophrenia across 4322 individuals: results from the ENIGMA Schizophrenia DTI Working Group. Mol Psychiatry. 2018;23:1261–9.

    CAS  Google Scholar 

  34. Narr KL, Toga AW, Szeszko P, Thompson PM, Woods RP, Robinson D, et al. Cortical thinning in cingulate and occipital cortices in first episode schizophrenia. Biol Psychiatry. 2005;58:32–40.

    Google Scholar 

  35. Kubota M, Miyata J, Yoshida H, Hirao K, Fujiwara H, Kawada R, et al. Age-related cortical thinning in schizophrenia. Schizophr Res. 2011;125:21–9.

    Google Scholar 

  36. Sun D, Stuart GW, Jenkinson M, Wood SJ, McGorry PD, Velakoulis D, et al. Brain surface contraction mapped in first-episode schizophrenia: a longitudinal magnetic resonance imaging study. Mol Psychiatry. 2009;14:976–86.

    CAS  Google Scholar 

  37. Provenzano FA, Guo J, Wall MM, Feng X, Sigmon HC, Brucato G, et al. Hippocampal pathology in clinical high-risk patients and the onset of schizophrenia. Biol Psychiatry. 2020;87:234–42.

    CAS  Google Scholar 

  38. Kraguljac NV, Anthony T, Monroe WS, Skidmore FM, Morgan CJ, White DM, et al. A longitudinal neurite and free water imaging study in patients with a schizophrenia spectrum disorder. Neuropsychopharmacology 2019;44:1932–9.

    CAS  Google Scholar 

  39. Kirkpatrick B, Buchanan RW, Ross DE, Carpenter WT. A separate disease within the syndrome of schizophrenia. Arch Gen Psychiatry. 2001;58:165.

    CAS  Google Scholar 

  40. Nenadic I, Yotter RA, Sauer H, Gaser C. Patterns of cortical thinning in different subgroups of schizophrenia. Br J Psychiatry. 2015;206:479–83.

    Google Scholar 

  41. Walton E, Hibar DP, van Erp TGM, Potkin SG, Roiz-Santiañez R, Crespo-Facorro B, et al. Prefrontal cortical thinning links to negative symptoms in schizophrenia via the ENIGMA consortium. Psychol Med. 2018;48:82–94.

    CAS  Google Scholar 

  42. Sugihara G, Oishi N, Son S, Kubota M, Takahashi H, Murai T. Distinct patterns of cerebral cortical thinning in schizophrenia: a neuroimaging data-driven approach. Schizophr Bull. 2016;sbw176.

  43. Bodnar M, Hovington CL, Buchy L, Malla AK, Joober R, Lepage M. Cortical thinning in temporo-parietal junction (TPJ) in non-affective first-episode of psychosis patients with persistent negative symptoms. Jiang T, editor. PLoS ONE. 2014;9:e101372.

  44. Sanfilipo M, Lafargue T, Rusinek H, Arena L, Loneragan C, Lautin A, et al. Volumetric measure of the frontal and temporal lobe regions in schizophrenia: relationship to negative symptoms. Arch Gen Psychiatry. 2000;57:471.

    CAS  Google Scholar 

  45. Crow TJ. Molecular pathology of schizophrenia: more than one disease process? BMJ. 1980;280:66–8.

    CAS  Google Scholar 

  46. Correll CU, Schooler NR. Negative symptoms in schizophrenia: a review and clinical guide for recognition, assessment, and treatment. Neuropsychiatr Dis Treat. 2020;16:519–34.

    Google Scholar 

  47. Harvey RC, James AC, Shields GE. A systematic review and network meta-analysis to assess the relative efficacy of antipsychotics for the treatment of positive and negative symptoms in early-onset schizophrenia. CNS Drugs. 2016;30:27–39.

    CAS  Google Scholar 

  48. Krause M, Zhu Y, Huhn M, Schneider-Thoma J, Bighelli I, Nikolakopoulou A, et al. Antipsychotic drugs for patients with schizophrenia and predominant or prominent negative symptoms: a systematic review and meta-analysis. Eur Arch Psychiatry Clin Neurosci. 2018;268:625–39.

    Google Scholar 

  49. Németh G, Laszlovszky I, Czobor P, Szalai E, Szatmári B, Harsányi J, et al. Cariprazine versus risperidone monotherapy for treatment of predominant negative symptoms in patients with schizophrenia: a randomised, double-blind, controlled trial. Lancet 2017;389:1103–13.

    Google Scholar 

  50. Wagner E, Siafis S, Fernando P, Falkai P, Honer WG, Röh A, et al. Efficacy and safety of clozapine in psychotic disorders-a systematic quantitative meta-review. Transl Psychiatry. 2021;11:487.

    CAS  Google Scholar 

  51. Raymond N, Lizano P, Kelly S, Hegde R, Keedy S, Pearlson GD, et al. What can clozapine’s effect on neural oscillations tell us about its therapeutic effects? A scoping review and synthesis. Biomark Neuropsychiatry. 2022;6:100048.

    Google Scholar 

  52. Barnes TRE, Paton C. Do antidepressants improve negative symptoms in schizophrenia? BMJ. 2011;342:d3371.

  53. Kantrowitz JT, Woods SW, Petkova E, Cornblatt B, Corcoran CM, Chen H, et al. D-serine for the treatment of negative symptoms in individuals at clinical high risk of schizophrenia: a pilot, double-blind, placebo-controlled, randomised parallel group mechanistic proof-of-concept trial. Lancet Psychiatry. 2015;2:403–12.

    Google Scholar 

  54. Singer P, Dubroqua S, Yee B. Inhibition of glycine transporter 1: The yellow brick road to new schizophrenia therapy? Curr Pharm Des. 2015;21:3771–87.

    CAS  Google Scholar 

  55. Stauffer VL, Millen BA, Andersen S, Kinon BJ, LaGrandeur L, Lindenmayer JP, et al. Pomaglumetad methionil: No significant difference as an adjunctive treatment for patients with prominent negative symptoms of schizophrenia compared to placebo. Schizophr Res. 2013;150:434–41.

    Google Scholar 

  56. Kishi T, Iwata N. NMDA receptor antagonists interventions in schizophrenia: meta-analysis of randomized, placebo-controlled trials. J Psychiatr Res. 2013;47:1143–9.

    Google Scholar 

  57. Rezaei F, Mohammad-karimi M, Seddighi S, Modabbernia A, Ashrafi M, Salehi B, et al. Memantine add-on to risperidone for treatment of negative symptoms in patients with stable schizophrenia: randomized, double-blind, placebo-controlled study. J Clin Psychopharmacol. 2013;33:336–42.

    CAS  Google Scholar 

  58. Deutsch SI, Schwartz BL, Schooler NR, Brown CH, Rosse RB, Rosse SM. Targeting alpha-7 nicotinic neurotransmission in schizophrenia: a novel agonist strategy. Schizophr Res. 2013;148:138–44.

    Google Scholar 

  59. Walling D, Marder SR, Kane J, Fleischhacker WW, Keefe RSE, Hosford DA, et al. Phase 2 trial of an alpha-7 nicotinic receptor agonist (TC-5619) in negative and cognitive symptoms of schizophrenia. Schizophr Bull. 2016;42:335–43.

    Google Scholar 

  60. Müller N. Inflammation in schizophrenia: pathogenetic aspects and therapeutic considerations. Schizophr Bull. 2018;44:973–82.

    Google Scholar 

  61. Monte AS, de Souza GC, McIntyre RS, Soczynska JK, dos Santos JV, Cordeiro RC, et al. Prevention and reversal of ketamine-induced schizophrenia related behavior by minocycline in mice: Possible involvement of antioxidant and nitrergic pathways. J Psychopharmacol (Oxf). 2013;27:1032–43.

    Google Scholar 

  62. Inta D, Lang UE, Borgwardt S, Meyer-Lindenberg A, Gass P. Microglia activation and schizophrenia: lessons from the effects of minocycline on postnatal neurogenesis, neuronal survival and synaptic pruning. Schizophr Bull. 2016;sbw088.

  63. Solmi M, Veronese N, Thapa N, Facchini S, Stubbs B, Fornaro M, et al. Systematic review and meta-analysis of the efficacy and safety of minocycline in schizophrenia. CNS Spectr. 2017;22:415–26.

    Google Scholar 

  64. Zhang L, Zheng H, Wu R, Kosten TR, Zhang XY, Zhao J. The effect of minocycline on amelioration of cognitive deficits and pro-inflammatory cytokines levels in patients with schizophrenia. Schizophr Res. 2019;212:92–8.

    Google Scholar 

  65. Deakin B, Suckling J, Barnes TRE, Byrne K, Chaudhry IB, Dazzan P, et al. The benefit of minocycline on negative symptoms of schizophrenia in patients with recent-onset psychosis (BeneMin): a randomised, double-blind, placebo-controlled trial. Lancet. Psychiatry. 2018;5:885–94.

    Google Scholar 

  66. Kishimoto T, Horigome T, Takamiya A. Minocycline as a treatment for schizophrenia: is the discussion truly finished? Lancet. Psychiatry. 2018;5:856–7.

    Google Scholar 

  67. Flanagan TW, Nichols CD. Psychedelics as anti-inflammatory agents. Int Rev Psychiatry. 2018;30:363–75.

    Google Scholar 

  68. Nkadimeng SM, Steinmann CML, Eloff JN. Anti-inflammatory effects of four psilocybin-containing magic mushroom water extracts in vitro on 15-lipoxygenase activity and on lipopolysaccharide-induced cyclooxygenase-2 and inflammatory cytokines in human u937 macrophage cells. J Inflamm Res. 2021;14:3729–38.

    Google Scholar 

  69. Stoll W. 11. Lysergsäure-diäthylamid, ein Phantastikum aus der Mutterkorngruppe. Schweiz Arch Neurol Psychiatr. 1947;60:279–323.

    Google Scholar 

  70. Condrau C. Klinische Erfahrungen an Geisteskranken mit Lysergsäure- Diäthylamide. Acta Psychiat Scand. 1949;24:9–32.

    Google Scholar 

  71. Katzenelbogen S, Fang AD. Narcosynthesis effects of sodium amytal, methedrine and L.S.D-25. Dis Nerv Syst. 1953;14:85–8.

    CAS  Google Scholar 

  72. Cholden LS, Kurland A, Savage C. Clinical reactions and tolerance to LSD in chronic schizophrenia. J Nerv Ment Dis. 1955;122:211–21.

    CAS  Google Scholar 

  73. Abramson HA, Hewitt MP, Lennard H, Turner WJ, O’neill FJ, Merlis S. The stablemate concept of therapy as affected by LSD in schizophrenia. J Psychol. 1958;45:75–84.

    Google Scholar 

  74. Bender L. D-lysergic acid in the treatment of the biological features of childhood schizophrenia. Dis Nerv Syst. 1966;7 Suppl:43–6.

  75. Mogar RE, Aldrich RW. The use of psychedelic agents with autistic schizophrenic children. Behav Neuropsychiatry. 1969;1:44–50.

    CAS  Google Scholar 

  76. Yensen R, Dryer D. Thirty years of psychedelic research: the spring grove experiment and its sequels.

  77. Kefauver E, Harris O. Drug amendments of 1962, 87 P.L. 781; 76 Stat. 780, 1962 (Kefauver Harris Amendments).

  78. Hall W. Why was early therapeutic research on psychedelic drugs abandoned? Psychol Med. 2021;1–6.

  79. Roth BL. Multiple serotonin receptors: clinical and experimental aspects. Ann Clin Psychiatry J Am Acad Clin Psychiatr. 1994;6:67–78.

    CAS  Google Scholar 

  80. Hollister LE, Hartman AM. Mescaline, lysergic acid diethylamide and psilocybin: comparison of clinical syndromes, effects on color perception and biochemical measures. Compr Psychiatry. 1962;3:235–41.

    CAS  Google Scholar 

  81. Wolbach AB, Miner EJ, Isbell H. Comparison of psilocin with psilocybin, mescaline and LSD-25. Psychopharmacologia 1962;3:219–23.

    CAS  Google Scholar 

  82. Halberstadt AL. Recent advances in the neuropsychopharmacology of serotonergic hallucinogens. Behav Brain Res. 2015;277:99–120.

    CAS  Google Scholar 

  83. Glennon RA. Arylalkylamine drugs of abuse: an overview of drug discrimination studies. Pharm Biochem Behav. 1999;64:251–6.

    CAS  Google Scholar 

  84. Preller KH, Vollenweider FX. Phenomenology, structure, and dynamic of psychedelic states. Curr Top Behav Neurosci. 2018;36:221–56.

    CAS  Google Scholar 

  85. Preller KH, Burt JB, Ji JL, Schleifer CH, Adkinson BD, Stämpfli P, et al. Changes in global and thalamic brain connectivity in LSD-induced altered states of consciousness are attributable to the 5-HT2A receptor. eLife. 2018;7:e35082.

    Google Scholar 

  86. Hermle L, Gouzoulis-Mayfrank E, Spitzer M. Blood flow and cerebral laterality in the mescaline model of psychosis. Pharmacopsychiatry 1998;31 Suppl 2:85–91.

  87. Dittrich A. The standardized psychometric assessment of altered states of consciousness (ASCs) in humans. Pharmacopsychiatry 1998;31 Suppl 2:80–4.

  88. Vollenweider FX, Vollenweider-Scherpenhuyzen MF, Bäbler A, Vogel H, Hell D. Psilocybin induces schizophrenia-like psychosis in humans via a serotonin-2 agonist action. Neuroreport 1998;9:3897–902.

    CAS  Google Scholar 

  89. Davis M. Mescaline: excitatory effects on acoustic startle are blocked by serotonin2 antagonists. Psychopharmacology 1987;93:286–91.

    CAS  Google Scholar 

  90. González-Maeso J, Weisstaub NV, Zhou M, Chan P, Ivic L, Ang R, et al. Hallucinogens recruit specific cortical 5-HT(2A) receptor-mediated signaling pathways to affect behavior. Neuron 2007;53:439–52.

    Google Scholar 

  91. Jha S, Rajendran R, Fernandes KA, Vaidya VA. 5-HT2A/2C receptor blockade regulates progenitor cell proliferation in the adult rat hippocampus. Neurosci Lett. 2008;441:210–4.

    CAS  Google Scholar 

  92. Catlow BJ, Song S, Paredes DA, Kirstein CL, Sanchez-Ramos J. Effects of psilocybin on hippocampal neurogenesis and extinction of trace fear conditioning. Exp Brain Res. 2013;228:481–91.

    CAS  Google Scholar 

  93. Gouzoulis-Mayfrank E, Heekeren K, Neukirch A, Stoll M, Stock C, Obradovic M, et al. Psychological effects of (S)-ketamine and N,N-dimethyltryptamine (DMT): a double-blind, cross-over study in healthy volunteers. Pharmacopsychiatry 2005;38:301–11.

    CAS  Google Scholar 

  94. Müller F, Borgwardt S. Acute effects of lysergic acid diethylamide (LSD) on resting brain function. Swiss Med Wkly. 2019;149:w20124.

    Google Scholar 

  95. Quednow BB, Kometer M, Geyer MA, Vollenweider FX. Psilocybin-induced deficits in automatic and controlled inhibition are attenuated by ketanserin in healthy human volunteers. Neuropsychopharmacol Publ Am Coll Neuropsychopharmacol 2012;37:630–40.

    CAS  Google Scholar 

  96. Chindo BA, Adzu B, Yahaya TA, Gamaniel KS. Ketamine-enhanced immobility in forced swim test: a possible animal model for the negative symptoms of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2012;38:310–6.

    CAS  Google Scholar 

  97. Ke X, Ding Y, Xu K, He H, Wang D, Deng X, et al. The profile of cognitive impairments in chronic ketamine users. Psychiatry Res. 2018;266:124–31.

    CAS  Google Scholar 

  98. Luo Y, Yu Y, Zhang M, He H, Fan N. Chronic administration of ketamine induces cognitive deterioration by restraining synaptic signaling. Mol Psychiatry. 2020.

  99. Javitt DC. Glutamate and schizophrenia: phencyclidine, N-methyl-D-aspartate receptors, and dopamine-glutamate interactions. Int Rev Neurobiol. 2007;78:69–108.

    CAS  Google Scholar 

  100. Cilia J, Hatcher P, Reavill C, Jones DNC. (+/-) Ketamine-induced prepulse inhibition deficits of an acoustic startle response in rats are not reversed by antipsychotics. J Psychopharmacol. 2007;21:302–11.

    CAS  Google Scholar 

  101. Geyer MA, Vollenweider FX. Serotonin research: contributions to understanding psychoses. Trends Pharm Sci. 2008;29:445–53.

    CAS  Google Scholar 

  102. Halberstadt AL, Geyer MA. Serotonergic hallucinogens as translational models relevant to schizophrenia. Int J Neuropsychopharmacol. 2013;16:2165–80.

    CAS  Google Scholar 

  103. Marona-Lewicka D, Nichols CD, Nichols DE. An animal model of schizophrenia based on chronic LSD administration: old idea, new results. Neuropharmacology 2011;61:503–12.

    CAS  Google Scholar 

  104. Halberstadt AL, Powell SB, Geyer MA. Role of the 5-HT2A receptor in the locomotor hyperactivity produced by phenylalkylamine hallucinogens in mice. Neuropharmacology 2013;70:218–27.

    CAS  Google Scholar 

  105. Smart RG, Bateman K. Unfavourable reactions to LSD: a review and analysis of the available case reports. Can Med Assoc J. 1967;97:1214–21.

    CAS  Google Scholar 

  106. Vardy MM, Kay SR. LSD psychosis or LSD-induced schizophrenia? A multimethod inquiry. Arch Gen Psychiatry. 1983;40:877–83.

    CAS  Google Scholar 

  107. Solursh LP, Clement WR. Hallucinogenic drug abuse: manifestations and management. Can Med Assoc J. 1968;98:407–10.

    CAS  Google Scholar 

  108. Abraham HD, Aldridge AM. Adverse consequences of lysergic acid diethylamide. Addiction 1993;88:1327–34.

    CAS  Google Scholar 

  109. Eveloff HH. The LSD syndrome. A review. Calif Med. 1968;109:368–73.

    CAS  Google Scholar 

  110. Osmond H, Smythies J. Schizophrenia: a new approach. J Ment Sci. 1952;98:309–15.

    CAS  Google Scholar 

  111. Strassman RJ. Adverse reactions to psychedelic drugs. A review of the literature. J Nerv Ment Dis. 1984;172:577–95.

    CAS  Google Scholar 

  112. Anastasopoulos G, Photiades H. Effects of LSD-25 on relatives of schizophrenic patients. J Ment Sci. 1962;108:95–8.

    CAS  Google Scholar 

  113. Langs RJ, Barr HL. Lysergic acid diethylamide (LSD-25) and schizophrenic reactions. A comparative study. J Nerv Ment Dis. 1968;147:163–72.

    CAS  Google Scholar 

  114. De Gregorio D, Comai S, Posa L, Gobbi G. d-Lysergic acid diethylamide (LSD) as a model of psychosis: mechanism of action and pharmacology. Int J Mol Sci. 2016;17:E1953.

    Google Scholar 

  115. Giannini AJ, Eighan MS, Loiselle RH, Giannini MC. Comparison of haloperidol and chlorpromazine in the treatment of phencyclidine psychosis. J Clin Pharm. 1984;24:202–4.

    CAS  Google Scholar 

  116. Leptourgos P, Fortier-Davy M, Carhart-Harris R, Corlett PR, Dupuis D, Halberstadt AL, et al. Hallucinations under psychedelics and in the schizophrenia spectrum: an interdisciplinary and multiscale comparison. Schizophr Bull. 2020;46:1396–408.

    Google Scholar 

  117. Hays P, Tilley JR. The differences between LSD psychosis and schizophrenia. Can Psychiatr Assoc J. 1973;18:331–3.

    CAS  Google Scholar 

  118. Nayani TH, David AS. The auditory hallucination: a phenomenological survey. Psychol Med. 1996;26:177–89.

    CAS  Google Scholar 

  119. Kometer M, Schmidt A, Jäncke L, Vollenweider FX. Activation of serotonin 2A receptors underlies the psilocybin-induced effects on α oscillations, N170 visual-evoked potentials, and visual hallucinations. J Soc Neurosci. 2013;33:10544–51.

    CAS  Google Scholar 

  120. Shanon B. The antipodes of the mind: charting the phenomenology of the Ayahuasca experience. Oxford; New York: Oxford University Press; 2002. 475 p.

  121. Sanz C, Zamberlan F, Erowid E, Erowid F, Tagliazucchi E. The experience elicited by hallucinogens presents the highest similarity to dreaming within a large database of psychoactive substance reports. Front Neurosci. 2018;12:7.

    Google Scholar 

  122. Krebs TS, Johansen PØ. Psychedelics and mental health: a population study. PloS One. 2013;8:e63972.

    CAS  Google Scholar 

  123. Johansen PØ, Krebs TS. Psychedelics not linked to mental health problems or suicidal behavior: a population study. J Psychopharmacol. 2015;29:270–9.

    CAS  Google Scholar 

  124. Lev-Ran S, Feingold D, Goodman C, Lerner AG. Comparing triggers to visual disturbances among individuals with positive vs negative experiences of hallucinogen-persisting perception disorder (HPPD) following LSD use: comparing triggers to HPPD type I and II. Am J Addict. 2017;26:568–71.

    Google Scholar 

  125. Lerner G, Rudinski A, Bor D, Goodman O. C. Flashbacks and HPPD: a clinical-oriented concise review. Isr J Psychiatry Relat Sci. 2014;51:296–301.

    Google Scholar 

  126. Lerner AG, Shufman E, Kodesh A, Kretzmer G, Sigal M. LSD-induced Hallucinogen Persisting Perception Disorder with depressive features treated with reboxetine: case report. Isr J Psychiatry Relat Sci. 2002;39:100–3.

    Google Scholar 

  127. Doyle MA, Ling S, Lui LMW, Fragnelli P, Teopiz KM, Ho R, et al. Hallucinogen persisting perceptual disorder: a scoping review covering frequency, risk factors, prevention, and treatment. Expert Opin Drug Saf. 2022;1–11.

  128. Espiard ML, Lecardeur L, Abadie P, Halbecq I, Dollfus S. Hallucinogen persisting perception disorder after psilocybin consumption: a case study. Eur Psychiatry. 2005;20:458–60.

    Google Scholar 

  129. Lev-Ran S, Feingold D, Frenkel A, Lerner AG. Clinical characteristics of individuals with schizophrenia and hallucinogen persisting perception disorder: a preliminary investigation. J Dual Diagn. 2014;10:79–83.

    Google Scholar 

  130. Breier A, Su TP, Saunders R, Carson RE, Kolachana BS, de Bartolomeis A, et al. Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: Evidence from a novel positron emission tomography method. Proc Natl Acad Sci. 1997;94:2569–74.

    CAS  Google Scholar 

  131. Frankle WG, Paris J, Himes M, Mason NS, Mathis CA, Narendran R. Amphetamine-induced striatal dopamine release measured with an agonist radiotracer in schizophrenia. Biol Psychiatry. 2018;83:707–14.

    CAS  Google Scholar 

  132. Lahti A. Subanesthetic doses of ketamine stimulate psychosis in schizophrenia. Neuropsychopharmacology 1995;13:9–19.

    CAS  Google Scholar 

  133. Cramer SC, Sur M, Dobkin BH, O’Brien C, Sanger TD, Trojanowski JQ, et al. Harnessing neuroplasticity for clinical applications. Brain. 2011;134:1591–609.

    Google Scholar 

  134. Pittenger C, Duman RS. Stress, depression, and neuroplasticity: a convergence of mechanisms. Neuropsychopharmacology 2008;33:88–109.

    CAS  Google Scholar 

  135. Olson DE. Psychoplastogens: a promising class of plasticity-promoting neurotherapeutics. J Exp Neurosci. 2018;12:117906951880050.

    Google Scholar 

  136. Andrade R. Serotonergic regulation of neuronal excitability in the prefrontal cortex. Neuropharmacology 2011;61:382–6.

    CAS  Google Scholar 

  137. Beique JC, Imad M, Mladenovic L, Gingrich JA, Andrade R. Mechanism of the 5-hydroxytryptamine 2A receptor-mediated facilitation of synaptic activity in prefrontal cortex. Proc Natl Acad Sci. 2007;104:9870–5.

    Google Scholar 

  138. Kurrasch-Orbaugh DM, Parrish JC, Watts VJ, Nichols DE. A complex signaling cascade links the serotonin2A receptor to phospholipase A2 activation: the involvement of MAP kinases: serotonin2A receptor-coupled AA release. J Neurochem. 2003;86:980–91.

    CAS  Google Scholar 

  139. Qu Y, Chang L, Klaff J, Balbo A, Rapoport SI. Imaging brain phospholipase A2 activation in awake rats in response to the 5-HT2A/2C Agonist (±)2,5-dimethoxy-4-iodophenyl-2-aminopropane (DOI). Neuropsychopharmacology 2003;28:244–52.

    CAS  Google Scholar 

  140. Dakic V, Minardi Nascimento J, Costa Sartore R, Maciel R, de M, de Araujo DB, et al. Short term changes in the proteome of human cerebral organoids induced by 5-MeO-DMT. Sci Rep. 2017;7:12863.

    Google Scholar 

  141. Li N, Lee B, Liu RJ, Banasr M, Dwyer JM, Iwata M, et al. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 2010;329:959–64.

    CAS  Google Scholar 

  142. Ly C, Greb AC, Cameron LP, Wong JM, Barragan EV, Wilson PC, et al. Psychedelics promote structural and functional neural plasticity. Cell Rep. 2018;23:3170–82.

    CAS  Google Scholar 

  143. Inserra A, De Gregorio D, Gobbi G. Psychedelics in psychiatry: neuroplastic, immunomodulatory, and neurotransmitter mechanisms. Nader M, editor. Pharmacol Rev. 2021;73:202–77.

  144. Kadriu B, Greenwald M, Henter ID, Gilbert JR, Kraus C, Park LT, et al. Ketamine and serotonergic psychedelics: common mechanisms underlying the effects of rapid-acting antidepressants. Int J Neuropsychopharmacol. 2021;24:8–21.

    CAS  Google Scholar 

  145. Cameron LP, Benson CJ, DeFelice BC, Fiehn O, Olson DE. Chronic, intermittent microdoses of the psychedelic N,N-Dimethyltryptamine (DMT) produce positive effects on mood and anxiety in rodents. ACS Chem Neurosci. 2019;10:3261–70.

    CAS  Google Scholar 

  146. Dong C, Ly C, Dunlap LE, Vargas MV, Sun J, Hwang IW, et al. Psychedelic-inspired drug discovery using an engineered biosensor. Cell 2021;184:2779–92.e18.

    CAS  Google Scholar 

  147. Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS, et al. Antidepressant effects of ketamine in depressed patients. Biol Psychiatry. 2000;47:351–4.

    CAS  Google Scholar 

  148. Feder A, Parides MK, Murrough JW, Perez AM, Morgan JE, Saxena S, et al. Efficacy of intravenous ketamine for treatment of chronic posttraumatic stress disorder: a randomized clinical trial. JAMA Psychiatry. 2014;71:681.

    CAS  Google Scholar 

  149. Ampuero E, Rubio FJ, Falcon R, Sandoval M, Diaz-Veliz G, Gonzalez RE, et al. Chronic fluoxetine treatment induces structural plasticity and selective changes in glutamate receptor subunits in the rat cerebral cortex. Neuroscience 2010;169:98–108.

    CAS  Google Scholar 

  150. Kraus C, Castrén E, Kasper S, Lanzenberger R. Serotonin and neuroplasticity—links between molecular, functional and structural pathophysiology in depression. Neurosci Biobehav Rev. 2017;77:317–26.

    CAS  Google Scholar 

  151. Vaidya VA, Marek GJ, Aghajanian GK, Duman RS. 5-HT2A receptor-mediated regulation of brain-derived neurotrophic factor mRNA in the hippocampus and the neocortex. J Neurosci J Soc Neurosci. 1997;17:2785–95.

    CAS  Google Scholar 

  152. Autry AE, Monteggia LM. Brain-derived neurotrophic factor and neuropsychiatric disorders. Daws LC, editor. Pharmacol Rev. 2012;64:238–58.

  153. Browne CA, Lucki I. Antidepressant effects of ketamine: mechanisms underlying fast-acting novel antidepressants. Front Pharmacol [Internet]. 2013;4. http://journal.frontiersin.org/article/10.3389/fphar.2013.00161/abstract. Accessed 26 Jan 2022.

  154. Duman RS, Aghajanian GK, Sanacora G, Krystal JH. Synaptic plasticity and depression: new insights from stress and rapid-acting antidepressants. Nat Med. 2016;22:238–49.

    CAS  Google Scholar 

  155. Savalia NK, Shao LX, Kwan AC. A dendrite-focused framework for understanding the actions of ketamine and psychedelics. Trends Neurosci. 2021;44:260–75.

    CAS  Google Scholar 

  156. Sarkar A, Kabbaj M. Sex differences in effects of ketamine on behavior, spine density, and synaptic proteins in socially isolated rats. Biol Psychiatry. 2016;80:448–56.

    CAS  Google Scholar 

  157. Tizabi Y, Bhatti BH, Manaye KF, Das JR, Akinfiresoye L. Antidepressant-like effects of low ketamine dose is associated with increased hippocampal AMPA/NMDA receptor density ratio in female Wistar–Kyoto rats. Neuroscience 2012;213:72–80.

    CAS  Google Scholar 

  158. Buchborn T, Schröder H, Höllt V, Grecksch G. Repeated lysergic acid diethylamide in an animal model of depression: normalisation of learning behaviour and hippocampal serotonin 5-HT2 signalling. J Psychopharmacol. 2014;28:545–52.

    Google Scholar 

  159. Cini FA, Ornelas I, Marcos E, Goto-Silva L, Nascimento J, Ruschi S, et al. d-Lysergic acid diethylamide has major potential as a cognitive enhancer [Internet]. Neuroscience; 2019. http://biorxiv.org/lookup/doi/10.1101/866814. Accessed 26 Jan 2022.

  160. Cameron LP, Benson CJ, Dunlap LE, Olson DE. Effects of N, N -dimethyltryptamine on rat behaviors relevant to anxiety and depression. ACS Chem Neurosci. 2018;9:1582–90.

    CAS  Google Scholar 

  161. Hibicke M, Landry AN, Kramer HM, Talman ZK, Nichols CD. Psychedelics, but not ketamine, produce persistent antidepressant-like effects in a rodent experimental system for the study of depression. ACS Chem Neurosci. 2020;11:864–71.

    CAS  Google Scholar 

  162. Hutten NRPW, Mason NL, Dolder PC, Theunissen EL, Holze F, Liechti ME, et al. Mood and cognition after administration of low LSD doses in healthy volunteers: a placebo controlled dose-effect finding study. Eur Neuropsychopharmacol. 2020;41:81–91.

    CAS  Google Scholar 

  163. Holze F, Vizeli P, Ley L, Müller F, Dolder P, Stocker M, et al. Acute dose-dependent effects of lysergic acid diethylamide in a double-blind placebo-controlled study in healthy subjects. Neuropsychopharmacology 2021;46:537–44.

    CAS  Google Scholar 

  164. Yaden DB, Griffiths RR. The subjective effects of psychedelics are necessary for their enduring therapeutic effects. ACS Pharm Transl Sci. 2021;4:568–72.

    CAS  Google Scholar 

  165. Gassaway MM, Jacques TL, Kruegel AC, Karpowicz RJ, Li X, Li S, et al. Deconstructing the Iboga alkaloid skeleton: potentiation of FGF2-induced glial cell line-derived neurotrophic factor release by a novel compound. ACS Chem Biol. 2016;11:77–87.

    CAS  Google Scholar 

  166. Cao D, Yu J, Wang H, Luo Z, Liu X, He L, et al. Structure-based discovery of nonhallucinogenic psychedelic analogs. Science 2022;375:403–11.

    CAS  Google Scholar 

  167. Moreno FA, Wiegand CB, Taitano EK, Delgado PL. Safety, tolerability, and efficacy of psilocybin in 9 patients with obsessive-compulsive disorder. J Clin Psychiatry. 2006;67:1735–40.

    CAS  Google Scholar 

  168. Ona G, Bouso JC. Potential safety, benefits, and influence of the placebo effect in microdosing psychedelic drugs: a systematic review. Neurosci Biobehav Rev. 2020;119:194–203.

    CAS  Google Scholar 

  169. Szigeti B, Kartner L, Blemings A, Rosas F, Feilding A, Nutt DJ, et al. Self-blinding citizen science to explore psychedelic microdosing. eLife 2021;10:e62878.

    CAS  Google Scholar 

  170. Rootman JM, Kryskow P, Harvey K, Stamets P, Santos-Brault E, Kuypers KPC, et al. Adults who microdose psychedelics report health related motivations and lower levels of anxiety and depression compared to non-microdosers. Sci Rep. 2021;11:22479.

    CAS  Google Scholar 

  171. Higgins GA, Carroll NK, Brown M, MacMillan C, Silenieks LB, Thevarkunnel S, et al. Low doses of psilocybin and ketamine enhance motivation and attention in poor performing rats: evidence for an antidepressant property. Front Pharm. 2021;12:640241.

    CAS  Google Scholar 

  172. Liechti ME, Holze F. Dosing psychedelics and MDMA. Curr Top Behav Neurosci. 2021;4:3–21.

  173. Gartz J. Biotransformation of tryptamine in fruiting mycelia of Psilocybe cubensis. Planta Med. 1989;55:249–50.

    CAS  Google Scholar 

  174. Johnson JR, Burnell-Nugent M, Lossignol D, Ganae-Motan ED, Potts R, Fallon MT. Multicenter, double-blind, randomized, placebo-controlled, parallel-group study of the efficacy, safety, and tolerability of thc:cbd extract and thc extract in patients with intractable cancer-related pain. J Pain Symptom Manag 2010;39:167–79.

    Google Scholar 

  175. Russo EB. Taming THC: potential cannabis synergy and phytocannabinoid-terpenoid entourage effects: phytocannabinoid-terpenoid entourage effects. Br J Pharm. 2011;163:1344–64.

    CAS  Google Scholar 

  176. Matsushima Y, Shirota O, Kikura-Hanajiri R, Goda Y, Eguchi F. Effects of Psilocybe argentipes on marble-burying behavior in mice. Biosci Biotechnol Biochem. 2009;73:1866–8.

    CAS  Google Scholar 

  177. Zhuk O, Jasicka-Misiak I, Poliwoda A, Kazakova A, Godovan VV, Halama M, et al. Research on acute toxicity and the behavioral effects of methanolic extract from psilocybin mushrooms and psilocin in mice. Toxins 2015;7:1018–29.

    CAS  Google Scholar 

  178. Carter OL, Burr DC, Pettigrew JD, Wallis GM, Hasler F, Vollenweider FX. Using psilocybin to investigate the relationship between attention, working memory, and the serotonin 1A and 2A receptors. J Cogn Neurosci. 2005;17:1497–508.

    Google Scholar 

  179. Carter OL, Hasler F, Pettigrew JD, Wallis GM, Liu GB, Vollenweider FX. Psilocybin links binocular rivalry switch rate to attention and subjective arousal levels in humans. Psychopharmacology 2007;195:415–24.

    CAS  Google Scholar 

  180. Müller CP, Jacobs BL. Handbook of the behavioral neurobiology of serotonin. 1st ed. London: Academic Press; 2010. (Handbook of behavioral neuroscience).

  181. Wing LL, Tapson GS, Geyer MA. 5HT-2 mediation of acute behavioral effects of hallucinogens in rats. Psychopharmacol (Berl). 1990;100:417–25.

    CAS  Google Scholar 

  182. Moreno JL, Holloway T, Rayannavar V, Sealfon SC, González-Maeso J. Chronic treatment with LY341495 decreases 5-HT(2A) receptor binding and hallucinogenic effects of LSD in mice. Neurosci Lett. 2013;536:69–73.

    CAS  Google Scholar 

  183. Schmid Y, Enzler F, Gasser P, Grouzmann E, Preller KH, Vollenweider FX, et al. Acute effects of lysergic acid diethylamide in healthy subjects. Biol Psychiatry. 2015;78:544–53.

    CAS  Google Scholar 

  184. Marek GJ, Aghajanian GK. LSD and the phenethylamine hallucinogen DOI are potent partial agonists at 5-HT2A receptors on interneurons in rat piriform cortex. J Pharm Exp Ther. 1996;278:1373–82.

    CAS  Google Scholar 

  185. Rasmussen K, Aghajanian GK. Effect of hallucinogens on spontaneous and sensory-evoked locus coeruleus unit activity in the rat: reversal by selective 5-HT2 antagonists. Brain Res. 1986;385:395–400.

    CAS  Google Scholar 

  186. Geyer MA, Swerdlow NR, Mansbach RS, Braff DL. Startle response models of sensorimotor gating and habituation deficits in schizophrenia. Brain Res Bull. 1990;25:485–98.

    CAS  Google Scholar 

  187. Halberstadt AL, Geyer MA. Multiple receptors contribute to the behavioral effects of indoleamine hallucinogens. Neuropharmacology 2011;61:364–81.

    CAS  Google Scholar 

  188. Canal CE, Morgan D. Head-twitch response in rodents induced by the hallucinogen 2,5-dimethoxy-4-iodoamphetamine: a comprehensive history, a re-evaluation of mechanisms, and its utility as a model. Drug Test Anal. 2012;4:556–76.

    CAS  Google Scholar 

  189. Schreiber R, Brocco M, Audinot V, Gobert A, Veiga S, Millan MJ.1-(2,5-dimethoxy-4 iodophenyl)-2-aminopropane)-induced head-twitches in the rat are mediated by 5-hydroxytryptamine (5-HT) 2A receptors: modulation by novel 5-HT2A/2C antagonists, D1 antagonists and 5-HT1A agonists.J Pharmacol Exp Ther. 1995;273:101–12.

    CAS  Google Scholar 

  190. Holloway T, Moreno JL, González-Maeso J. HSV-mediated transgene expression of chimeric constructs to study behavioral function of GPCR heteromers in mice. J Vis Exp. 2016.

  191. Corne SJ, Pickering RW, Warner BT. A method for assessing the effects of drugs on the central actions of 5-hydroxytryptamine. Br J Pharm Chemother. 1963;20:106–20.

    CAS  Google Scholar 

  192. Corne SJ, Pickering RW. A possible correlation between drug-induced hallucinations in man and a behavioural response in mice. Psychopharmacologia 1967;11:65–78.

    CAS  Google Scholar 

  193. Yamamoto T, Ueki S. Behavioral effects of 2,5-dimethoxy-4-methylamphetamine (DOM) in rats and mice. Eur J Pharm. 1975;32:156–62.

    CAS  Google Scholar 

  194. Hesselgrave N, Troppoli TA, Wulff AB, Cole AB, Thompson SM. Harnessing psilocybin: antidepressant-like behavioral and synaptic actions of psilocybin are independent of 5-HT2R activation in mice. Proc Natl Acad Sci USA. 2021;118:e2022489118.

    CAS  Google Scholar 

  195. Shao LX, Liao C, Gregg I, Davoudian PA, Savalia NK, Delagarza K, et al. Psilocybin induces rapid and persistent growth of dendritic spines in frontal cortex in vivo. Neuron 2021;109:2535–44.e4.

    CAS  Google Scholar 

  196. Odland AU, Kristensen JL, Andreasen JT. Investigating the role of 5-HT2A and 5-HT2C receptor activation in the effects of psilocybin, DOI, and citalopram on marble burying in mice. Behav Brain Res. 2021;401:113093.

    CAS  Google Scholar 

  197. de la Fuente Revenga M, Zhu B, Guevara CA, Naler LB, Saunders JM, Zhou Z, et al. Prolonged epigenomic and synaptic plasticity alterations following single exposure to a psychedelic in mice. Cell Rep. 2021;37:109836.

    Google Scholar 

  198. Studerus E, Kometer M, Hasler F, Vollenweider FXAcute. subacute and long-term subjective effects of psilocybin in healthy humans: a pooled analysis of experimental studies. J Psychopharmacol. 2011;25:1434–52.

    CAS  Google Scholar 

  199. Mithoefer MC, Feduccia AA, Jerome L, Mithoefer A, Wagner M, Walsh Z, et al. MDMA-assisted psychotherapy for treatment of PTSD: study design and rationale for phase 3 trials based on pooled analysis of six phase 2 randomized controlled trials. Psychopharmacol 2019;236:2735–45.

    CAS  Google Scholar 

  200. Jones CA, Watson DJG, Fone KCF. Animal models of schizophrenia. Br J Pharm. 2011;164:1162–94.

    CAS  Google Scholar 

  201. Ozawa K, Hashimoto K, Kishimoto T, Shimizu E, Ishikura H, Iyo M. Immune activation during pregnancy in mice leads to dopaminergic hyperfunction and cognitive impairment in the offspring: a neurodevelopmental animal model of schizophrenia. Biol Psychiatry. 2006;59:546–54.

    CAS  Google Scholar 

  202. Borrell J, Vela JM, Arévalo-Martin A, Molina-Holgado E, Guaza C. Prenatal immune challenge disrupts sensorimotor gating in adult rats. Implications for the etiopathogenesis of schizophrenia. Neuropsychopharmacol Publ Am Coll Neuropsychopharmacol. 2002;26:204–15.

    CAS  Google Scholar 

  203. Lipina TV, Zai C, Hlousek D, Roder JC, Wong AHC. Maternal immune activation during gestation interacts with Disc1 point mutation to exacerbate schizophrenia-related behaviors in mice. J Neurosci. 2013;33:7654–66.

    CAS  Google Scholar 

  204. Talukdar PM, Abdul F, Maes M, Binu VS, Venkatasubramanian G, Kutty BM, et al. Maternal immune activation causes schizophrenia-like behaviors in the offspring through activation of immune-inflammatory, oxidative and apoptotic pathways, and lowered antioxidant defenses and neuroprotection. Mol Neurobiol. 2020;57:4345–61.

    CAS  Google Scholar 

  205. Bitanihirwe BKY, Weber L, Feldon J, Meyer U. Cognitive impairment following prenatal immune challenge in mice correlates with prefrontal cortical AKT1 deficiency. Int J Neuropsychopharmacol. 2010;13:981–96.

    CAS  Google Scholar 

  206. Murray BG, Davies DA, Molder JJ, Howland JG. Maternal immune activation during pregnancy in rats impairs working memory capacity of the offspring. Neurobiol Learn Mem. 2017;141:150–6.

    CAS  Google Scholar 

  207. Tunstall B, Beckett S, Mason R. Ultrasonic vocalisations explain unexpected effects on pre-pulse inhibition responses in rats chronically pre-treated with phencyclidine. Behav Brain Res. 2009;202:184–91.

    CAS  Google Scholar 

  208. Clapcote SJ, Lipina TV, Millar JK, Mackie S, Christie S, Ogawa F, et al. Behavioral phenotypes of Disc1 missense mutations in mice. Neuron 2007;54:387–402.

    CAS  Google Scholar 

  209. Hikida T, Jaaro-Peled H, Seshadri S, Oishi K, Hookway C, Kong S, et al. Dominant-negative DISC1 transgenic mice display schizophrenia-associated phenotypes detected by measures translatable to humans. Proc Natl Acad Sci USA. 2007;104:14501–6.

    CAS  Google Scholar 

  210. Lipina TV, Niwa M, Jaaro-Peled H, Fletcher PJ, Seeman P, Sawa A, et al. Enhanced dopamine function in DISC1-L100P mutant mice: implications for schizophrenia. Genes Brain Behav. 2010;9:777–89.

    CAS  Google Scholar 

  211. Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner JD, et al. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry. 1994;51:199–214.

    CAS  Google Scholar 

  212. Cohen S. Social ties and susceptibility to the common cold. JAMA J Am Med Assoc. 1997;277:1940.

    CAS  Google Scholar 

  213. Javitt DC, Zukin SR. Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry. 1991;148:1301–8.

    CAS  Google Scholar 

  214. Castañé A, Santana N, Artigas F. PCP-based mice models of schizophrenia: differential behavioral, neurochemical and cellular effects of acute and subchronic treatments. Psychopharmacology 2015;232:4085–97.

    Google Scholar 

  215. He J, Zu Q, Wen C, Liu Q, You P, Li X, et al. Quetiapine attenuates schizophrenia-like behaviors and demyelination in a MK-801-induced mouse model of schizophrenia. Front Psychiatry. 2020;11:843.

    Google Scholar 

  216. Hamm JP, Peterka DS, Gogos JA, Yuste R. Altered cortical ensembles in mouse models of schizophrenia. Neuron 2017;94:153–67.e8.

    CAS  Google Scholar 

  217. Deyama S, Duman RS. Neurotrophic mechanisms underlying the rapid and sustained antidepressant actions of ketamine. Pharm Biochem Behav. 2020;188:172837.

    Google Scholar 

  218. Zanos P, Gould TD. Mechanisms of ketamine action as an antidepressant. Mol Psychiatry. 2018;23:801–11.

    CAS  Google Scholar 

  219. Bogenschutz M. NIH workshop on psychedelics as therapeutics. 2022.

  220. Epstein J, Stern E, Silbersweig D. Mesolimbic activity associated with psychosis in schizophrenia. Symptom-specific PET studies. Ann NY Acad Sci. 1999;877:562–74.

    CAS  Google Scholar 

  221. Barrett FS, Doss MK, Sepeda ND, Pekar JJ, Griffiths RR. Emotions and brain function are altered up to one month after a single high dose of psilocybin. Sci Rep. 2020;10:2214.

    CAS  Google Scholar 

  222. Vaupel DB, Nozaki M, Martin WR, Bright LD, Morton EC. The inhibition of food intake in the dog by LSD, mescaline, psilocin, -amphetamine and phenylisopropylamine derivatives. Life Sci. 1979;24:2427–31.

    CAS  Google Scholar 

  223. Potkin SG, Alva G, Fleming K, Anand R, Keator D, Carreon D, et al. A PET study of the pathophysiology of negative symptoms in schizophrenia. Positron Emiss Tomogr Am J Psychiatry. 2002;159:227–37.

    Google Scholar 

  224. Zhang M, Palaniyappan L, Deng M, Zhang W, Pan Y, Fan Z, et al. Abnormal thalamocortical circuit in adolescents with early-onset schizophrenia. J Am Acad Child Adolesc Psychiatry. 2021;60:479–89.

    Google Scholar 

  225. Schilling TM, Bossert M, König M, Wirtz G, Weisbrod M, Aschenbrenner S. Acute effects of a single dose of 2 mA of anodal transcranial direct current stimulation over the left dorsolateral prefrontal cortex on executive functions in patients with schizophrenia—a randomized controlled trial. PloS One. 2021;16:e0254695.

    CAS  Google Scholar 

  226. Doss MK, Považan M, Rosenberg MD, Sepeda ND, Davis AK, Finan PH, et al. Psilocybin therapy increases cognitive and neural flexibility in patients with major depressive disorder. Transl Psychiatry. 2021;11:574.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: BL, GW, AL, UHL. Literature Search and Synthesis: GW, SS, KB, LL, TL, UHL, AL, BL. Writing and Revision: GW, SS, KB, LL, TL, UHL, AL, BL. All authors read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Amit Lotan or Bernard Lerer.

Ethics declarations

Competing interests

LL is an equity partner in Back of the Yards Algae Sciences. BL is a consultant to Back of the Yards Algae Sciences. The other authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wolf, G., Singh, S., Blakolmer, K. et al. Could psychedelic drugs have a role in the treatment of schizophrenia? Rationale and strategy for safe implementation. Mol Psychiatry 28, 44–58 (2023). https://doi.org/10.1038/s41380-022-01832-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-022-01832-z

This article is cited by

Search

Quick links