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Schizophrenia is a polygenic psychiatric disorder with limited understanding about the mechanistic changes in gene expression
regulation. To elucidate on this, we integrate interindividual variability of regulatory activity (ChIP-sequencing for H3K27ac histone
mark) with gene expression and genotype data captured from the prefrontal cortex of 272 cases and controls. By measuring
interindividual correlation among proximal chromatin peaks, we show that regulatory element activity is structured into 10,936 and
10,376 cis-regulatory domains in cases and controls, respectively. The schizophrenia-specific cis-regulatory domains are enriched
for fetal-specific (p= 0.0014, OR= 1.52) and depleted of adult-specific regulatory activity (p= 3.04 × 10−50, OR= 0.57) and are
enriched for SCZ heritability (p= 0.001). By studying the interplay among genetic variants, gene expression, and cis-regulatory
domains, we ascertain that changes in coordinated regulatory activity tag alterations in gene expression levels (p= 3.43 × 10−5,
OR= 1.65), unveil case-specific QTL effects, and identify regulatory machinery changes for genes affecting synaptic function and
dendritic spine morphology in schizophrenia. Altogether, we show that accounting for coordinated regulatory activity provides a
novel mechanistic approach to reduce the search space for unveiling genetically perturbed regulation of gene expression in
schizophrenia.
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INTRODUCTION
Schizophrenia (SCZ) is a severe mental illness that oftentimes
leads to a lifetime of chronic disability. While several lines of
evidence converge on the neurodevelopmental origin for the
disorder and augment the impact of both genetic and environ-
mental factors in disease aetiology, the pathophysiology of SCZ
remains incompletely understood with little progress in novel
treatment development [1, 2].
The last decades of extensive research have yielded valuable

insights into the genomic and molecular underpinnings of SCZ.
Large-scale genomic analyses triggered by prior studies of strong
heritability estimates for SCZ (60–80%) [3, 4] have unveiled its
highly polygenic architecture [5–7]. Complemented by gene
expression and chromatin profiling analyses from dorsolateral
prefrontal cortex (DLPFC), the SCZ risk variants have been shown
to localize in functional regulatory genomic elements with
approximately half of these displaying brain tissue-specific
expression quantitative trait locus (eQTL) effects [5, 8–10], and
to be enriched for open chromatin and evolutionary conserved
regions [11, 12]. Genes identified by differential expression and
genome-wide association analyses (GWAS) are associated with
brain developmental pathways, synaptic function, and immune
response [13–15]. While immense efforts have resulted in
comprehensive SCZ-specific resources for perturbed gene expres-
sion and altered chromatin patterns and for fine-mapping and
annotating discovered disease-associated genomic associations,

little is known about the regulatory machinery changes and how
genetic effects are propagated onto gene expression that drive
molecular abnormalities in SCZ development.
Gene transcription profiles are defined by the activity of

regulatory elements (REs) that overlap with open chromatin.
Since the activity of REs are modulated by genetic variation,
changes in chromatin accessibility result in gene expression
variability and hence constitute as an intermediate phenotype for
profiling eQTL effects on gene expression [16–20]. Systematic
measurement of interindividual correlation between chromatin
activity levels has revealed that the variability of nearby regulatory
activity is structured into well-delimited sets of cis-regulatory
domains (CRDs) [21]. The coordinated activity of REs within CRDs
are under tight genetic control, mediate cis and trans effects of
genetic variants onto gene expression, constitute finer organiza-
tion within topologically associated domains (TADs), and provide a
higher-order structural resolution of functional regulatory associa-
tions [21]. Accounting for the three-dimensional (3D) genome
organization in cis that captures concerted effect of regulatory
activity could thereby facilitate more robust signal detection for
identifying disruption in regulatory function and for delineating
deviations in gene expression cascades specific to disease. For
instance, Girdhar et al. reported that correlated hyper-acetylated
histone peaks are enriched for regulatory regions linked to
excitatory neurons, SCZ heritability, and development, align with
nuclear topography, and are associated with genes that are
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differentially expressed in SCZ [22]. To extend these findings and
characterize genetically perturbed regulatory machinery changes
specific to SCZ, we set out to analyse the interplay among genetic
variants, coordinated regulatory activity and gene expression. To
this end, we integrated genome-wide genotyping data with RE
activity levels (chromatin immunoprecipitation sequencing (ChIP-
sequencing) profiled for histone mark H3K27ac) and transcrip-
tomic profiles (bulk RNA-sequencing) obtained from the DLPFC of
SCZ cases and control subjects within the Human Brain Collection
Core (HBCC; dbGaP phs000979.v3.p2) (Supplementary Fig. 1). At
least two levels of molecular data were available for 272
individuals: 98 SCZ cases and 174 controls (188 males and 84
females, 164 African Americans and 108 Europeans; Supplemen-
tary Fig. 2).

MATERIALS AND METHODS
Molecular and phenotype data
Molecular and phenotype data for HBCC was accessed through dbGaP
(study accession phs000979.v3.p2; request #88083-1 approved by NIH on
January 31st, 2020). All patients met DSM-IV criteria for a lifetime Axis I
diagnosis of psychiatric disorders including schizophrenia or schizoaffec-
tive disorder. Controls had no history of psychiatric diagnoses or
addictions. For genotype data, we determined the intersect of single
nucleotide variant (SNV) content across three Illumina genotyping arrays
(HumanHap650Y, Human1M-Duov3 and HumanOmni5M-Quad) after
filtering the SNVs using standard procedure with PLINK v2.0 [23] and
imputed the derived genotype matrix using the TOPMed Imputation
Reference panel [24]. Next, we applied post-imputation quality control
filters by European and African American ancestral group separately and
considered the union of filtered SNVs retrieved in both ancestry sets for
the final SNV set. This yielded 9,516,522 SNVs in 272 individuals. Sequence
data was mapped onto the human genome (hg19) with either BWA-MEM
v0.7.16 [25] for ChIP-sequencing data or STAR v2.7 [26] for RNA-sequencing
data. Gene expression was quantified using QTLtools [27] and filtered for
protein-coding and lincRNA genes and for the union quantifications
detected in ≥50% in SCZ cases and in ≥50% in controls. This yielded 21,988
genes for 243 individuals. ChIP-sequencing peak calling and quantification
was carried out with HOMER v14.11.1 [28]. We first determined ChIP-
sequencing peak coordinates across SCZ cases and controls to get a
population scale call set of ChIP-sequencing peaks and then quantified the
peaks for each individual according to the identified peak coordinates. This
yielded 141,218 ChIP-sequencing peaks for 193 individuals. To account for
confounding factors in gene expression and ChIP-sequencing peak data,
we regressed out ancestry (captured by principal component (PC) analysis
on genotype data), and technical variables (captured by PC analysis on
molecular phenotype data). For the latter, we used the number of PCs that
maximized the number of QTL discovery. Both gene expression and ChIP-
sequencing data were normalized such that these matched a normal
distribution with mean 0 and standard deviation 1.

Cis-regulatory domain calling and quantification
For CRD calling, we used the pipeline developed in Delaneau et al. [21].
First, we built a correlation map from chromatin data by systematically
measuring interindividual correlation (i.e., Pearson correlation coeffi-
cient) between all possible pairs of ChIP-sequencing peak quantifications
located on the same chromosome (within a 250-peak sliding window).
Next, we applied hierarchical clustering on the data on a per
chromosome basis to get a binary tree that regrouped chromatin peaks
for each chromosome depending on the correlation levels they
exhibited. We relied on three empirical criteria for CRD calling: (i) overall
correlation that required the mean level of correlation within a CRD to
be at least twice the background, (ii) edge correlation that required the
mean level of correlation of the peaks at the CRD boundaries to be at
least twice the background, and (iii) a requirement that the CRD covered
at least two non-overlapping regulatory elements. We quantified CRD
activity on per-individual basis by enumerating all ChIP-sequencing
peaks per CRD and taking the mean of all single peak quantifications per
individual to retrieve a single quantification value for each individual.
CRDs called in SCZ cases were used for characterizing SCZ-specific CRDs.
CRDs identified in the combined set were used for the rest of the
downstream analyses.

CRD structure analysis
To assess the features of SCZ-specific CRDs, we considered only CRDs in
SCZ cases composed of peaks not regrouping into any CRD in controls. For
peak activity estimation, we used ChIP-sequencing peak quantifications
uncorrected for covariates and applied Mann-Whitney U test per peak
activity between SCZ cases and controls. Significant differences between
SCZ cases and controls were determined at false discovery rate (FDR) 5%
using R/qvalue package [29]. For estimating peak activity correlation per
SCZ-specific CRDs between SCZ cases and controls, we used ChIP-
sequencing peak quantifications corrected for biological and technical
covariates, calculated the mean Pearson correlation estimate between
peak activities per CRD and used Mann-Whitney U test for comparing
these correlation estimates between SCZ cases and controls.

Differential CRD activity and differential gene expression
analysis
Differential CRD activity analysis and differential gene expression analysis
were carried out using DESeq2 [30]. Significant associations were
determined at FDR 5% [29]. For differential CRD activity analysis, we used
ChiP-sequencing peak counts obtained with HOMER [28] and summed
these up per CRD using the correlation map identified in the combined set.
For differential gene expression analysis, we used RNA-sequencing read
counts. To identify covariates for correction, we carried out association
testing (i) between all available biological and technical covariates and
disease status (SCZ/control) (Mann-Whitney U test), and (ii) between all
available biological and technical covariates and individual ChIP-
sequencing peak activity or gene expression quantifications (linear
regression) and calculated π1 estimate [29] to identify the proportion of
true associations. R/clusterProfiler package [31] was used for gene set
enrichment analysis.

Enrichment analysis of CRD peaks for SCZ GWAS variants
Both MAGMA v1.10 [32] and partitioned LD score regression v1.0.1 [33]
were used to test SCZ GWAS variant [7] enrichment in ChIP-seq peaks
regrouping into SCZ-specific CRDs and into significantly differentially
active CRDs.

Mapping molecular quantitative trait loci (QTLs)
QTL mapping was carried out using the standard procedure implemented in
the QTLtools software package [27]. Specifically, we performed 1,000
permutations to correct for the number of genetic variants being tested in cis
per molecular phenotype (+/− 1Mb window) and corrected for the number
of molecular phenotypes being tested genome-wide using FDR [29]. To
identify multiple QTLs with independent effects on a molecular phenotype,
we used the conditional analysis approach based on a forward-backward
scan implemented in QTLtools [27]. For SCZ-specific QTL discovery, we
considered QTL effects identified in SCZ cases and for each variant-
phenotype pair ran a linear regression including genotype, disease status
(SCZ/control), and covariates, and tested for significance of a genotype ×
disease status interaction on the molecular phenotype (gene expression or
CRD activity). This was followed with FDR 5% correction for the number of
QTLs tested. We assessed the likelihood of a shared functional effect
between SCZ risk variants from four GWAS studies [5–7, 34] and SCZ-
identified QTLs using regulatory trait concordance (RTC) [35, 36].

CRD and gene association
We used QTLtools cis permuation pass [27] to identify CRDs associated
with a gene in a +/−1 Mb window from a transcription start site of a gene.
We performed these analyses (i) to identify genes associated with SCZ-
specific CRDs using CRDs identified in SCZ cases, and (ii) to capture
comparable associations for SCZ cases and controls using CRDs detected in
the combined set. We tested QTL effects for association with the other
molecular phenotype (i.e., aCRD-QTLs with gene expression and eQTLs
with CRD activity) via CRD-gene associations detected across all samples at
nominal significance.

Causal inference
To quantify gene-CRD pairs identified as significant at FDR 5% across SCZ
cases and controls, we used PC analysis-based dimensionality reduction.
For each gene-CRD pair, we aggregated gene expression with CRD activity
and used the coordinates on PC1 as new pseudo-phenotypes for QTL
mapping in a cis window. This effectively gave us eCRDQTL-CRD-gene
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triplets consisting of a genetic variant, a CRD, and a gene, all associated
with each other.
We applied a Bayesian Network approach to infer the most likely causal

relationship for eCRDQTL-CRD-gene triplets common to SCZ cases and
controls and conducted the analyses separately in SCZ cases and in
controls. This approach allowed to estimate the most likely network from
which the observed data originates by calculating the posterior
probabilities for the three possible causal models: [37] (i) causal model
in which the genetic variant affects first the CRD and then the gene, (ii)
reactive model in which the genetic variant affects the gene and then the
CRD, (iii) independent model in which the genetic variant affects the gene
and the CRD independently.
To provide confidence for retrieved probabilities, we carried out 100

bootstrapping runs for each tested triplet separately for SCZ cases and
controls using sampling with replacement. We estimated how many times
the most probable model across bootstrapping runs for each triplet was
the same as in the original Bayesian Network results and filtered out all
triplets that fell below a confidence threshold of 55%: this corresponds to
the lower quartile value in SCZ cases. R/clusterProfiler package [31] was
used for gene set enrichment analysis for genes that belonged to triplets
showing directional change from eCRD-QTL onto gene expression/CRD
activity between SCZ cases and controls. We considered two scenarios: (i)
causal model in controls, but reactive/independent in SCZ cases; (ii)
reactive/independent in controls, but causal in SCZ cases.
Extended methods are provided in the Supplementary.

RESULTS
Distinct regulatory element coordination in SCZ
To study the coordination of REs, we systematically measured
interindividual correlation between nearby chromatin peaks. We
identified 10,938 CRDs in SCZ cases, 10,376 CRDs in controls and
11,374 CRDs in the combined set (i.e., across SCZ cases and
controls), regrouping 28.9% (n= 40,819), 31.4% (n= 44,391) and
38.4% (n= 54,278) of the peaks, respectively (Table 1, Supple-
mentary Table 1, Supplementary Table 2), and capturing a higher-
order structural resolution of regulatory activity. The majority of
the CRDs contained two REs, while some captured correlated
activity among >80 REs (mean number of REs per CRD 4.7; mean
CRD length 138 kb in the combined set; Supplementary Fig. 7).
Eighty-six percent of the CRDs lied within DLPFC TADs [10]
(Supplementary Fig. 9a) with CRDs regrouping the same pairs of
peaks as TADs (Supplementary Fig. 9b) and 80% of the peaks
clustered similarly into CRDs as detected in HBCC cohort samples
in Girdhar et al. [22]. (Supplementary Fig. 10).
Given that not all peaks regrouped into same CRDs in SCZ cases

and controls (Supplementary Fig. 8a), we sought to investigate the

mechanism for SCZ-specific CRD formation. Specifically, we asked
whether the chromatin peaks within SCZ-specific CRDs were
differentially active or whether these had larger variance in activity
in controls compared to SCZ cases. To this end, we considered
CRDs in SCZ cases composed of peaks not part of any CRD in
controls (3078 CRDs composed of 6650 peaks) and compared
single peak activities and mean correlation estimates among
peaks per CRD between the two groups. We discovered that 53%
of the peaks within SCZ-specific CRDs (3,540 peaks in 2,212 CRDs)
were differentially active in SCZ cases at FDR 5% (Supplementary
Fig. 11a). While the majority of the peaks (71%) showed lower
activity in SCZ cases (Fig. 1A), only a third of SCZ-specific CRDs had
all underlying peaks differentially active between SCZ cases and
controls (Supplementary Fig. 11b), implying that while the
regulatory activity originating from those genomic regions likely
results in inhibition of downstream molecular cascades, difference
in activity is not the main mechanism for SCZ-specific CRD
formation. The peaks of SCZ-specific CRDs displayed significantly
higher mean correlation in SCZ cases compared to controls
(Mann-Whitney U test p= 5.02 × 10−47; Fig. 1B, C), indicating that
changes in the 3D structure of the genome, rather than differential
activity, were responsible for SCZ-specific CRD formation.
The peaks within SCZ-specific CRDs were significantly enriched

for DLPFC H3K27ac peaks detected in fetal samples only [38]
(Fisher’s exact test p= 0.001, odds ratio (OR) 1.52) and significantly
depleted of those captured in adults [38] (Fisher’s exact test
p= 3.04 × 10−50, OR= 0.57; Fig. 1D, Supplementary Table 3).
Furthermore, compared to peaks that regrouped into CRDs in
both SCZ cases and controls, the SCZ-specific CRD peaks were
significantly enriched for SCZ GWAS variants (p= 0.008; Supple-
mentary Fig. 12, Supplementary Table 4). At FDR 5%, eleven SCZ-
specific CRDs were associated with the expression of proximal
genes, for example POU3F1 (also known as OCT6, transcriptional
repressor for myelin-specific genes [39]), KIF5A (neuronal-specific
vesicular transporter [40]), NECAB1 (Ca2+-binding in neurons [41]),
and PDCD1LG2 (immune checkpoint receptor ligand [42])
(Supplementary Table 5). These associations exemplify coordi-
nated regulatory changes specific to the disease state that affect
or are affected by gene expression perturbations.

Changes in CRD activity track alternations in gene expression
in SCZ
Having identified several distinct RE coordination structures in
DLPFC in SCZ cases that were absent in controls, we focused next

Table 1. Molecular phenotype associations at FDR 5% in SCZ cases and controls.

Molecular phenotype and type of association Tested sample

GENE EXPRESSION SCZ (n= 83) CTL (n= 160) SCZ+ CTL (n= 243)

Differentially expressed genes 1363 (937↑, 426↓)

eQTL 987 6716 11,242

SCZ-specific eQTL 158

CRD SCZ (n= 74) CTL (n= 119) SCZ+ CTL (n= 193)

cQTL 3239 13,158 28,538

CRDs 10,938 10,376 11,374

Differentially active CRDs 1141 (542↑, 599↓)

aCRD-QTL 857 3144 6078

SCZ-specific aCRD-QTL 42

QTL-CRD-GENE SCZ (n= 59) CTL (n= 105) SCZ+ CTL (n= 164)

Gene-CRD pairs 95/119* 634 1197

eCRDQTL-CRD-gene triplets 36 533 1134

The columns indicate the molecular phenotype and type of association, and the numbers of identified associations and sample set used.
*Gene-CRD associations found using CRDs identified in the combined set or CRDs identified only in SCZ cases.
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on CRDs that had the same structure of RE coordination across
SCZ cases and controls (i.e., CRDs identified in the combined
set). We set out to determine the differences in regulatory
activity between SCZ cases and controls and to investigate their
relation to genes that were differentially expressed (DEGs)
between the two groups. At FDR 5%, we identified 1141 CRDs
(599 lower activity, 542 higher activity) and 1363 genes (937 up-
regulated, 426 down-regulated) to be differentially active and
expressed in SCZ cases, respectively (Table 1, Supplementary
Fig. 13a, b, Supplementary Table 6, Supplementary Table 7). The
differences in effect size for CRDs were subtle, reflecting a
narrow variability range in regulatory activity (Supplementary
Fig. 13a). The determined DEGs were in concordance with those
previously reported in SCZ pathogenesis (Supplementary Fig. 14)
[9, 43] and were significantly enriched for gene ontology (GO)
terms related to sex-hormone and interferon-γ-mediated signal-
ling, glucocorticoid receptor and glutamate receptor binding,
axonogenesis and synapse assembly (Supplementary Table 8).
Up-regulated DACs were significantly enriched for SCZ GWAS
variants (p= 0.002), whereas down-regulated DACs were not
(Supplementary Fig. 12, Supplementary Table 4). Moreover,
DEGs were significantly enriched for differentially active CRDs
either based on nominal correlation (91 DEGs correlated with
DACs; Fisher’s exact p= 3.43 × 10−5, OR= 1.65) (Fig. 2A), or
based on genomic location (transcription start site (TSS) of 118

DEGs lied within differentially active CRDs; Fisher’s exact test
p= 8.62 × 10−6, OR= 1.60; Supplementary Fig. 13c). The major-
ity of DEGs (80%) showed the same effect direction as the CRD
whose activity correlated with the gene’s expression or as the
CRD in which the gene TSS lied (Supplementary Table 7),
indicating that deviations in gene expression track alterations in
the regulatory machinery.
Correlating gene expression and CRD activity (i.e., CRDs

identified in the combined set) in cis using linear regression
revealed 95, 634, and 1197 CRD-gene associations in SCZ cases, in
controls, and in the combined set, respectively, at FDR 5% (Table 1,
Supplementary Fig. 15, Supplementary Table 9). The majority of
the genes were associated with a single CRD and the majority of
the CRDs with a single gene with only a handful of CRDs being
associated with up to ten different genes (Supplementary Fig. 16).
Most gene TSSs clustered at CRD boundaries (Fig. 2B, C),
corroborating the proximal role of coordinated regulatory activity
in gene transcription.

Genetic regulation of CRD activity and gene expression in SCZ
We next sought to study the genetic regulation of CRD activity
and gene expression, search for SCZ-specific QTL effects and
interrogate whether QTL effects colocalize with SCZ risk variants.
At 5% FDR and in cis, we discovered 857 and 3,144 functionally
independent CRD activity QTLs (aCRD-QTLs), and 987 and 6,716

Fig. 1 Features of SCZ-specific CRDs. A Difference in medians per peak activity between SCZ cases and controls as a function of the strength
of association given in -log10 p-values; purple dots denote peaks that are differentially active between SCZ cases and controls at FDR 5%
(3450 peaks) with light purple and dark purple indicating lower and higher median activity, respectively, in SCZ cases compared to controls.
B Comparison of differences in per CRD peak activity correlation estimates between SCZ cases and controls for SCZ-specific CRDs (3078 CRDs).
C Example region of a correlation structure between 250 peaks on chromosome 5 in SCZ cases and controls, revealing a well-delimited SCZ-
specific CRD that is composed of five regulatory elements. The higher the correlation between peaks, the darker the colour blue. D Proportion
of SCZ-specific CRD peaks that overlap with active regulatory regions identified in fetal samples (Fisher’s exact test p= 0.001, OR= 1.52)
compared to those captured in adults (Fisher’s exact test p= 3.04 × 10−50, OR= 0.57).
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functionally independent eQTLs in SCZ cases and controls,
respectively (Table 1, Supplementary Table 10, Supplementary
Table 11, Supplementary Fig. 17). The strength of the association
was correlated with the genomic distance from the molecular
phenotype (Supplementary Fig. 18). While almost all SCZ-
identified QTL effects replicated in controls (Supplementary
Fig. 19), 5% of aCRD-QTLs (n= 42) and 16% of eQTLs (n= 158)
showed SCZ-specificity, i.e., these affected CRD activity or gene
expression only in SCZ cases or displayed significant change in
effect size compared to controls (Table 1, Fig. 3A, B, Supple-
mentary Table 10, Supplementary Table 11). The SCZ-specific
genotype-dependent variability in CRD activity and in gene
expression imply context-dependent and pathway-activated
gain in regulatory capacity. Results of gene enrichment analysis
for genes with SCZ-specific eQTLs conform with posed
hypotheses linking dysregulation of glutathione binding and
adenosine deaminase activity with SCZ [44–46] (Supplementary
Table 12). Colocalization analyses for SCZ risk variants with
aCRD-QTLs and with eQTLs showed modest yet proportionally
similar enrichment for shared functional effects (1.3% for SCZ-
identified aCRD-QTLs and 1.6% for SCZ-identified eQTLs).
Interestingly, the aCRD-QTLs colocalized with different GWAS
variants compared to eQTLs that shared a functional effect with
SCZ risk variants (Supplementary Table 13). Of H3K27ac peaks
with a QTL signal detected in the PsychENCODE resource [10],
an estimated 56% (π1 statistic [28]) showed a QTL effect for a
peak that regrouped into a CRD in the current study
(Supplementary Fig. 20).
To assess common genetic regulation of coordinated regulatory

activity and gene expression, we investigated the association of
aCRD-QTL and eQTL effects on the other molecular phenotype.
Specifically, we correlated aCRD-QTLs with gene expression and
eQTLs with CRD activity over gene-CRD associations detected
across all samples at nominal significance. We identified that up to
47% of the eQTL and aCRD-QTL variants had an effect on CRD
activity and gene expression, respectively (Supplementary Fig. 21).
The considerable overlap between aCRD-QTL and eQTL effects for
relevant CRD-gene pairs corroborates the functional interplay
among genetic variants, CRDs, and genes.

Refining eQTL perturbations reveals regulatory machinery
changes specific to SCZ
Given the established interplay among genetic variants, genes,
and CRDs, we interrogated the functional directionality between
them. We reasoned that the effect of a genetic variant on gene
expression could either be mediated by or propagated to the
changes in coordinated RE activity and that deviations in the
regulatory machinery in SCZ cases compared to controls would
imply molecular dysregulation specific to disease. To test this, we
considered the previously discovered 1197 CRD-gene pairs
ascertained across SCZ cases and controls at FDR 5% and
identified the same genetic variant (eCRD-QTL) that affected both
molecular phenotypes and by that determined eCRDQTL-CRD-
gene triplets for causal inference. Using Bayesian Networks (BN),
we tested three relationship patterns: (i) causal model in which the
genetic variant affects first the activity of the CRD which then
regulates the gene expression, (ii) reactive model in which the
genetic variant affects the expression of the gene which
then modulates the CRD activity, and (iii) independent model in
which the genetic variant affects the gene and the CRD
independently; and studied these relationships separately in SCZ
cases (n= 59) and controls (n= 105) (Supplementary Fig. 22). We
discovered that at FDR 5%, 95% of the CRD-gene pairs had a cis-
QTL effect (n= 1134; Table 1), indicating that the simultaneous
change in CRD activity and gene expression was affected by the
same nearby genetic variant. We observed more causal models in
controls than in SCZ cases (Supplementary Fig. 23a, b), which were
likely driven by the smaller SCZ sample size as reflected by the
distribution of the probabilities for the most likely model for each
triplet (Supplementary Fig. 23c, d). The probability of the causal
model increased the further the gene TSS was from the eCRD-QTL
in both SCZ cases and controls (Supplementary Fig. 23e, f),
denoting the role of CRDs mediating the genetic effect onto
distal genes.
To study the proportion of differentially regulated mechanisms

between SCZ cases and controls and ascertain which molecular
functions were affected by these changes, we first estimated the
accuracy for BN results using bootstrapping to provide confidence
for retrieved probabilities and next carried out gene enrichment

Fig. 2 Association between CRDs and genes. A Expression of differentially expressed genes (DEGs) is correlated with the activity of
differentially active CRDs (DACs) significantly more often than expected by chance (Fischer’s exact test p= 3.43 × 10−5, OR= 1.65); coloured
dots denote DEGs genome-wide identified at FDR 5%: purple dots mark DEGs, blue dots mark DEGs whose expression correlates with the
activity of a DAC in the same direction, red dots mark DEGs whose expression correlates with the activity of a DAC in the opposite direction.
B Distribution of gene-to-CRD distances for genes localizing outside the associated CRD boundary (545 gene-CRD associations). C Distribution
of the relative position of gene TSS to the boundary of an associated CRD (652 gene-CRD associations).
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analysis for genes associated with different regulatory mechan-
isms. The accuracy for inferring the most likely causal relationship
for triplets was lower in SCZ cases (mean accuracy estimation
68.3%, sd= 16.8) than in controls (mean accuracy estimation
75.1%, sd= 17.6) (Supplementary Fig. 24a, b). To exclude
ambiguous signals, we proceeded with triplets that surpassed
the accuracy estimation of 55% (764 triplets, 67.3% of studied
triplets; Supplementary Fig. 24c, Supplementary Table 14). While
two-thirds of the triplets displayed the same regulatory mechan-
ism in SCZ cases and controls (Fig. 4A), one-third of studied triplets
showed a change in the directional effect from QTL variant onto
molecular phenotype (Fig. 4B, Supplementary Fig. 24d). These
deviations in regulatory mechanism in SCZ reflect gain or loss in
the regulatory capacity that could either be driven by context-
dependent or genetically predisposed developmental derailment
of gene expression, or affected by external stimuli (e.g.,
treatment). The genes associated with change-associated triplets
were enriched for GO terms related to small GTPase binding, and
filopodium assembly (Supplementary Table 15), highlighting
alterations in the regulatory machinery for gene expression
affecting synaptic function and plasticity, and dendritic spine
morphology in SCZ [47–49].
A perturbation in the regulatory mechanism of gene expression

in SCZ is exemplified by a triplet consisting of an eCRD-QTL
chr6:169646282:A:T associated to gene THBS2 and to a CRD
composed of 18 REs (chr6:169,541,739–169,999,929). THBS2 is an

extracellular matrix protein of the central nervous system that is
secreted by astrocytes to control excitatory synaptogenesis.
Importantly, small GTPase proteins have been shown to play a
key component in the synaptogenic signalling cascade down-
stream of the protein and its neuronal calcium channel subunit
receptor [50–52]. Based on BN, the genetic variant affected first
the activity of the CRD and then the expression of the gene in SCZ
cases (causal model probability 0.99), whereas in controls the
change in CRD activity was a reaction to gene expression (reactive
model probability 0.72) (Fig. 4C). While the eCRD-QTL displayed
the same effect direction on gene expression and on CRD activity
in SCZ cases and controls (Supplementary Fig. 25a, b), both the
CRD and the gene were significantly downregulated in SCZ
samples compared to controls (p-value 0.002 and 0.004,
respectively; Fig. 4D, E), indicating that the eCRD-QTL effect on
THBS2 expression did not translate via the same regulatory
mechanism in both states. Interestingly, this association was
identified only in individuals with African American ancestry
(Supplementary Fig. 25c, d) as the genetic variant was completely
monomorphic in HBCC Europeans. The MAF spectrum of 5% in
HBCC African Americans and 0% in HBCC Europeans is in
concordance with population frequencies estimated in larger
datasets (MAF 5% in Africans/African Americans and 0.0002% in
non-Finnish Europeans) [53]. These results indicate that the
downregulation of THBS2 expression in SCZ cases was mediated
by the regrouping of the identified regulatory regions and
represents a dysregulated step within an abnormal molecular
cascade affecting synapse function in SCZ.

DISCUSSION
Deciphering regulatory mechanisms of gene expression that
reflect molecular perturbation in SCZ are under extensive scrutiny
yet are hindered by the complexity of the SCZ phenotype and
scarcity of relevant molecular data. Studying regulatory activity
that tracks changes in gene expression requires a higher order
analysis approach for signal discernment due to narrow variability
range in regulatory activity and extensive multiple testing burden
[12, 22]. Here we show that taking account of interindividual
correlation between regulatory activity allows to refine changes in
gene expression specific to disease, asserting that disease
manifestation stems from dysregulated gene expression cascades
that are steered by and propagated to the concerted action of REs.
Interrogation of common genetic regulation of gene expression
and CRD activity corroborated that correlated changes in gene
expression and CRD activity are affected by the same genetic
driver. Our results agree with findings showing considerable
overlap between QTL effects on chromatin accessibility and gene
expression [12], that a single genetic variant drives the association
between multiple chromatin peaks and a single gene [20], and on
the convergence of deviations detected in different molecular
layers as seen for gene expression and methylation [54] and for
gene expression and acetylated histone peaks [22]. Applying
causal inference to study the causal relationships among genetic
variants, genes and CRDs revealed regulatory machinery changes
affecting synaptic function and dendritic spine morphology in SCZ
which are in line with established molecular abnormalities
identified for the disorder [47–49]. The deviations in regulatory
mechanisms reflect gain or loss in the regulatory capacity that
could either stem from genetic predisposition, are acquired in
disease progression or result from chronic pharmacology. Clear
discernment of the proposed origins of effect was hampered due
to small sample size and unavailability of relevant data yet allowed
to draw the following conclusions.
First, our results support the neurodevelopmental hypothesis

for schizophrenia. Multiple studies have highlighted the con-
cordance of SCZ heritability enrichment for open chromatin
regions in fetal and in SCZ DLPFC samples and the stability of

Fig. 3 SCZ-specific QTL effects. Genotype-dependent effect on
(A) CRD activity and (B) gene expression identified only in SCZ cases.
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methylation and expression feature deviations in fetal brain
development that persist into adulthood for those affected by the
disorder [9, 12, 13, 22, 55]. Using DLPFC H3K27ac peaks captured
within the PsychENCODE Human Brain Developmental resource
[38], we identified significant enrichment of SCZ-specific CRDs for
fetal vs adult regulatory activity. Furthermore, peaks either within
SCZ-specific CRDs or within up-regulated DACs showed significant
enrichment for SCZ GWAS variants, replicating the findings by
Girdhar et al. [22], and implying that a considerable proportion of
signals detected in the current analysis reflect brain development
derailment due to genetic predisposition for SCZ. While we found

modest colocalization for detected QTLs with SCZ-predisposing
genetic variants, the results reflect direct correlation between
sample size and QTL signal detection [56] and hence are in
proportion to colocalization signals ascertained in previous
findings [9, 12, 43, 57]. Second, while molecular data used in this
study was extracted from bulk tissue, consistent comparison with
signals identified in control samples provided confidence that the
identified deviations in SCZ cases captured the most notable
disease-specific molecular abnormalities in DLPFC. This is further
supported by investigations revealing that DLPFC transcriptomic
profiles are generally biased toward neuronal populations [54],

Fig. 4 Regulatory mechanisms for eCRDQTL-CRD-gene triplets in SCZ cases and controls. Comparison of the direction of effect from eCRD-
QTL onto gene expression and CRD activity for tested triplets between SCZ cases and controls: A triplet count for models showing the same
regulatory mechanism in SCZ cases and controls, and B triplet count for models showing a change in the regulatory mechanism between SCZ
cases and controls (term “different” indicates either reactive or independent model; light blue bar indicates triplets, for which the causal
model (i.e., mediation via CRD for QTL effect) was not identified in SCZ cases nor in controls). C Distinct regulatory mechanism of the genetic
regulation on gene expression for SCZ cases and controls for a triplet consisting of an eCRD-QTL chr6:169646282:A:T, gene THBS2 and a CRD
composed of 18 REs on chr6:169,541,739–169,999,929; the probabilities based on the BN analysis for each tested model is given above
schematics; shading of the colour for the gene and for the CRD indicates strength in expression and activity, respectively, relative to the other
disease status group (SCZ cases vs controls). D, E Distribution of CRD activity and THBS2 gene expression for SCZ cases and controls.
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that SCZ risk variants are overrepresented in neuronal vs non-
neuronal open chromatin regions [58], and that SCZ-specific
deviations detected for CRDs identified in DLPFC neuronal NeuN+

nuclei samples overlap with those detected in bulk DLPFC [22].
Third, studying QTL effects on gene expression and on CRD
activity separately in SCZ cases and controls allowed to
discriminate context-dependent genetic effects on both molecular
phenotypes, indicating gain in regulatory capacity that translated
into gene expression and coordinated regulatory activity varia-
bility only in SCZ cases or showed significantly different effect
between the two groups. Fourth, while the unavailability of
treatment information for the HBCC cohort precluded testing
whether molecular-level differences in SCZ cases were impacted
by pharmacological effects, previous studies that showed
concordant DEG signals (Supplementary Fig. 14b) and H3K27ac
peak content (Supplementary Methods) with those found in the
current analysis, identified that differential gene expression and
chromatin alterations in SCZ were not driven by antipsychotic
intervention [22, 43], suggesting that treatment effect could not
have been the main trigger for differential analyses results
between SCZ cases and controls. Fifth, while we applied a PC
analysis-based approach to capture any biological and technical
variability in molecular phenotype quantifications, our results of
BN analysis using gene expression and CRD quantification data
could have been affected by unmeasured and uncaptured
confounders, given that we see larger error in detecting cQTLs
compared to eQTLs (Supplementary Fig. 26). Lastly, inclusion of
individuals of European and African American ancestry augmen-
ted signal identification and corroborates that the genetic basis of
SCZ and its biology are broadly shared across populations
[7, 34, 59].
Altogether, we have outlined that leveraging higher-order

structural resolution of regulatory activity allows to reduce the
search space for unveiling genetically perturbed regulation of
gene expression specific to SCZ. We anticipate that cell-type
specific gene expression and open chromatin exposure profiles in
larger sample sets would allow better delimitation of CRD
chromatin peak content, facilitate the identification of trans-
regulatory hubs across different chromosomes as well as enhance
more robust detection of origin effect for gene expression
deviations, thereby increasing our understanding of perturbed
functional pathways underlying schizophrenia and for prioritizing
targets for experimental investigation and novel treatment
development.
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