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Major depressive disorder (MDD) is a psychiatric disease of still poorly understood molecular etiology. Extensive studies at different
molecular levels point to a high complexity of numerous interrelated pathways as the underpinnings of depression. Major systems
under consideration include monoamines, stress, neurotrophins and neurogenesis, excitatory and inhibitory neurotransmission,
mitochondrial dysfunction, (epi)genetics, inflammation, the opioid system, myelination, and the gut-brain axis, among others. This
review aims at illustrating how these multiple signaling pathways and systems may interact to provide a more comprehensive view
of MDD’s neurobiology. In particular, considering the pattern of synaptic activity as the closest physical representation of mood,
emotion, and conscience we can conceptualize, each pathway or molecular system will be scrutinized for links to synaptic
neurotransmission. Models of the neurobiology of MDD will be discussed as well as future actions to improve the understanding of
the disease and treatment options.
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INTRODUCTION AND SCOPE
Major depressive disorder (MDD) is a common and (potentially)
disabling psychiatric disorder affecting as many as 12% of adults
globally, with its prevalence in the United States being highest
among young adults, women, and the elderly [1]. MDD represents
a major burden on public health, ranking third in the leading
causes of disability worldwide [2], with studies predicting a
significant increase of MDD cases globally after the Covid-19
pandemic [3].
The diagnosis of MDD, according to the Diagnostic and

Statistical Manual of Mental Disorders, 5th edition, is characterized
by 2 or more weeks of depressed mood and/or loss of interest and
pleasure, along with other symptoms including sleep, weight, and
energy changes [4]. Treatment with antidepressants is often
indicated, although ~50% of patients do not achieve remission
with first-line treatment [5]. This indicates the need for the
development of more effective treatments based on an in-depth
understanding of MDD’s pathophysiology.
Over the recent years, neuroimaging studies have identified

structural and functional brain changes in patients with MDD.
These include volume reductions in cortical and subcortical
structures [6, 7], reduced gray matter volume throughout the
brain, enlarged lateral ventricles, and white matter microstructural
differences suggestive of compromised myelin integrity [6, 8, 9]. In
parallel, postmortem studies have reported changes in the density
and size of neurons and glia in several brain regions of patients
[10] along with reduced expression of pre- and postsynaptic genes
[11, 12].

The attempt to understand MDD inadvertently brings up the
question of how to comprehend consciousness. Despite the
epistemological limitations, and irrespective of the differences
between the naturalist theories of consciousness [13, 14], the
essential role of synaptic activity in giving rise to higher network
pathways from which cognitive, emotional, and behavioral
functions emerge is undisputed. Thus, by accepting synaptic
activity, or the pattern thereof, as the molecular description that
comes closest to consciousness, mood, and depression, the
molecular pathways selected for this review will be presented
including their proven or potential links to synaptic events (Fig. 1).
We will point to the manifold interrelations between these
pathways and conclude with discussing examples of integrated
models for the molecular underpinnings of MDD and suggestions
for future research.

MOLECULAR PATHWAYS AND SYSTEMS
Genetics and epigenetics
Family, twin, and adoption studies document a complex genetic
basis of MDD [15–17]. MDD features a highly polygenic form of
inheritance, with multiple loci of small effect size interacting with
each other and with environmental triggers. The largest genome-
wide association study (GWAS) of depression to date, which
included over 1.2 million participants [18], identified 178 genetic
risk loci and 223 independent SNPs associated with MDD.
The SNP-based heritability for MDD was identified to be around
11.3%, and top biological processes included nervous system
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development, brain volume, and synapse assembly and function
(Table 1) [18].
Top MDD-associated genes in the latest GWAS study are linked

to synaptic function: the neuronal growth regulator 1 (NEGR1)
controls synapse number and dendritic maturation [19]. NEGR1
SNPs have also been associated with low white matter integrity
[20] and responsiveness to selective serotonin (5-HT) reuptake
inhibitors [21]. The dopamine D2 receptor (DRD2) regulates
synaptic pruning and long-term depression through activation
of the mammalian target of rapamycin (mTOR) [22]. Finally, CUGBP

Elav-Like Family Member 4 (CELF4) is a neuronal RNA-binding
protein that targets genes associated with the regulation of
neuronal excitation, synaptic plasticity, and transmission [23].
CELF4 levels were recently shown to be decreased in an animal
model of depression along with decreased spine number [24].
Assuming genetic variants as the “first hits” in a multifactorial

disease model, assessing the top genes associated with MDD
offers valid biological insight into its onset. Combined with
environmental stressors, these variants may induce alterations of
small effect at the cellular and physiological level, and may
ultimately increase the individual’s vulnerability to future stressful
events. Epigenetic regulation of gene activity has been recognized
as a key mechanism conveying the lasting molecular impact of
these stressors. Many epigenetic alterations in MDD, including
DNA methylation, map to genes involved in neuronal circuitry
formation, projection, functioning, and plasticity [25–27]. Exam-
ples include hypermethylation of the histone deacetylase 4 gene,
in line with its role in neuronal morphology and dendritic
arborization [28], hippocampal-dependent learning and memory,
and long-term synaptic plasticity [29]. Other epigenetic mechan-
isms include non-coding RNAs [30, 31] and histone modifications
[32]. For instance, miR-132, one of the top-ranked upregulated
miRNAs in MDD across multiple studies [33], is a regulator of
synaptic proteins [34] and synaptic plasticity [35]. Inhibiting
miR-132 improves depressive-like symptoms and upregulates
brain-derived neurotrophic factor (BDNF) expression in animal
models [33].

The monoamine theory
One of the first suggested biological mechanisms underlying MDD
is the deficiency in monoamine levels, i.e., 5-HT, noradrenaline,
and dopamine [36]. This “monoamine theory of depression” was
supported by initial findings that monoamine oxidase inhibitors
and tricyclic antidepressants could improve depressive symptoms
by potentiating 5-HT and noradrenaline activity. While many
studies later supported this theory, limitations include the fact that
the clinical effects of antidepressant treatments typically take
weeks to be observed, while the effects of antidepressants to
increase monoamine levels are almost instantaneous. Moreover,
around one third of depressed patients do not respond to
antidepressants that work exclusively by inhibiting monoamine
reabsorption, and restricting the availability of the 5-HT precursor
tryptophan does not induce depressive episodes in all patients
[37]. Thus, monoamine deficiency may not be universal across all
patients, pointing to the relevance of other pathways and
neurotransmitters for MDD.

Other neurotransmitters. MDD is associated with disturbances in
other neurotransmitters in the brain, cerebrospinal fluid, and in
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Fig. 1 Simplified scheme of the molecular basis of consciousness/
depression. The pattern of synaptic activity is regarded as the
closest correlate or representation of consciousness and mood, and
thus also depression. This review describes selected pathways with
established links to depression with a focus on their links to synaptic
activity as well as their interrelatedness.

Table 1. Key genes linked to major depressive disorder in the most recent genome-wide association study [18].

Gene Known functions and roles Representative impacted tissue

NEGR1 Brain volume (hippocampus); social behavior and non-social interest; depressive- and anxiety-like
behavior

Hypothalamus

DRD2 Reward; depressive-like behavior Nucleus accumbens

CELF4 Sodium channel function; developmental disorders Caudate

CCDC71 Cellular lipid metabolism and regulation of fat cell differentiation [predicted] Amygdala

FADS1 Fatty acid regulation Cerebellum

SPPL3 Cellular glycosylation processes Prefrontal cortex (BA9)

TRAF3 Control of type-1 interferon response Hypothalamus

LAMB2 Cellular adhesion; embryonic development Blood

CCDC71 Coiled-Coil Domain Containing 71, CELF4 CUGBP Elav-like family member 4, DRD2 Dopamine Receptor D2, FADS1 Fatty acid desaturase 1, LAMB2
Laminin Subunit Beta 2, NEGR1 Neuronal growth regulator 1, SPPL3 Signal peptide peptidase-like 3, TRAF3 TNF receptor-associated factor 3.
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peripheral tissues [38], including the gamma-aminobutyric acid
(GABA) and glutamatergic systems [39, 40]. Glutamate levels are
decreased in specific brain regions of patients [41] possibly linked
to a decreased response to emotional stimuli and supported by
postmortem findings of reduced number of synapses [41]. Thus,
newly developed antidepressant treatments focus on reversing
glutamate and GABA deficits by addressing glutamate α-Amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors or
group 2 metabotropic glutamate receptors [41]. This also led to
the discovery of fast-acting antidepressants such as ketamine,
which rapidly increases glutamate signaling and leads to rapid
and sustained antidepressant response in both preclinical and
clinical studies [41]. Mechanistically, ketamine blocks N-methyl-D-
aspartate (NMDA) receptor channels and thus excitatory gluta-
mate signaling in GABAergic neurons, increasing the overall
activity of the prefrontal cortex. Additionally, ketamine enhances
the mTOR complex 1 signaling and increases the number and
function of synapses in the prefrontal cortex [42] independently of
NMDA receptor inhibition [43]. Further drug developments
include brexanolone, an analog of the neurosteroid THP, for the
treatment of postpartum depression, as THP levels drop after
pregnancy [44]. THP also affects the hypothalamus-pituitary-
adrenal (HPA) axis as a positive allosteric modulator for specific
subunits of extrasynaptic GABAA receptors (GABAARs) expressed
in the paraventricular nucleus of the hypothalamus [40].

Relation to other pathways, opioid signaling. Monoamines not
only directly influence synaptic neurotransmission, but also
indirectly by affecting intracellular pathways through their
G-protein coupled receptors. Protein examples of these pathways
include phosphatidylinositol 3-kinase (PI3K), protein kinase C
(PKC), Akt, mitogen-activated protein kinase (MAPK), and extra-
cellular signal-regulated kinase (ERK). Of the other receptors
addressing these pathways, we focus on the opioid receptors, as
they functionally interact with 5-HT and dopamine receptors
through heterodimerization [45]. In general, opioid receptors
negatively regulate neurotransmitter release and excitability of

neurons by the activation of G-protein-mediated mechanisms,
resulting in increased potassium channel functioning, cell
depolarization, and inhibition of functioning voltage-gated
calcium channels, negatively regulating neurotransmitter release
[46]. Processes further downstream affect neuronal survival and
plasticity [47] (Fig. 2).
Excellent reviews summarize the vast clinical and preclinical

evidence for the involvement of opioid receptors in MDD
pathology [47]. Examples are the regulation of social bonding,
appetite, anhedonia, reward processing, mood and anxiety, and
behavior in experimental paradigms of social acceptance/rejection
or sustained sadness challenge [48–50]. The opioid dysregulation
hypothesis of MDD has sparked intense and promising efforts
to develop opioid tone modulating drugs as novel antidepressants
[47].

Neurotrophins
The “neurotrophic hypothesis of depression” stipulates disrupted
neurotrophic support as the key mechanism underlying MDD-
related synaptic and brain-related alterations. Neurotrophins are
growth factors responsible for the formation, support, and
plasticity of neuronal networks. BDNF is a prominent member of
the large neurotrophin family, which can activate tropomyosin-
related kinase (Trk) and p75 receptors. Ample evidence docu-
ments altered neurotrophin levels in patients, particularly reduced
blood BDNF levels in acute MDD [51] in persistently depressed
and remitted patients, [52] and in animal models of depression
[53]. Of note, BDNF levels increase after antidepressant treatment
and electroconvulsive therapy [51], and higher BDNF levels are
associated with better cognitive performance in both patients and
controls [54]. Finally, not only is BDNF expression and its
downstream signaling required for the action of conventional
and rapid-acting antidepressants [55], but a recent study has
also found that antidepressants can bind directly to the
transmembrane domain of TrkB dimers, rendering a stable
conformation of the multi-protein complex and overall promotion
of signaling and TrkB accessibility to BDNF [56]. In fact, point
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Fig. 2 Signaling pathways through the receptors of serotonin, opioids, and BDNF alter neuronal and synaptic functions. Signaling
through a variety of receptors is highly intertwined and may produce significantly overlapping effects on neurogenesis, neuronal structure,
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mutations in the TrkB transmembrane region have blocked the
effects of typical and fast-acting antidepressants [56].

Link to synaptic activity. Through Trk receptors, neurotrophins
can activate cell signaling pathways controlling cell fate decisions,
axonal growth, dendritic growth and pruning, and overall normal
neuronal function, including Ras, PI3K, and phospholipase C-γ
(PLC-γ) (Fig. 2). BDNF-TrkB signaling also generates sustained
synaptic cation currents by activating transient receptor potential
canonical subfamily (TRPC) 3 [57]. Furthermore, BDNF-TrkB-PLC-γ
signaling via inositol 1,4,5-trisphosphate (IP3) induces the release
of Ca2+ from presynaptic intracellular stores, increasing the
number of docked synaptic vesicles and enhancing glutamate
release [58]. Another direct link to presynaptic glutamate release
operates via the BDNF-TrkB-MAPK/ERK-mediated phosphorylation
of synapsin I, thereby facilitating exocytosis and neurotransmitter
release [59, 60].

Relation to other pathways, neurogenesis. Neurotrophins are
intertwined with other depression-related pathways: BDNF is a
downstream target of the monoamine signaling cascade [53] (cf.
“The monoamine theory”). By activating TrkB receptors, BDNF
modulates MAPK/ERK and PI3K/Akt pathways [61], ultimately
contributing to impairments in neuronal plasticity and survival.
Indeed, reduced levels of ERK and the activity of Akt have been
found in postmortem brains of depressed patients [62, 63]. BDNF
also activates the mTOR pathway, promoting protein synthesis in
neuronal dendrites [64] and regulating the expression of AMPA
receptor subunits [65].
One of the most remarkable effects of BDNF is the facilitation of

adult neurogenesis in the hippocampus [66], likely operating
through most of the above-mentioned signaling [67]. Hippocam-
pal neurogenesis deficits in MDD are implicated by postmortem
findings of decreases in hippocampal size and volume, in the
number of neurons and glial cells, and in cell size [66]. There is also
evidence of a significant interconnectedness between neurogen-
esis and synaptic activity, including long-term potentiation (LTP)
[68]. Adult-born neurons can modulate spine density and
excitatory synaptic transmission to existing neurons by redis-
tributing pre-existing synapses [69]. Importantly, antidepressants
induce neurogenesis, increase the potential for plasticity, and
reverse hippocampal atrophy [66, 67].

Stress
Stress exposure, particularly early in life, arguably is the best-
studied and established risk factor for MDD [70]. Many of the MDD
symptoms have been linked to chronic stress, and numerous
studies document structural changes of neuronal architecture and
function upon stress exposure [71].
The HPA axis is key to orchestrating the organism’s stress

response. Crucial to the stress response is its adequate termination
through a negative feedback mechanism executed by the stress-
secreted glucocorticoids that activate glucocorticoid receptors
(GRs). While fast-acting mechanisms of glucocorticoids via
membrane receptors have been reported, their bulk and lasting
effects operate through nuclear receptors that function as ligand-
activated transcription factors with a wide range of effects in
several organs [72–74]. This links glucocorticoids to molecular
mechanisms of chronic stress as well as early-life stress, including
reprogramming of the transcriptome through epigenetic mechan-
isms [75–78]. Of note, GR not only drives epigenetic writing, but is
also subjected to epigenetic programming [78, 79].
Increased cortisol levels, HPA overactivity, and a dysfunctional

negative feedback of the HPA axis have been reported in some
depressed patients, particularly in specific depression subtypes
[80]. Thus, multiple drugs targeting the stress system have been
tested for the treatment of depression, including corticosteroid
synthesis inhibitors, GR antagonists, corticotrophin-releasing

hormone receptor antagonists, tryptophan 2,3-dioxygenase inhi-
bitors, and FK506-binding protein 51 (FKBP51) receptor antago-
nists [81]. Since not all patients present with alterations in the HPA
axis, genetic or functional assessments at baseline for the
identification of potentially responsive patients may be required
[81]. Indeed, treatment with mifepristone (a GR antagonist) has
shown promising results in patients with psychotic depression
[82].

Link to synaptic activity. The direct effect of stress and chronic
exposure to glucocorticoids on functional and structural con-
nectivity is supported by evidence of stress-induced atrophy-like
effects on apical dendrites and postsynaptic dendritic spines in
the brain [83], resulting in significant synaptic remodeling.
Mechanistically, non-genomic actions of glucocorticoids through
putative membrane receptors have been invoked, e.g., to
contribute to the increase of the readily releasable pool of
glutamate vesicles in the prefrontal cortex [84]. Genomic actions
are involved in the acute effects of stress and glucocorticoids on
the GR-dependent enhanced surface expression of NMDA and
AMPA receptors [85]: glucocorticoids transcriptionally activate
serum- and glucocorticoid-inducible kinase (SGK) [86] which is
required for stress- or glucocorticoid-enhanced activity of Rab4
[84]. Rab4 is a small GTPase that regulates recycling from early
endosomes to the cell surface [87] and thus also controls NMDAR
and AMPAR recycling [85]. SGK1 has been further linked to MDD
through its impact on hippocampal neurogenesis and as an
upstream regulator of GR [88]. Finally, the effects of chronic
glucocorticoids on dendritic atrophy have also been linked to
excessive PKC signaling and reduced expression of neural cell
adhesion molecules [83], in addition to suppression of BDNF
signaling (“Relation to other pathways”).
Cell-type specific effects include the reduced tonic inhibition in

the granule of the dentate gyrus upon chronic stress, likely
through reduced expression of the GABAAR δ-subunits and
association with impairment in learning and memory, in addition
to stress-related depressive-like behavior [89]. Further, microglia
are increasingly highlighted for their role in mediating the effects
of stress on synaptic structure and function including synaptic
pruning and spine density [90, 91]. Notably, microglia activity
integrates input from several other sources, not only the
neuroendocrine and noradrenergic system, but also cytokines
and inflammation, the gut-brain axis, and neurotransmitters [91].
Synaptic and behavioral effects of stress are also mediated, at least
partly, through the opioid system; this is largely based on
pharmacological and genetic manipulation in animal models
and awaits elucidation of further mechanistic details [92, 93].

Relation to other pathways. Signal transduction of glucocorti-
coids is intertwined with most pathways linked to depression
(Fig. 3). As examples, we discuss BDNF, FKBP51, and autophagy.
BDNF signaling is interrelated with glucocorticoid signaling in
multiple ways. Chronic glucocorticoid exposure reduces BDNF
mRNA- and protein-levels, its receptor TrkB, and downstream
proteins [58]. In contrast, acute effects of glucocorticoids activate
the BDNF-TrkB pathway [58]; this divergence between acute and
chronic glucocorticoid effects is a recurrent motif in the stress
response. Direct protein interaction between GR and TrkB
promotes BDNF-TrkB signaling and is diminished by the decreased
levels of GR upon chronic stress [94]. GR not only impacts BDNF
signaling, but is also modulated by BDNF activity: activation of
ERK1 and c-Jun N-terminal kinase downstream of BDNF-TrkB leads
to phosphorylation of GR at several sites [95]. Interestingly, these
phosphorylation sites are required for the reversal of dendritic
spine density loss by fluoxetine in the chronic unpredicted stress
model [95].
The GR target gene FKBP5 emerged as a significant player in

depression originally inspired by the inhibitory action of its protein
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FKBP51 on GR [96–98]. FKBP5 polymorphisms have been
associated with HPA axis parameters, antidepressant treatment
response, and recurrence of depressive episodes [99]. FKBP51 is
intertwined with other pathways related to depression: it is a
target of epigenetic programming [100, 101], but potentially also a
sculptor of the epigenetic landscape through its action on DNA
methyltransferase 1 [102]. Through additional protein-protein
interactions that recalibrate protein phosphorylation, FKBP51 also
impacts signaling of other depression-relevant pathways such as
GSK3β [103], BDNF [102, 104], and nuclear factor kappa B, linking
it to inflammation and the immune system [105, 106], as well as
autophagy [107, 108].
Finally, glucocorticoids are linked to autophagy in many ways

[109–111]. The importance of autophagy in depression is largely
supported by two observations: several antidepressants induce
autophagy, and autophagy shapes synaptic neurotransmission
and (depressive-like) behavior [108, 112–114]. While most of the
evidence is based on cell and animal models, it has been reported
that the success of antidepressant treatment of MDD patients
correlates with the expression of autophagic markers in blood
cells and with the response of these markers to treatment [107]. In

general, autophagy is an evolutionarily conserved intracellular
degradative process that promotes the homeostasis of energy,
proteins, and organelles [115]. It continuously operates at a basal
level and is enhanced under various stressful conditions [116].
Several regulatory components of the autophagy cascade are
MDD-related. Examples are FKBP51 [107, 117], BDNF [104, 118],
and the protein kinases Akt1, mTOR, PI3K, and GSK3β [119]. The
relevance of these proteins to MDD is substantiated by their
impact on synaptic neurotransmission [59, 120–123]. Therefore,
the question arises whether they are relevant to depression due to
their role in autophagy or due to their engagement in the
previously described depression-related pathways. In fact, it has
been hypothesized that many of the effects of pharmacological
autophagy inducers erroneously were ascribed to this degradative
process, because several autophagy regulatory proteins exert
functions beyond autophagy [124]. It is also plausible that there is
overlap in the action of the membrane reorganizing machinery
required for autophagy and synaptic function. In other words, the
effect on membrane dynamics might be more important than the
effects on protein homeostasis through autophagy.

Inflammation
Several studies have found that MDD and a dysregulation of the
inflammatory process are associated in a bidirectional pathway
(“cytokine theory of MDD”) [125]. Immune cells mediate inflam-
mation as an essential mechanism to maintain homeostasis by
recognizing cell damage and aiding in tissue repair [126].
However, a sustained immune response such as in infection,
malignancy, or autoimmune disease may result in depression
[126]. Indeed, a heightened inflammatory response is linked to
MDD. Specific proinflammatory cytokines and their receptors
associated with MDD include interleukin (IL)-6, tumor necrosis
factor (TNF)-α, IL-1β, IL-2, IL-2 receptor, IL-4, IL-10, the IL-1 receptor
antagonist, the transforming growth factor-β, and C-reactive
protein (CRP) [127, 128]. Proinflammatory cytokines also correlate
with MDD symptom severity [129] and CRP with treatment-
response [130].
There are many proposed mechanisms contributing to inflam-

mation in MDD. The inflammasome pathway is an important
source of proinflammatory cytokines [131], which can be activated
in response to elevated levels of damage-associated molecular
patterns (DAMPs) and other stress molecules, resulting in the
activation of IL-1β and IL-18 [132]. DAMPs associated with
depression include the high mobility group box-1 [133, 134],
extracellular ATP [134], and circulating cell-free mitochondrial DNA
[135]. Other inflammation-inducing factors include oxidative and
nitrosative stress, psychosocial stress, poor diet, physical inactivity,
obesity, smoking, and altered gut permeability [136]. Peripheral
immune cells may also enter the central nervous system (CNS)
through the blood-brain barrier (BBB), lymphatic vessels, or direct
extravasation into the tissue [126]. Damage and loss of astrocytes
in the frontal and limbic areas of the brain are also associated with
MDD, contributing to BBB dysfunction and neuroinflammation
[137, 138]. With increased BBB permeability, activated microglia
can recruit monocytes to the brain via chemokines and produce
interleukins that can further activate inflammation. Microglial
function is controlled by the toll-like receptor pathway via
recognition of DAMPs by microglia, and therefore chemokine
production. Accordingly, increased levels of chemokine (C-X-C
motif) ligand (CXCL) 4, CXCL7, and CXCL8 have been found in
depression [139].
Clinical trials provide further evidence of the role of immune

dysregulation in MDD. A meta-analysis of randomized controlled
trials with patients who received anti-inflammatory therapy
reported less depressive symptoms, higher remission, and a lower
severity for all therapies [140]. Another mega-analysis found
that patients who received immunological drugs targeting one
of 7 mechanisms (IL-6, TNF-α, IL-12/23, CD20, COX2, BLγS,
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p38/MAPK14) had a significant improvement in depression, with
the antidepressant effect being higher in the immunotherapy
aimed at IL-6, IL-12, and IL-23 [141].

Link to synaptic activity. Mechanisms linking inflammatory path-
ways to synaptic activity include proinflammatory cytokines
modulating the expression of the NMDA and AMPA receptor
subunits and decreasing AMPA receptor phosphorylation, ulti-
mately affecting glutamatergic synapses and processes related to
LTP [142–144]. Indeed, cytokine-mediated synaptic plasticity is
associated with cognitive function in MDD patients [144, 145].
Inflammatory cytokines also activate the enzyme indoleamine 2,3-
dioxygenase (IDO) and thereby decrease the synthesis of 5-HT
[146] (cf. “The monoamine theory” and “Metabolome/kynurenine
pathway”). Further, activated microglia have been shown to
irreversibly oxidize cofactors needed for the biosynthesis of
monoamines [147] (cf. “The monoamine theory”). Finally, inflam-
mation also influences the expression of excitatory amino acid
transporters in astroglial cells, ultimately affecting glutamate
uptake from the synaptic cleft [148].

Relation to other pathways. The immune system is tightly
interrelated with the neuroendocrine system, with glucocorticoids
having both pro- and anti-inflammatory effects depending upon
the context [149, 150]. For instance, glucocorticoids can increase
the expression of the inflammasome NLR Family Pyrin Domain
Containing 3 (NLRP3) and promote the cleavage and secretion of
proinflammatory cytokines [151]. In turn, many circulating
cytokines can activate the HPA axis and ultimately increase
adrenocorticotropic hormone and glucocorticoid levels [149, 152].
Increased glucocorticoids may further promote endothelial
damage and contribute to BBB disruption [143], thus amplifying
microglial activation and inflammation. In addition, proinflamma-
tory cytokines not only reduce the expression of neurotrophins,
but also inhibit BDNF/TrkB signaling by interfering with TrkB
phosphorylation [153]. Finally, inflammatory mediators that are
increased in MDD can significantly interfere with mitochondrial
oxidative phosphorylation and ATP production, ultimately leading
to increased oxidative stress [154]. The resulting dysfunctional
mitochondria, in turn, can also further amplify the inflammatory
response if not adequately removed by the mitophagy process
(suggested for MDD [155], cf. “Mitochondrial dysfunction and
oxidative stress”).

Mitochondrial dysfunction and oxidative stress
As the cellular “powerhouse”, mitochondria play fundamental
roles by providing energy for all cell functions and by acting as an
important mediator of multiple signaling pathways, including
those linked to monoamines, inflammation, and neural plasticity
[156]. The “mitochondria theory of depression” is supported by a
wealth of findings linking depressive symptoms and MDD to rare
mitochondrial disorders [156], altered mitochondrial structure and
functions including decreased ATP production [156, 157], and
disrupted mitochondrial dynamics (fusion, fission, mitophagy)
[155].
Mitochondrial disruption also generates free radicals and

oxidative stress. In MDD, oxidative and nitrosative stress markers
are increased, while antioxidant capacity is decreased [158–160].
Moreover, positive correlations with illness duration suggest a
progressive course of mitochondrial dysfunction and oxidative
damage with the disease [161]. Therefore, the “oxidative stress
hypothesis of depressive disorders” proposes oxidative stress as
the cause of the altered brain structure in MDD [162]. Notably,
reactive oxygen species (ROS) at normal levels are important
signaling messengers with key roles in neuronal cell function;
however, when in high levels and with low antioxidant
concentrations, these molecules can be detrimental for neurons
and LTP. Indeed, the brain is particularly vulnerable to the effects

of free radicals and ROS. Increased oxidative stress can potentially
lead to further mitochondrial damage, increasing apoptosis and
ultimately contributing to inflammatory signaling [162]. Finally, a
key role for mitochondria and oxidative stress in MDD is further
supported by preclinical and clinical studies suggesting antide-
pressant effects of drugs targeting these systems [163–165].

Link to synaptic activity. It is well-established that mitochondria
support neurotransmission in several ways, including ATP
production [166], Ca2+ buffering and signaling, synthesis of
neurotransmitters [167] establishing and maintaining membrane
excitability, and in the organization of synaptic vesicle pools and
neurotransmitter release [168]. Mitochondria also produce oxygen
and nitrogen species needed for synaptic plasticity, and activate
caspases in dendrites to induce postsynaptic spine elimination
involved in long-term depression [169] (Fig. 4). A very recent study
reported not only changes in mitochondrial function in neural
progenitor cells reprogrammed from fibroblasts of MDD patients
compared to non-depressed controls, but also pronounced
alterations of electrophysiological properties in neurons derived
from induced pluripotent stem cells of MDD patients [170].

Relation to other pathways. The key cellular role of mitochon-
dria comes with interdependency with numerous depression-
relevant pathways. A biphasic effect of glucocorticoids is
observed, where short-term exposure increases mitochondria’s
B-cell-lymphoma 2 levels, calcium holding capacity, membrane
potential, and oxidation, while long-term treatment at high
levels can lead to mitochondrial toxicity [171]. Furthermore,
dysfunctional mitochondria increase the production of proin-
flammatory cytokines [172], possibly mediated by the release of
many DAMPs through mitochondrial outer membrane permea-
bilization [173]. These include, for instance, the mitochondrial
DNA, which activates toll-like receptor 9 and the NLRP3
inflammasome, in addition to causing a type I interferon
response [173]. Finally, neurotrophic signaling affects mitochon-
dria, as exemplified by BDNF impacting mitochondrial mobility,
distribution, and respiratory coupling which is at least partly
required for its effect on neurotransmission [57, 174]. Like BDNF,
proper mitochondria function impacts neuronal cell generation
and death as low levels of ROS are neuroprotective and activate
neuronal cell proliferation [67].
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Accelerated 
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Mitochondrial dysfunction 
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Ca2+ buffering and signaling
Neurotransmitters synthesis and release
Neuronal membrane excitability

Synaptic function 
and plasticity

Fig. 4 Theoretical model explaining the role of mitochondrial
dysfunction and its effects on synaptic function in major
depressive disorder (MDD). Disrupted mitochondria can lead to
the activation of apoptosis and subsequent release of damage-
associated molecular patterns (DAMPs), ultimately reinforcing
inflammatory mechanisms. The resulting oxidative stress can also
be associated with the accelerated aging phenotype consistently
reported in MDD patients.
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Metabolome/kynurenine pathway
The combination of nutrients with the host’s metabolism [175]
and gut microbes produces a rich variegation of chemicals (i.e.,
the metabolome) potentially impacting physiological processes at
various levels. For the effects on brain function, some metabolites
may cross the BBB and directly trigger relevant pathways, or may
elicit a response in the periphery with repercussions on the brain,
such as changing the hormone and cytokine profile in the blood
or through neural effects linking to the brain [176, 177].
Support for the relevance of this “gut-brain axis” includes gut

microbiome changes in MDD [178]. Conversely, nutrient supple-
mentation with probiotics or the Mediterranean diet elicits
antidepressant effects in patients [179–181]. Causality between
microbiome alterations and depressive-like behavior can also be
inferred from experiments transferring fecal microbiota or specific
bacteria [182–186]. The nutritional/microbiotic effects on the brain
are described through links to established molecular pathways
controlling synaptic function [187]. Thus, we focus on an eminent
example, the pathway of kynurenine, which is a metabolite of the
essential amino acid tryptophan (Fig. 5). Together with carbohy-
drate metabolism, tryptophan is one of the earliest nutritional
links to depression first reported more than 60–80 years ago [188].

Link to synaptic activity. The conversion of tryptophan into the
neurotransmitter 5-HT provides an obvious link to synaptic
function and depression [189]. However, tryptophan is metabo-
lized predominantly through the kynurenine pathway [190], which
produces both neurotoxic (e.g., quinolinic acid) and neuroprotec-
tive (e.g., kynurenic acid) metabolites [190–192]. Kynurenic acid

directly acts at the synapse as a glutamate receptor antagonist by
binding to the glycine binding site [193]. In contrast, quinolinic
acid is a glutamate receptor agonist [194]; it enhances release of
glutamate and inhibits glutamate re-uptake by astrocytes
[195, 196].

Relation to other pathways. Kynurenic acid is a potent antagonist
of peripheral and central nicotinic acetylcholine α-7 receptors,
which are linked to cytokine production, inflammation, and the
immune reaction [197, 198], and are considered a potential drug
target for depression treatment [197–199]. The kynurenine path-
way is intertwined with numerous depression pathways, for
example inflammation and immune cell activity, acute, chronic
mild, and early-life stress [200–202], oxidative stress and mitochon-
drial function [203, 204], and BDNF signaling [205, 206] (Fig. 5).

INTEGRATIVE MODEL OF MDD NEUROBIOLOGY
The molecular pathways and theories selected for this review have
been repeatedly conceptualized as unique and separate entities.
Today, it is broadly accepted that these multiple pathways are not
orthogonal, i.e., they are significantly interconnected. Never-
theless, there is some debate as to where the first causal
disturbance may originate before involving other pathways, which
we briefly discuss for mitochondria and stress.

Mitochondria as initial disturbance?
Associations between mitochondrial genetic variations, cognitive
function, and depression [170, 207] has prompted some authors
to suggest mitochondrial dysfunction as the initiator of a chain of
molecular events precipitating MDD. In fact, mitochondrial
damage can ultimately cause the activation of apoptotic path-
ways, as previously evidenced in peripheral and brain samples of
MDD patients [208, 209]. Apoptotic events may eventually
contribute to the activation of the immune system and lead to
the chronic low-grade inflammatory status seen in MDD [210].
However, in addition to mitochondrial damage, many other
stimuli and mechanisms also excite the inflammatory phenotype
of MDD, including a direct effect of oxidative and nitrosative
stress, the microbiome-gut-brain axis, and many environmental
factors highly prevalent in patients [136]. Other downstream
mechanisms may originate from dysfunctional mitochondria or
other stimuli, as well. For instance, oxidative stress can impact
many pathways such as BDNF signaling, neuroplasticity, and
cognition [211]. It can further cause DNA damage [212, 213], alter
DNA methylation [214, 215], and induce accelerated aging [216],
as reported for MDD [217].

Stress as initial impact?
Chronic stress and HPA axis dysfunction, which are frequently
proposed as primary players in the development of MDD, are
linked to downstream effects that might be elicited through
alternative pathways. These include mitochondrial alterations and
dysfunction [218, 219], as well as apoptosis [171], immune
activation, and inflammation. Glucocorticoid resistance, as seen
in many MDD patients, has also been previously associated with
increased inflammatory markers, supporting the hypothesis of a
tight cross-talk between stress and inflammation in the disorder
[220]. Alternative pathways may also further downstream effects
of stress, including the contribution of inflammation to BBB
disruption, which facilitates leakage of immune molecules into the
CNS. This can ultimately induce microglial activation, impair
hippocampal neurogenesis, and directly impact brain structure
and function. Originating from stress or not, immune molecules
can also stimulate IDO and thereby activate the kynurenine
pathway, contributing to a reduction in hippocampal structure
and volume in MDD [221].
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Fig. 5 Kynurenine pathway exemplifying the role of metabolism
and gut microbes in MDD. The conversion to serotonin takes place
on the enterochromaffin cells of the intestinal mucosa, but also in
the CNS. The kynurenine pathway produces numerous compounds
that impact synaptic function either directly or indirectly through
their influence on multiple systems, including immune function and
oxidative stress. Conversely, these systems also shape the activity of
several enzymes involved in the kynurenine pathway, in combina-
tion with diet and gut microbiota composition. TRP tryptophan, KYN
kynurenine, 3HK 3-hydroxykynurenine (neurotoxic), KYNA kynurenic
acid (neuroprotective), 3HAA 3-hydroxyanthranilic acid (neurotoxic),
AA anthranilic acid, QUIN quinolinic acid (neurotoxic), PIC picolinic
acid (neuroprotective), 5-HT serotonin, 5-HTR serotonin receptor,
5-HTT serotonin transporter, ILA indole-3-lactic acid, IPA indole-3-
propionic acid.
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Altered myelination is increasingly recognized as an important
factor in both the etiology and treatment of MDD, and is another
example of the difficulties in unequivocally proving the initial
triggers [222]. Through enhancing conductivity along neuronal
axons [223], myelin and myelin-producing oligodendrocytes are
obvious candidates for mechanisms of brain diseases in general.
Several studies found pronounced alterations in myelination and
oligodendrocyte lineage cells in depression and animal models
thereof [222]. Even though not typically conceptualized in
pathways, myelin and oligodendrocytes are known to be affected
by stress and by several other factors such as neurotransmitters,
neurotrophins, cytokines, ROS, epigenetic factors, intestine micro-
biome, among others [222, 224]. Further, oligodendrocytes shape
neuronal function in many ways beyond myelination; the
importance of oligodendrocytes and myelination in MDD is
corroborated by their response to antidepressant treatment [222].

Multitude of interrelated pathways
The emerging role of polyamines in MDD etiology and treatment
is another example of how interrelated the different pathways are
[225]. Polyamines such as spermidine, spermine, putrescine and
agmatine are short, aliphatic amines that impact several pathways
and synaptic activity by a variety of mechanisms; the impacted
molecules and pathways include almost all systems mentioned in
this review, e.g., Na+-, K+- and Ca2+-channels, 5-HT, NMDA, AMPA,
kainate, nicotinic acetylcholine and H+-receptors, cAMP/PKA,
MEK/ERK, PI3K/Akt, GSK3/CREB, PI3K-Akt-mTOR, oxidative stress,
and BDNF/TrkB [225]. Polyamines are also important players in the
stress response [226] and autophagy, which involves a unique
post-translational modification of the eukaryotic translation
initiation factor 5A requiring spermidine as an essential substrate
[227]. Thus, the autophagy inducer spermidine is proposed as
a therapeutic strategy in aging and neurological disorders
[228, 229], and dietary polyamines are considered to promote
health in general [230]. Accordingly, the antidepressant-like effects

of polyamines have been explained by various mechanisms
ranging from direct effects at the synapse to regulating pathways
linked to synaptic activity, as alluded to above [231].
Together, although the exact patterns of synaptic activities

distinguishing health and disease in MDD are unknown, and
arguably may never be resolved at a single synapse resolution, it is
widely accepted that MDD may begin through several pathways
and involves more mechanisms as the disease unfolds (cf. Fig. 6).
Mirroring the clinical heterogeneity of MDD, not all patients
present with the same neurobiological basis. For instance,
significantly high inflammation is not found across all patients
[232], and different levels of baseline inflammatory status have
been shown to influence the patients’ treatment responsiveness
[233]. This variation also applies to the other pathways selected
here. Behavior and synaptic activity very likely rest on more than
these pathways (Fig. 6), and the high interconnectedness between
them challenges the concept to approach this complexity through
pathway descriptions. For both clinical research and practice,
much hope rests on using information on biological heterogeneity
to better characterize clinical heterogeneity in MDD, and thus
stratify patients for treatment and investigation. Regardless of the
original stimuli that activate the chain of multi-pathway reactions
characteristic of MDD, we submit that they may all converge to
disarrayed synaptic activity by affecting the production and
release of neurotransmitters, membrane excitability, dendritic
spine elimination, among other mechanisms.

CONCLUSIONS AND OUTLOOK
A complete understanding of the associations of the multiple
molecular pathways with MDD may be an unrealistic expectation.
Nevertheless, evidence should be noted supporting their effects
on key neuronal and synaptic functional measures not only for
MDD (Fig. 6), but also for other major psychiatric disorders, such as
bipolar disorder and schizophrenia. This suggests that studying
endophenotypes across diagnostic boundaries rather than in MDD
per se is more informative. Yet, the complex associations of the
pathways pose a challenge to identify single actionable targets for
new drug developments.
It might be advantageous to target more than one pathway

with a single compound. The high biological heterogeneity of
MDD across patients calls for the application of novel drugs,
possibly in combination with established treatments to approach
the goal of personalized medicine. When tapping into the wealth
of correlative data from observational studies for choosing novel
targets, a critical step will be the distinction between alterations
causing the disease and alterations mounted by the organism to
cope with the disease [234]. This challenge is further aggravated
by the organization of pathways in feedback loops.
Remarkable methodological progress pathed the way to obtain

functional neuronal cell cultures from patients and controls via
differentiation of induced pluripotent stem cells or trans-
differentiation of fibroblasts [235–239]. The synaptic and circuit
activities of these neurons correlate with disease and treatment
response [170, 240, 241], suggesting them as useful cellular
models to investigate mechanisms shaping synaptic activity and
function, and to test novel antidepressant drugs acting on them,
complementing animal models [242]. Further, despite overwhelm-
ing consensus on the necessity, we are just beginning to
understand sex specificity in the molecular and pathway
correlations in MDD [243]. Finally, since pathways into a disease
may not simply be the reverse pathways out of a disease, much is
expected to be learnt from deciphering resilience factors [244]
and the still not entirely resolved molecular actions of antide-
pressants [245, 246].
A prime example for the latter is the discovery of the acidic

sphingomyelinase (ASM) as a target of several antidepressants,
which evolved from the observation that antidepressants, due to
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Fig. 6 Multitude of molecular pathways and physiological
systems determining mental health. The pattern of synaptic
activity representing mood, behavior, consciousness, and thus also
major depressive disorder (MDD), is governed by the concerted
action of interrelated molecular pathways and physiological
activities. This review exemplified molecular links between major
systems contributing to the development of MDD. The relative
contribution of each pathway varies between individual patients as
a reflection of the high complexity of the disease.
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their chemical nature, accumulate in lysosomes [67, 247]. ASM
cleaves sphingomyelin into ceramide and phosphocholine,
thereby not only impacting the biophysical properties of the cell
membrane, but also myelination, cell differentiation/proliferation
and cell death and birth, in particular also in the CNS [247].
Importantly, ASM/ceramides are linked to synaptic activity and
pathways that had been associated with MDD before: these
include TRPC6 and thus growth cone guidance, spine morphol-
ogy, dendritic outgrowth and neuronal survival [248], as well as
PKC and regulation of tubulin, GSK-3β, and β-catenin [67].
Ceramides are altered in MDD [249, 250] and several antidepres-
sants at therapeutic concentrations are functional ASM inhibitors
[67, 247]. These studies substantiate the relevance of this
approach, and of the ASM/ceramide system in particular, justifying
intensified efforts with the prospect for improved MDD treatment.
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