Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Altered extracellular mRNA communication in postpartum depression is associated with decreased autophagy

Abstract

We investigated whether extracellular RNA communication, which is a recently discovered mode of intercellular communication that is involved in a variety of important biological processes including pregnancy, is associated with postpartum depression (PPD). Extracellular RNA communication is increased during pregnancy and is involved in embryo implantation, uterine spiral artery remodeling, parturition, preterm birth, immunity, and the inflammatory response. Since immune anomalies are associated with PPD, we characterized the mRNA content of extracellular vesicles (EV) in a cohort of prospectively collected blood plasma samples at six time-points throughout pregnancy and the postpartum (2nd trimester, 3rd trimester, 2 weeks postpartum, 6 weeks postpartum, 3 months postpartum, and 6 months postpartum) in an academic medical setting from women who went on to develop PPD (N = 7, defined as euthymic in pregnancy with postpartum-onset depressive symptoms assessed by Edinburgh Postnatal Depression Scale ≥13 at any postpartum time point) and matched unaffected controls (N = 7, defined as euthymic throughout pregnancy and postpartum). Blood samples were available for all participants at the T2 and W6 timepoints, with fewer samples available at other time points. This analysis revealed that EV mRNA levels during pregnancy and the postpartum period were extensively altered in women who went on to develop PPD. Gene set enrichment analysis revealed that mRNAs associated with autophagy were decreased in PPD cases. In contrast, EV mRNAs from ribosomes and mitochondria, two organelles that are selectively targeted by autophagy, were elevated in PPD cases. Cellular deconvolution analysis discovered that EV mRNAs associated with PPD originated from monocytes and macrophages. Quantitative PCR analysis for four relevant genes in another cohort replicated these findings and confirmed that extracellular RNA levels are altered in PPD. We demonstrate that EV mRNA communication is robustly altered during pregnancy and the postpartum period in women who go on to develop PPD. Our work also establishes a direct link between reduced autophagy and PPD in patient samples. These data warrant investigating the feasibility of developing EV mRNA based biomarkers and therapeutic agents for PPD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: EV mRNA Communication is Disrupted in PPD.
Fig. 2: EV mRNA Changes in PPD during Pregnancy and the Postpartum Period.
Fig. 3: Cellular Deconvolution Analysis of EV mRNA.
Fig. 4: Quantitative PCR Validation of EV mRNA Levels in an Additional Cohort.

Similar content being viewed by others

Data availability

The raw data will be made available via the NIMH Data Archive. In the meantime, the raw data is available upon request.

Code availability

R code for the analysis is available upon request.

References

  1. Lindahl V, Pearson JL, Colpe L. Prevalence of suicidality during pregnancy and the postpartum. Arch Women’s Ment Health. 2005;8:77–87.

    CAS  Google Scholar 

  2. Righetti-Veltema M, Conne-Perréard E, Bousquet A, Manzano J. Postpartum depression and mother–infant relationship at 3 months old. J Affect Disord. 2002;70:291–306.

    PubMed  Google Scholar 

  3. Righetti-Veltema M, Bousquet A, Manzano J. Impact of postpartum depressive symptoms on mother and her 18-month-old infant. Eur Child Adolesc Psychiatry. 2003;12:75–83.

    PubMed  Google Scholar 

  4. Bernard-Bonnin AC. Maternal depression and child development. Paediatrics Child Health. 2004;9:575–83.

    Google Scholar 

  5. Murray L. The impact of postnatal depression on infant development. J Child Psychol Psychiatry. 1992;33:543–61.

    CAS  PubMed  Google Scholar 

  6. Lyons-Ruth K, Zoll D, Connell D, Grunebaum HU. The depressed mother and her one-year-old infant: Environment, interaction, attachment, and infant development. New Directions for Child and Adolescent. Development. 1986;1986:61–82.

    Google Scholar 

  7. Halligan SL, Murray L, Martins C, Cooper PJ. Maternal depression and psychiatric outcomes in adolescent offspring: A 13-year longitudinal study. J Affect Disord. 2007;97:145–54.

    PubMed  Google Scholar 

  8. Ruth Feldman PD, Adi Granat PD, Clara Pariente MA, Hannah Kanety PD, Jacob Kuint MD, Eva, et al. Maternal depression and anxiety across the postpartum year and infant social engagement, fear regulation, and stress reactivity. J Am Acad Child Adolesc Psychiatry. 2009;48:919–27.

    PubMed  Google Scholar 

  9. McEvoy K, Osborne LM, Nanavati J, Payne JL. Reproductive affective disorders: a review of the genetic evidence for premenstrual dysphoric disorder and postpartum depression. Curr Psychiatry Rep. 2017;19:94.

    PubMed  Google Scholar 

  10. Bloch M, Schmidt PJ, Danaceau M, Murphy J, Nieman L, Rubinow DR. Effects of gonadal steroids in women with a history of postpartum depression. Am J Psychiatry. 2000;157:924–30.

    CAS  PubMed  Google Scholar 

  11. Guintivano J, Brown T, Newcomer A, Jones M, Cox O, Maher BS, et al. Identification and replication of a combined epigenetic and genetic biomarker predicting suicide and suicidal behaviors. Am J Psychiatry. 2014;171:1287–96.

    PubMed  PubMed Central  Google Scholar 

  12. Kimmel M, Clive M, Gispen F, Guintivano J, Brown T, Cox O, et al. Oxytocin receptor DNA methylation in postpartum depression. Psychoneuroendocrinology. 2016;69:150–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. McEvoy K, Payne JL, Osborne LM. Neuroactive steroids and perinatal depression: a review of recent literature. Curr Psychiatry Rep. 2018;20:78.

    PubMed  PubMed Central  Google Scholar 

  14. Jairaj C, O’Leary N, Doolin K, Farrell C, McCarthy A, McAuliffe FM, et al. The hypothalamic-pituitary-adrenal axis in the perinatal period: Its relationship with major depressive disorder and early life adversity. World J Biol Psychiatry: Off J World Federation Societies Biol Psychiatry. 2020;21:552–63.

    Google Scholar 

  15. Minaldi E, D’Andrea S, Castellini C, Martorella A, Francavilla F, Francavilla S, et al. Thyroid autoimmunity and risk of post-partum depression: a systematic review and meta-analysis of longitudinal studies. J Endocrinol Invest. 2020;43:271–7.

    CAS  PubMed  Google Scholar 

  16. Osborne LM, Monk C. Perinatal depression-the fourth inflammatory morbidity of pregnancy?: Theory and literature review. Psychoneuroendocrinology. 2013;38:1929–52.

    PubMed  PubMed Central  Google Scholar 

  17. Osborne LM, Gilden J, Kamperman AM, Hoogendijk WJG, Spicer J, Drexhage HA, et al. T-cell defects and postpartum depression. Brain Behav Immun. 2020;87:397–403.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Sherer ML, Posillico CK, Schwarz JM. The psychoneuroimmunology of pregnancy. Front Neuroendocrinol. 2018;51:25–35.

    PubMed  Google Scholar 

  19. Robbins PD, Morelli AE. Regulation of immune responses by extracellular vesicles. Nat Rev Immunol. 2014;14:195–208.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Andaloussi SEL, Mäger I, Breakefield XO, Wood MJ. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Disco. 2013;12:347–57.

    Google Scholar 

  21. Salomon C, Torres MJ, Kobayashi M, Scholz-Romero K, Sobrevia L, Dobierzewska A, et al. A gestational profile of placental exosomes in maternal plasma and their effects on endothelial cell migration. PloS One. 2014;9:e98667.

    PubMed  PubMed Central  Google Scholar 

  22. Radu CM, Campello E, Spiezia L, Dhima S, Visentin S, Gavasso S, et al. Origin and levels of circulating microparticles in normal pregnancy: A longitudinal observation in healthy women. Scand J Clin Lab Invest. 2015;75:487–95.

    CAS  PubMed  Google Scholar 

  23. Ng YH, Rome S, Jalabert A, Forterre A, Singh H, Hincks CL, et al. Endometrial exosomes/microvesicles in the uterine microenvironment: a new paradigm for embryo-endometrial cross talk at implantation. PloS One. 2013;8:e58502.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Miura K, Higashijima A, Mishima H, Miura S, Kitajima M, Kaneuchi M, et al. Pregnancy-associated microRNAs in plasma as potential molecular markers of ectopic pregnancy. Fertil Steril. 2015;103:1202–8.e1.

    CAS  PubMed  Google Scholar 

  25. Vilella F, Moreno-Moya JM, Balaguer N, Grasso A, Herrero M, Martínez S, et al. Hsa-miR-30d, secreted by the human endometrium, is taken up by the pre-implantation embryo and might modify its transcriptome. Development. 2015;142:3210–21.

    CAS  PubMed  Google Scholar 

  26. Salomon C, Yee S, Scholz-Romero K, Kobayashi M, Vaswani K, Kvaskoff D, et al. Extravillous trophoblast cells-derived exosomes promote vascular smooth muscle cell migration. Front Pharmacol. 2014;5:175.

    PubMed  PubMed Central  Google Scholar 

  27. Delorme-Axford E, Donker RB, Mouillet JF, Chu T, Bayer A, Ouyang Y, et al. Human placental trophoblasts confer viral resistance to recipient cells. Proc Natl Acad Sci USA. 2013;110:12048–53. https://doi.org/10.1073/pnas.1304718110.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Fallen S, Baxter D, Wu X, Kim TK, Shynlova O, Lee MY, et al. Extracellular vesicle RNAs reflect placenta dysfunction and are a biomarker source for preterm labour. J Cell Mol Med. 2018;22:2760–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Richardson LS, Taylor RN, Menon R. Reversible EMT and MET mediate amnion remodeling during pregnancy and labor. Sci Signal. 2020;13:eaay1486.

  30. Nation GK, Saffold CE, Pua HH. Secret messengers: Extracellular RNA communication in the immune system. Immunol Rev. 2021;304:62–76.

  31. Salomon C, Scholz-Romero K, Sarker S, Sweeney E, Kobayashi M, Correa P, et al. Gestational diabetes mellitus is associated with changes in the concentration and bioactivity of placenta-derived exosomes in maternal circulation across gestation. Diabetes. 2016;65:598–609.

    CAS  PubMed  Google Scholar 

  32. Jayabalan N, Nair S, Nuzhat Z, Rice GE, Zuñiga FA, Sobrevia L, et al. Cross talk between adipose tissue and placenta in obese and gestational diabetes mellitus pregnancies via exosomes. Front Endocrinol (Lausanne). 2017;8:239.

    PubMed  Google Scholar 

  33. Salomon C, Guanzon D, Scholz-Romero K, Longo S, Correa P, Illanes SE, et al. Placental exosomes as early biomarker of preeclampsia: potential role of exosomal MicroRNAs across gestation. J Clin Endocrinol Metab. 2017;102:3182–94.

    PubMed  Google Scholar 

  34. Knight M, Redman CW, Linton EA, Sargent IL. Shedding of syncytiotrophoblast microvilli into the maternal circulation in pre-eclamptic pregnancies. Br J Obstet Gynaecol. 1998;105:632–40.

    CAS  PubMed  Google Scholar 

  35. Germain SJ, Sacks GP, Sooranna SR, Sargent IL, Redman CW. Systemic inflammatory priming in normal pregnancy and preeclampsia: the role of circulating syncytiotrophoblast microparticles. J Immunol. 2007;178:5949–56.

    CAS  PubMed  Google Scholar 

  36. Pillay P, Moodley K, Moodley J, Mackraj I. Placenta-derived exosomes: potential biomarkers of preeclampsia. Int J Nanomed. 2017;12:8009–23.

    CAS  Google Scholar 

  37. Benichou G, Wang M, Ahrens K, Madsen JC. Extracellular vesicles in allograft rejection and tolerance. Cell Immunol. 2020;349:104063.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Nasca C, Dobbin J, Bigio B, Watson K, de Angelis P, Kautz M, et al. Insulin receptor substrate in brain-enriched exosomes in subjects with major depression: on the path of creation of biosignatures of central insulin resistance. Mol Psychiatry. 2021;26:5140–9.

    CAS  PubMed  Google Scholar 

  39. Saeedi S, Nagy C, Ibrahim P, Théroux JF, Wakid M, Fiori LM, et al. Neuron-derived extracellular vesicles enriched from plasma show altered size and miRNA cargo as a function of antidepressant drug response. Mol Psychiatry. 2021;26:7417–24.

    CAS  PubMed  Google Scholar 

  40. Goetzl EJ, Wolkowitz OM, Srihari VH, Reus VI, Goetzl L, Kapogiannis D, et al. Abnormal levels of mitochondrial proteins in plasma neuronal extracellular vesicles in major depressive disorder. Mol Psychiatry. 2021;26:7355–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Osborne LM, Voegtline K, Standeven LR, Sundel B, Pangtey M, Hantsoo L, et al. High worry in pregnancy predicts postpartum depression. J Affect Disord. 2021;294:701–6.

    PubMed  PubMed Central  Google Scholar 

  42. Therneau T, Hart S, Kocher J-P. Calculating samplesSize estimates for RNA Seq studies. R package version 1320. 2021.

  43. Roehr JT, Dieterich C, Reinert K. Flexbar 3.0 - SIMD and multicore parallelization. Bioinforma (Oxf, Engl). 2017;33:2941–2.

    CAS  Google Scholar 

  44. Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12:357–60. https://doi.org/10.1038/nmeth.3317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Darby MM, Leek JT, Langmead B, Yolken RH, Sabunciyan S. Widespread splicing of repetitive element loci into coding regions of gene transcripts. Hum Mol Genet. 2016;25:4962–82.

  46. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.

    PubMed  PubMed Central  Google Scholar 

  47. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinforma (Oxf, Engl). 2010;26:139–40.

    CAS  Google Scholar 

  48. Newman AM, Steen CB, Liu CL, Gentles AJ, Chaudhuri AA, Scherer F, et al. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat Biotechnol. 2019;37:773–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Krishnaswami SR, Grindberg RV, Novotny M, Venepally P, Lacar B, Bhutani K, et al. Using single nuclei for RNA-seq to capture the transcriptome of postmortem neurons. Nat Protoc. 2016;11:499–524.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Huang DW, Sherman BT, Tan Q, Kir J, Liu D, Bryant D, et al. DAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res. 2007;35:W169–75.

    PubMed  PubMed Central  Google Scholar 

  51. Levine B, Mizushima N, Virgin HW. Autophagy in immunity and inflammation. Nature. 2011;469:323–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Nakamura S, Yoshimori T. New insights into autophagosome-lysosome fusion. J Cell Sci. 2017;130:1209–16.

    CAS  PubMed  Google Scholar 

  53. Yu L, Chen Y, Tooze SA. Autophagy pathway: Cellular and molecular mechanisms. Autophagy. 2018;14:207–15.

    CAS  PubMed  Google Scholar 

  54. Ao X, Zou L, Wu Y. Regulation of autophagy by the Rab GTPase network. Cell Death Differ. 2014;21:348–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Webster CP, Smith EF, Grierson AJ, De Vos KJ. C9orf72 plays a central role in Rab GTPase-dependent regulation of autophagy. Small GTPases. 2018;9:399–408.

    CAS  PubMed  Google Scholar 

  56. Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. Embo J. 2000;19:5720–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. He M, Ding Y, Chu C, Tang J, Xiao Q, Luo ZG. Autophagy induction stabilizes microtubules and promotes axon regeneration after spinal cord injury. Proc Natl Acad Sci USA. 2016;113:11324–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Barve G, Sanyal P, Manjithaya R. Septin localization and function during autophagy. Curr Genet. 2018;64:1037–41.

    CAS  PubMed  Google Scholar 

  59. Sotthibundhu A, McDonagh K, von Kriegsheim A, Garcia-Munoz A, Klawiter A, Thompson K, et al. Rapamycin regulates autophagy and cell adhesion in induced pluripotent stem cells. Stem Cell Res Ther. 2016;7:166.

    PubMed  PubMed Central  Google Scholar 

  60. Fu R, Jiang X, Li G, Zhu Y, Zhang H. Junctional complexes in epithelial cells: sentinels for extracellular insults and intracellular homeostasis. Febs J. 2021. Online ahead of print.

  61. Fung C, Lock R, Gao S, Salas E, Debnath J. Induction of autophagy during extracellular matrix detachment promotes cell survival. Mol Biol Cell. 2008;19:797–806.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang J, Wu K, Xiao X, Liao J, Hu Q, Chen H, et al. Autophagy as a regulatory component of erythropoiesis. Int J Mol Sci. 2015;16:4083–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Martinez-Martin N, Maldonado P, Gasparrini F, Frederico B, Aggarwal S, Gaya M, et al. A switch from canonical to noncanonical autophagy shapes B cell responses. Science 2017;355:641–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol. 2005;5:953–64.

    CAS  PubMed  Google Scholar 

  65. Sabunciyan S. Gene expression profiles associated with brain aging are altered in schizophrenia. Sci Rep. 2019;9:5896.

    PubMed  PubMed Central  Google Scholar 

  66. Darby MM, Yolken RH, Sabunciyan S. Consistently altered expression of gene sets in postmortem brains of individuals with major psychiatric disorders. Transl Psychiatry. 2016;6:e890. https://doi.org/10.1038/tp.2016.173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gandal MJ, Haney JR, Parikshak NN, Leppa V, Ramaswami G, Hartl C, et al. Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap. Science. 2018;359:693–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Fromer M, Roussos P, Sieberts SK, Johnson JS, Kavanagh DH, Perumal TM. et al. Gene expression elucidates functional impact of polygenic risk for schizophrenia. Nat Neurosci. 2016;19:1442–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Mizushima N, Levine B. Autophagy in mammalian development and differentiation. Nat Cell Biol. 2010;12:823–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature. 2006;441:880–4.

    CAS  PubMed  Google Scholar 

  71. Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature. 2006;441:885–9.

    CAS  PubMed  Google Scholar 

  72. Nixon RA, Wegiel J, Kumar A, Yu WH, Peterhoff C, Cataldo A, et al. Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J Neuropathol Exp Neurol. 2005;64:113–22.

    PubMed  Google Scholar 

  73. Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, et al. The role of autophagy during the early neonatal starvation period. Nature. 2004;432:1032–6.

    CAS  PubMed  Google Scholar 

  74. Tomoda T, Yang K, Sawa A. Neuronal autophagy in synaptic functions and psychiatric disorders. Biol Psychiatry. 2020;87:787–96.

    CAS  PubMed  Google Scholar 

  75. Gassen NC, Rein T. Is there a role of autophagy in depression and antidepressant action? Front Psychiatry. 2019;10:337.

    PubMed  PubMed Central  Google Scholar 

  76. Po WW, Thein W, Khin PP, Khing TM, Han KWW, Park CH, et al. Fluoxetine simultaneously induces both apoptosis and autophagy in human gastric adenocarcinoma cells. Biomol Ther (Seoul). 2020;28:202–10.

    CAS  PubMed  Google Scholar 

  77. Sun D, Zhu L, Zhao Y, Jiang Y, Chen L, Yu Y, et al. Fluoxetine induces autophagic cell death via eEF2K-AMPK-mTOR-ULK complex axis in triple negative breast cancer. Cell Prolif. 2018;51:e12402.

    PubMed  Google Scholar 

  78. Bowie M, Pilie P, Wulfkuhle J, Lem S, Hoffman A, Desai S, et al. Fluoxetine induces cytotoxic endoplasmic reticulum stress and autophagy in triple negative breast cancer. World J Clin Oncol. 2015;6:299–311.

    PubMed  PubMed Central  Google Scholar 

  79. Gulbins A, Schumacher F, Becker KA, Wilker B, Soddemann M, Boldrin F, et al. Antidepressants act by inducing autophagy controlled by sphingomyelin-ceramide. Mol Psychiatry. 2018;23:2324–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Shu X, Sun Y, Sun X, Zhou Y, Bian Y, Shu Z, et al. The effect of fluoxetine on astrocyte autophagy flux and injured mitochondria clearance in a mouse model of depression. Cell Death Dis. 2019;10:577.

    PubMed  PubMed Central  Google Scholar 

  81. Yan J, Porch MW, Court-Vazquez B, Bennett MVL, Zukin RS. Activation of autophagy rescues synaptic and cognitive deficits in fragile X mice. Proc Natl Acad Sci USA. 2018;115:E9707–e16.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Tang G, Gudsnuk K, Kuo SH, Cotrina ML, Rosoklija G, Sosunov A, et al. Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits. Neuron 2014;83:1131–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Gonçalves VF, Cappi C, Hagen CM, Sequeira A, Vawter MP, Derkach A, et al. A comprehensive analysis of nuclear-encoded mitochondrial genes in schizophrenia. Biol Psychiatry. 2018;83:780–9.

    PubMed  PubMed Central  Google Scholar 

  84. Kim Y, Vadodaria KC, Lenkei Z, Kato T, Gage FH, Marchetto MC, et al. Mitochondria, metabolism, and redox mechanisms in psychiatric disorders. Antioxid Redox Signal. 2019;31:275–317.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Rezin GT, Amboni G, Zugno AI, Quevedo J, Streck EL. Mitochondrial dysfunction and psychiatric disorders. Neurochem Res. 2009;34:1021–9.

    CAS  PubMed  Google Scholar 

  86. Topol A, English JA, Flaherty E, Rajarajan P, Hartley BJ, Gupta S. et al. Increased abundance of translation machinery in stem cell-derived neural progenitor cells from four schizophrenia patients. Transl Psychiatry. 2015;5:e662. https://doi.org/10.1038/tp.2015.118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Luppi P, Haluszczak C, Betters D, Richard CA, Trucco M, DeLoia JA. Monocytes are progressively activated in the circulation of pregnant women. J Leukoc Biol. 2002;72:874–84.

    CAS  PubMed  Google Scholar 

  88. Sabunciyan S, Maher B, Bahn S, Dickerson F, Yolken RH. Association of DNA methylation with acute mania and inflammatory markers. PLoS One. 2015;10:e0132001. https://doi.org/10.1371/journal.pone.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Fond G, Godin O, Boyer L, Berna F, Andrianarisoa M, Coulon N, et al. Chronic low-grade peripheral inflammation is associated with ultra resistant schizophrenia. Results from the FACE-SZ cohort. Eur Arch Psychiatry Clin Neurosci. 2019;269:985–92.

    CAS  PubMed  Google Scholar 

  90. Fiedorowicz JG, Prossin AR, Johnson CP, Christensen GE, Magnotta VA, Wemmie JA. Peripheral inflammation during abnormal mood states in bipolar I disorder. J Affect Disord. 2015;187:172–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Krishnadas R, Cavanagh J. Depression: an inflammatory illness? J Neurol Neurosurg Psychiatry. 2012;83:495–502.

    PubMed  Google Scholar 

  92. Smith RS. The macrophage theory of depression. Med Hypotheses. 1991;35:298–306.

    CAS  PubMed  Google Scholar 

  93. Kreisel T, Frank MG, Licht T, Reshef R, Ben-Menachem-Zidon O, Baratta MV, et al. Dynamic microglial alterations underlie stress-induced depressive-like behavior and suppressed neurogenesis. Mol Psychiatry. 2014;19:699–709.

    CAS  PubMed  Google Scholar 

  94. Prinz M, Jung S, Priller J. Microglia biology: one century of evolving concepts. Cell. 2019;179:292–311.

    CAS  PubMed  Google Scholar 

  95. Mondelli V, Vernon AC, Turkheimer F, Dazzan P, Pariante CM. Brain microglia in psychiatric disorders. Lancet Psychiatry. 2017;4:563–72.

    PubMed  Google Scholar 

  96. Salter MW, Stevens B. Microglia emerge as central players in brain disease. Nat Med. 2017;23:1018–27.

    CAS  PubMed  Google Scholar 

  97. Sherer ML, Posillico CK, Schwarz JM. An examination of changes in maternal neuroimmune function during pregnancy and the postpartum period. Brain Behav Immun. 2017;66:201–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Posillico CK, Schwarz JM. An investigation into the effects of antenatal stressors on the postpartum neuroimmune profile and depressive-like behaviors. Behavioural Brain Res. 2016;298(Pt B):218–28.

    Google Scholar 

  99. Tan X, Du X, Jiang Y, Botchway BOA, Hu Z, Fang M. Inhibition of autophagy in microglia alters depressive-like behavior via BDNF pathway in postpartum depression. Front Psychiatry. 2018;9:434.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ms. Ou Chen for isolating EV mRNAs and constructing sequencing libraries and Ms. Treva Rowley for the CD72 PCR analysis. We also thank Dr. Stephanie Hicks for providing advice on cellular deconvolution analysis and Ms. Samantha Meilman for assistance with randomizing the initial cohort and matching controls to cases.

Funding

This study was funded by the following NIH grants NIH-NIMH R01 MH112704, NIH-NIMH 1K23 MH110607, and NIH-NIAID T32 AI007417.

Author information

Authors and Affiliations

Authors

Contributions

LMO, JLP, and SS conceived the idea and designed the initial experiments. LMO, JLP, and MLS collected the samples, characterized the patients and selected the cohorts used in the study. SS performed the laboratory assays and bioinformatic analysis. Everyone was involved in data interpretation and writing the paper.

Corresponding author

Correspondence to Sarven Sabunciyan.

Ethics declarations

Competing interests

JLP has served as a consultant for SAGE Therapeutics, Brii Biosciences, and Pure Tech Health. JLP has received an honorarium from Karuna Therapeutics for speaking to the company. JLP owns a patent entitled “Epigenetic Biomarkers of Postpartum Depression.” LMO, MLS, and SS have no biomedical financial interests or potential conflicts of interest to report.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osborne, L.M., Payne, J.L., Sherer, M.L. et al. Altered extracellular mRNA communication in postpartum depression is associated with decreased autophagy. Mol Psychiatry 27, 4526–4535 (2022). https://doi.org/10.1038/s41380-022-01794-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-022-01794-2

This article is cited by

Search

Quick links