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In vivo tractography of human locus coeruleus—relation to 7T
resting state fMRI, psychological measures and single subject
validity
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The locus coeruleus (LC) in the brainstem as the main regulator of brain noradrenaline gains increasing attention because of its
involvement in neurologic and psychiatric diseases and its relevance in general to brain function. In this study, we created a
structural connectome of the LC nerve fibers based on in vivo MRI tractography to gain an understanding into LC connectivity and
its impact on LC-related psychological measures. We combined our structural results with ultra-high field resting-state functional
MRI to learn about the relationship between in vivo LC structural and functional connections. Importantly, we reveal that LC brain
fibers are strongly associated with psychological measures of anxiety and alertness indicating that LC-noradrenergic connectivity
may have an important role on brain function. Lastly, since we analyzed all our data in subject-specific space, we point out the
potential of structural LC connectivity to reveal individual characteristics of LC-noradrenergic function on the single-subject level.
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INTRODUCTION
The locus coeruleus (LC) as the primary source of noradrenaline (NA)
in the human brain has been functionally and anatomically studied
for decades using histological techniques and electrophysiological
measures. Its central importance for key cognitive processes such as
cognitive control, arousal and attention, memory, and emotions have
widely been confirmed based on task studies in both animal and
human experiments [1–4]. Evidence is accumulating for its prominent
role in prevalent degenerative brain disorders such as Alzheimer’s
[5–8] and Parkinson’s disease [9]. Recent studies have further
confirmed involvement of the LC in depression and anxiety disorder
[10, 11]. To date, different attempts have been made to gain insight
into the functionality and microstructure of the human LC. The
anatomical region itself can be depicted in MRI by applying
neuromelanin-sensitive sequences [12, 13] to generate measures of
LC structural integrity (for reviews see [14, 15]) which have been
shown to correlate with proposed psychological capacities of the LC
and the mentioned diseases [16–18]. Recently, functional MRI studies
have assessed the general interplay between the LC with other brain
regions [19–22], disturbances in LC functional connections and
structural integrity in aging [23, 24] and associations with anti-
depressant medication [25]. Recently, we underpinned the former
used methods by using neuromelanin-sensitive sequence to extract
fMRI signal from the individual subject-specific location of the LC [22].

But one important step in assessing the individual structure of
the LC is still missing. Since the functionality of the LC and
consequently the disturbances in the associated diseases lie in the
spillover of NA throughout its long-reaching nerve fibers [26, 27],
the structural connections of the LC and how they relate to
individual differences in functional connectivity should be
investigated. In the following study, we map the structural fiber
connections of the LC to all its important target regions in the
human brain using magnetic resonance imaging (MRI). Here, we
examine the relationship between structural (23 healthy partici-
pants) and functional (18 healthy participants of the same group)
LC connectivity in the brain and emphasize the advantages of
structural mapping compared to functional connectivity. Thereby,
we will show that the structural connectivity is highly related to
key psychological trait measures of LC related brain function:
alertness and anxiety [28].
Based on previous knowledge from animal studies we

hypothesized to uncover LC fibers with widespread connections
to the whole neocortex, basal forebrain, limbic system, the
thalamus, hypothalamus, and brainstem regions [2], as well as the
the thalamus which receives extensive noradrenergic innervation
[29]. The anterior cingulate cortex may have sparse LC innervation
compared to the posterior cingulate cortex [30] and regarding the
neocortical innervation, we expected a dominance of the
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somatosensory cortex and sparsity in posterior parietal and visual
regions [31]. To appropriately measure the exact location of the LC
target signal, we aimed to delineate the LC of each participant
using neuromelanin-sensitive MRI as performed in our former MRI
study [22]. Starting at the individual LC origin, we wanted to trace
the LC structural connectivity into the brain using diffusion-
weighted magnetic resonance imaging (dMRI). For reduction of
reconstruction biases and improvement of biological plausibility
of the structural connectome, we aimed to apply the recently
developed algorithm of spherical-deconvolution informed filtering
of tractograms (SIFT), to reveal the underlying connectivity
patterns of the LC in vivo [32]. To learn about the association of
structural connections and the functional integration of the LC
within other brain regions, ultra-high field 7T resting-state
functional MRI (rs-fMRI) data of the subjects were collected with
the intention to assess the relationship between the LC blood-
oxygen-level-dependent (BOLD) signal and the same brain regions
we investigated for structural connectivity. All functional data
were processed subject-specific within the segmented anatomical
data without using any registration templates. We expected
concordance between structural and functional connectivity, at
least in highly connected brain areas. To gain insight into practical
applicability and into typical LC trait properties, we set out to
evaluate how psychological measures are associated with LC
structural and functional connectivity. We assessed the State-Trait
Anxiety Inventory (STAI, [33]) to relate LC structural connectivity to
anxiety [34] and conducted the attention network task (ANT) [35]
with a focus on its alertness properties, which are tightly linked to
LC noradrenergic control [36]. Based on previous research linking
LC signal intensity and corresponding LC cell loss in Alzheimer’s
and Parkinson’s to disease vulnerability [37–39], we proposed low
fiber count to be a corresponding risk factor for adverse alertness
and anxiety scores [27]. Recently, the LC structural connectivity to
selected target areas was inspected [40–42], and we aim to extend
the ongoing research with our anatomical based tractography
method, SIFT2 tractography to get closest to biologically accurate
fiber count, whole brain analysis and comparison of our results
with 7T rs-fMRI and behavioral data.

RESULTS
Characterization and comparison of LC structural connectome
on a single subject level
Based on the 3T MRI diffusion data, we computed tractography
starting from the individual segmented LC location (identified
using a neuromelanin-sensitive 3T TSE sequence) to the whole
brain for all subjects separately, with all segmented and
anatomically labelled areas of each individual whole brain as
possible tractography target regions (based on the Glasser atlas
parcellation, see methods section for the whole procedure).
Visually we found a very high concordance between structural
connections of the LC in vivo with known LC projections
determined from prior anatomical knowledge. All subjects showed
higher structural connections from the LC to the thalamus, ventral
diencephalon, basal ganglia, cerebellum, presubiculum, entorhinal
cortex, hippocampus, amygdala, and the nucleus accumbens.
Regarding neocortical innervations, a dominance of the basal
forebrain, polar frontal cortex, primary motor- and sensory cortex,
and mid-to posterior cingulate was evident. The similarity in
structural connectivity between the subjects was remarkably high
(G-coefficient 0.99, D-study result for a single subject 0.87, see
Supplementary Figs. 1 and 2 for an illustration of all subjects). We
additionally investigated the functional connectivity of the LC by
extracting the blood oxygen level dependent (BOLD) signal in the
individually segmented LC area using 7T resting-state MRI. Then,
we correlated the timecourse of the haemodynamic LC response
to the BOLD signal extracted from all other individually
segmented brain areas (see methods section). Figure 1 shows

the structural and functional LC connectome of one example
participant. Supplementary Figs. 1 and 2 illustrate the raw and
z-transformed connectivity values of the structural LC connectome
and the corresponding functional connectivity measures of all
subjects to provide a direct comparison on a single subject level.
The individual results from all subjects demonstrate much higher
intersubject variability for functional (G-coefficient 0.80, D-study
result for a single subject 0.18) compared to structural connectivity
(G-coefficient 0.99, D-study result for a single subject 0.87,
Supplementary Fig. 3). Interestingly, subcortical areas such as
thalamus and ventral diencephalon, which showed the highest
structural connectivity were also highly functionally connected to
the LC (Supplementary Fig. 2, first and second rows).

Group statistics for LC structural connectome and relationship
to functional connectivity
Using a one-sample t-test, the structural connectivity analyses
revealed 249 from 387 areas significantly connected to the LC on
the group level (FDR < 0.05). Not surprisingly, given the similarity
of the results even evident on a single subject level (Supplemen-
tary Figs. 1 and 2), highest F-values were found between LC and
thalamus, ventral diencephalon, basal ganglia, supplementary
motor cortex (6ma subregion), nucleus accumbens, orbitofrontal
cortex and medial temporal cortex (presubiculum, entorhinal
cortex, hippocampus; Fig. 2, Supplementary Table 1). With respect
to LC functional connectivity, highest effect sizes (h-values) were
found to thalamus, cerebellum, ventral diencephalon, hippocam-
pus, and areas of the posterior cingulate cortex (CONN, FDR < 0.05;
Figure 2, Supplementary Table 1). Hereby, we found that both the
variability of the functional connectivity and the structural
connectivity between LC and certain brain regions were
dependent on the connectivity strength, with highly connected
brain areas showing lower coefficients of variation than loosely
connected regions (Supplementary Fig. 5, Spearman correlation
p < 0.001). Figure 2 presents the group statistics of the structural
and functional LC connectome and Fig. 3 the relationship
between the two measures. Brain regions with high structural
connectivity to the LC also exhibited strong functional connectiv-
ity, although we did not expect that all regions that are
anatomically linked to the LC would necessarily also show high
corresponding activity in the resting state. Statistically we found a
positive linear relationship between fiber count and functional
connectivity in brain regions with high structural connectivity
(Figure 3, p= 0.001), whereas brain regions with sparse LC
connectivity did not show such a relationship (Fig. 3). The overall
G-coefficient, involving all data, between structural connectivity
and functional connectivity demonstrated moderate conformity
(G= 0.59). Supplementary Fig. 3 summarizes all possible
G-Coefficients for fMRI and DTI results and their interaction with
respect to the number of subjects included in the model. For
example, in fMRI 14 subjects have to be included into the model
to reach an overall good G-coefficient of G > 0.75, whereas in our
LC DTI measurements, a single subject already reaches a
coefficient of G= 0.87.

Relationship between LC structural connections and
psychological measures
To investigate whether LC structural connections are related to
psychological measures, all subjects conducted the subjective
STAI questionnaire and the alertness properties of the ANT. Both
scores showed significant correlations with LC structural con-
nectivity to most brain regions. As proposed, we found an inverse
relationship between both measures with lower structural
connectivity predicting higher anxiety scores in the STAI and
lower scores in the reduction of reaction times with respect to
alertness in the ANT. In other words, subjects that showed
reduced connections from LC to most of the brain areas tended to
exhibit increased anxiety and were not able to improve in a task
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known to recruit the noradrenergic system (STAI: 161 regions
p < 0.05 FDR corrected; ANT: 129 regions p < 0.05 FDR corrected,
Supplementary Table 2). Figure 4b and c show the widespread
relevant brain regions for state anxiety and alertness regarding LC
structural connectivity, with correlation coefficients coded by color
highlighting the areas with the highest correlation R-values. Areas
with the most prominent relationship to alertness (r coefficients in
brackets, FDR corrected p < 0.05 for all areas) comprised posterior
cingulate areas (parts of Brodmann areas 23 (0.90) and 31 (0.88),
POS1 (0.85), 24dv (0.80), PCV (0.78)), auditory (early, core, and
secondary auditory areas with right-sided dominance(A1 0.87, A4
0.88, TA2 0.83, MBeRt 0.83), an inferior region of the dorsolateral
prefrontal cortex (8c (0.86)), somatosensory association hand and

foot area IP1 (0.86) and OP1 (0.85) [43], premotor cortex areas (6v
(0.83), FOP1 (0.78), 43 (0.78)), medial prefrontal cortex (9m (0.80))
and posterior insula (PoI1 (0.77)), primary somatosensory regions
(3b (0.77), 5m (0.77)), ventral diencephalon (0.58) and left
amygdala (0.59) (Figure 4b, Supplementary Table 2 for all statistics,
Supplementary Fig. 6). Regarding anxiety, the overall pattern was
similar to alertness, however there was more involvement of
memory-related regions in the medial temporal cortex (hippo-
campus (0.56) and perientorhinal/periectorhinal complex (0.49,
0.97)), the insula granular (Ig (0.80)), and the anterior cingulate
(p24 (0.74), a24pr (0.71); Figure 4a displays most characteristic
regions, Supplementary Fig. 4 delineates group differences
between alertness and anxiety r-values, Supplementary Table 2

Fig. 1 Structural and functional locus coeruleus (LC) connectivity. Illustration of structural (a, c; SIFT2 filtered tractography) and functional
(b, 35 min resting-state fMRI) LC connectivity in one example participant. The segmented brain regions represent the individual subjects’ brain
anatomy of the areas that are connected with the LC. The opacity and color of those regions illustrate the strength of connectivity where blue
colored regions show highest connectivity.
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for all statistics). Contrary to the strong structural connectivity
findings, we did not find a significant relationship between STAI or
alertness scores with functional connectivity (no brain area
survived multiple correction, FDR p < 0.05).

DISCUSSION
We describe a procedure how recently developed MRI methods can
be applied in vivo to uncover the structural connections of the LC to
the whole human brain. Our results are compatible with anatomical
and conceptual evidence of the known effective and functional
connections of the LC. We compare the structural connections of
this key brain region with its functional connectivity using a single-
subject approach, revealing higher intersubject-similarity compared
to functional connectivity assessments. We found that the brain
areas showing highest structural connectivity with the LC also
showed the highest functional connectivity. To show a practical use-
case of LC structural connectivity, we reveal that key psychological
measures related to the LC strongly correlate to the degree of LC
connectivity particularly to neocortical brain areas even in healthy
young adults. Most importantly, we provide a first view of how
psychological inferences on a single-subject level may be carried
out using in vivo MRI.
We found connectivity between the LC and most of the cortical

and subcortical brain areas, with pronounced connectivity to the
thalamus, ventral diencephalon, basal ganglia, motor cortex,
cerebellum, amygdala, nucleus accumbens, and temporal brain
areas including the entorhinal cortex, presubiculum, and hippo-
campus. These areas also exhibited strong positive functional
connectivity to the LC, which may in part reflect the direct

noradrenergic influence of the LC on its target regions: The LC-
thalamic structural and functional connectivity is relevant for the
weighting of the sensory information, that is brought through
bottom-up connections from the whole body to the brain and is
relayed within the thalamus [44–46]. The ventral diencephalon
includes the hypothalamus, mammillary body, subthalamic nuclei,
substantianigra, rednucleus, lateralgeniculatenucleus,andmedial
geniculate nucleus. Especially the hypothalamus is known to be
involved in LC circuits, with the preoptic area regulating wakeful-
ness [47], and important afferents to the LC originate from that [48]
area. The noradrenergic innervation of the cerebellum is strikingly
relevant for the adaptive ability to coordinate movement [49]. Of
great interest is the structural connectivity to the hippocampal and
parahippocampal areas comprising the hippocampus, entorhinal
cortex, and presubiculum, since those regions are the key areas for
memory and they degenerate in Alzheimer’s disease [50–52]. The
neocortical LC innervation is attributed to its arousal and
wakefulness-promoting action [53], with a dominant role in the
basal forebrain [54], and modulatory roles in the motor [55] and
sensory cortices [56]. A clear difference regarding LC resting-state
functional and structural connectivity was found in the dense fiber
projections to the primary somatomotor cortex and no relevant
corresponding functional connectivity, whereas equivalently
structural and functional connectivity to secondary somatosen-
sory- andmotor areaswasobserved. This is not surprising, since the
resting state does not require noradrenergic support of actual
movements [57], which are induced in the primary motor cortex,
butmay integrate sequences of higher-ordermovements coded in
the secondary motor areas in the internal rumination of thoughts
[58]. Equally, tactile events, which may trigger primary sensory

Fig. 2 Group statistics and relationship between functional and structural locus coeruleus (LC) connectivity. Regions with high structural
connectivity (a, DTI) are also strongly functionally (a, fc) connected to the LC (FDR p < 0.05), most evident in the subcortical thalamic, ventral
diencephalic, cerebellar regions and the presubiculum (regions counter-clockwise ordered by strongest structural and functional connections,
see also Supplementary Table 3 for Glasser abbreviations). In (b), colors and opacity illustrate group statistics of strength of functional (left
column, group level FDR p < 0.05, h-values) and structural connectivity (DTI, right column, group level FDR p < 0.05, F values) to the whole
brain, with blue colored regions representing strongest connectivity.
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noradrenergic support, are not present at rest. The both strong
functional and structural LC-primary visual area (V1) connectivity
can be explained by the dominant involvement of the V1 region in
human imagination [59]. In concordancewith anatomical findings,
the LC structural connectivity to the neocortex was dominated by
fibers to sensory-motor regions, and those patterns including the
subcortical innervation and are in keeping with known myeliniza-
tion in neonates, which begins in the same regions [60]. This may
reflect the anthropological importance of LC innervation in regions
responsible for functionspertaining tobasic survival. Topotentially
relate our results to diagnostics with the aim to uncover
psychological traits or disease vulnerability, the method should
be stable with respect to a healthy study population. The
intersubject-similarity of the structural connections of the LC was
remarkably high, especially much higher in comparison to
functional connectivity, even though we used to the best of our
knowledge themost recent technical possibilities to assess resting-
state functional connectivity: longscantime,ultra-highfield7TMRI,
visualization of the target structure, single-subject assessment
without smoothing and no registration to a template which may
result in lost signal. However, we interpret the variability in the
functional connectivity as a challenge to learn more about the
individual configuration of LC resting-state connections, since the
presented patterns may present real differences in state brain
connectivity. Forpotential futuregroupstudies,weprovideagraph
with G-coefficients dependent on the number of included subjects
forLCDTIandfMRImeasurestogivean impressionofbaselineresult
variability (Supplementary Fig. 3). Based on our results, LC resting-
state fMRI variability starts to decrease and consistent patterns
begin to emerge if a minimum of 14 subjects are included and
statistically concatenated in theanalysis (consideringour long fMRI
scan time: 35min fMRI run)—whereas in terms of our LC
tractography method, even the single subject alone was sufficient
to make inferences about structural interconnections within the
brain (22 min DTI run).

The similarity of structural connectivity in our subjects per se are
promising results, and to begin to understand LC-mediated
behavior we demonstrate that LC connectivity correlates with
psychological diversity even in healthy young adults. Both
alertness and anxiety were strongly associated with LC fiber
count to numerous brain regions, in particular frontal control,
parietal attention related and paralimbic/limbic regions. The
general patterns of alertness and anxiety-related LC structural
connectivity were similar—as denoted in the following paragraph,
but they differed in sensory processing related regions, which
showed especially strong LC innervation related to alertness
(Fig. 4b), whereas memory-interoception associated regions
exhibited prominent LC innervation related to anxiety (Fig. 4a):
Both anxiety and alertness require preparation of fight and flight
(in our results BA 6, including frontal eye field [61], frontal cortex
“top-down” control of actions and thoughts (we found BA 11, 10,
9m related to alertness [62]; BA 11 and 10 to anxiety [63], parietal
regions for stimulus selection [64], the amygdala in emotional
attention [65, 66] and the insula region in terms of interoceptive
awareness and maintaining alertness (alertness PoI, anxiety Ig,
[67–69]. However, alertness depends more on the mapping of
actual external sensory signals of the environment (in our results
primary sensory cortex area 3; auditory sensory areas, primary
visual and visual processing areas [70–72], whereas anxiety relies
to a large extent on the retrieval and integration of introspective
information (fear circuit involving anterior and posterior cingulate,
hippocampus, amygdala [73]. From an information-flow perspec-
tive, the outlined patterns of alertness and anxiety-related LC
structural connectivity can also be related to the concepts of
frontoparietal attention, dorsal attention, and cingulo-opercular
(salience) networks [69, 74, 75]. In all those target areas, LC-
controlled NA spillover works as a promotor of relevant
information and the LC considerably moderates those external
and internal directed processes and the permanent integration of
their outcome [44, 64, 71, 76, 77]. The relationship of LC fiber

Fig. 3 Structural and functional locus coeruleus (LC) whole-brain connectivity showed a linear relationship (Pearson’s r= 0.687,
p= 0.001). Big circles represent mean connectivity values to each brain region (right and left hemisphere) whilst small symbols illustrate
connectivity on the individual subject level (e.g., two small red triangles represent LC connectivity to the right and left thalamus for one
subject). This association is driven by regions with both high structural and functional connectivity, which reveals that brain areas with high
structural connectivity to the LC are also tightly functionally linked to the LC in the resting state, e.g., the thalamus or ventral diencephalon.
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count to alertness and anxiety-related regions found here
highlights the specificity of structural LC connectivity for LC-
related brain functions and its importance for their proper
functionality.
Due to the strong association between LC tractography and LC-

related psychological measures, we can clearly show the
applicability and feasibility of the method compared to functional
connectivity and provide a first reasonable view of patterns
regarding alertness and anxiety-related cortical innervation. Most
strikingly, when focusing on the subjects at the lower and upper
end of anxiety and alertness scores, their individual psychological
ability to cope with LC and NA related challenges may be evident
by looking at the specific patterns of sparsity or density of
neocortical LC innervation (Fig. 4c).
Using LC tractography, we can replicate anatomically and

functionally known connectivity patterns in vivo and elucidate
that LC structural connectivity patterns are related to typical LC
trait scores. Importantly, our structural results reach out beyond
the indirect nature of functional connectivity, which can be
mediated by a third brain part, to a more direct representation of
the underlying LC anatomical connections, and thus may allow to
uncover the relationship to psychological traits associated with
LC function. The clinical applicability of the procedure presented
here should be evaluated by comparable studies including
clinical populations with patients suffering from psychiatric
disorders or neurodegenerative disease. Longitudinal studies
might shed light on the processes how LC structural connectivity
predicts dynamics in psychiatric symptoms, such as its relation to
heightened anxiety or reduced alertness, and potentially aid with
response prediction to treatment based on structural connectiv-
ity. Especially, individuals with less structural LC connectivity and
thus more affected NA system might be more responsive to
certain drug therapies compared to individuals with higher
connectivity. Gained knowledge about the structural alterations

of LC connectivity could then support a more fine-grade
diagnostic classification of the patients based on their individual
disease pathology.

Limitations
Since we analyzed a small number of healthy, young, male
subjects of western population (Supplementary Table S4), the
results demonstrating a relationship between LC structural
connectivity and psychological traits are of limited generalizability,
but show the general capacity of the method to uncover
psychological characteristics even in the individual subject.
Importantly, our G-study results indicate, that even a single
tractography measurement has sufficient validity to shed light on
the individual structural connectivity of the LC.
We found no association of LC rs-fc to ANT and STAI, which

could be related to the known low to moderate test-retest
reliability of fc [78]. This interpretation is underpinned by the low
D-study fc result of a single subject in our findings, which could
stem from both MR signal noise components and physiological
variability in the LC network. A recent paper suggests that stable
fc networks can be generated with 22 subjects in 7T MRI [79]. Our
number of 18 included subjects is somewhat lower, but it is
based on a scan time twice as long, which should result in an
increase in stability. However, at the same time it should be
noted, that even single subject studies are able to identify
relevant patterns of BOLD fc if the protocols used are suitable in
duration in 7T MRI [80], suggesting that many of the features
established in our study can be expected to replicate in a bigger
study sample.
It would be desirable in future studies to delineate the LC

brainstem nucleus using automated methods to overcome
potential variability in manual segmentation as conducted here.
Nevertheless, in respect to the voxel size of the DTI and fMRI
sequences applied in this study, small variability in human

Fig. 4 Relationship between locus coeruleus (LC) structural connectivity and psychological traits. Most brain areas (a, b) that are
structurally connected to the locus coeruleus (LC) showed a negative correlation to anxiety (STAI, a) and positive correlation to alertness (b)
scores. All areas depicted in the further-back anatomy illustrations in (a, b) significantly correlated to anxiety (a) and alertness (b) with respect
to LC structural connectivity, whereas the foreground illustrations single out the correlations with a very high r-coefficient only (r > 0.7, see
Supplementary Table 3 for Glasser abbreviations). c Shows LC whole brain structural connectivity (raw z-values, see also Supplementary Fig. 2
for all subjects) of three example subjects: subject ‘8’, whose behavioral score was high in anxiety/low in alertness and who exhibits overall low
structural LC connectivity, subject ‘5’ with medium values, and subject ‘7’ with low anxiety/high alertness effects and overall dense LC
structural connectivity. c Illustrates, how structural connectivity of single subjects may provide a first impression of psychological traits.
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delineation of the nucleus is neglectable, since the fine-grade
delineated LC masks are transformed to the DTI and fMRI data and
the signal extraction is limited to the one to two millimeter-
resolution of the main sequences.
In terms of registration of anatomical, diffusion and functional

MRI data, extensive visual inspection was performed to guarantee
exact alignment of the scans. Our 3T tractography data may have
especially benefited from the advanced top-up-distortion correc-
tion, whereas for the functional 7T MRI data, the widely used
fieldmap-based distortion correction was applied.

CONCLUSION
Localization and subject space-based structural connectivity
of the LC is a promising method to gain information about
noradrenergic-related brain functionality on a single-subject level.
The high intersubject-stability, its concordance with functional
connectivity and associations with psychological measures
emphasize and encourage its applicability in clinical trials.

METHODS
Participants
Twenty-five male subjects (mean age 24.8 ± 4.2) were recruited by public
advertisement. For inclusion and exclusion criteria we refer to
the Supplementary Methods. The study was approved by the institu-
tional ethical review board of the University of Magdeburg, and all
subjects gave written informed consent in accordance with the
Declaration of Helsinki. The collected data of the study are available
on request from the authors.

Behavioral assessments
STAI [33] scores (see Supplementary Methods) were assessed before 7T
functional MRI scan one and two and before scan three (see section ‘MRI
data acquisition’). Both scores showed a high internal consistency and test-
retest reliability (Cronbach’s alpha= 0.88, intraclass correlation coeffi-
cient= 0.785) and we calculated the mean of the two measurements to
create a stable baseline for further analyses. The ANT [81] can be described
as a modified version of the Erikson flanker task [82] disentangling human
attention networks (see Supplementary Methods).

MRI data acquisition
Structural image acquisition and the acquisition of a neuromelanin-
sensitive sequence was performed using a Siemens MAGNETOM Prisma 3 T
MRI scanner with syngo MR E11 software and a 64-channel head coil as
published previously [22] (Supplementary Methods).
Diffusion weighted images were acquired with a monopolar single-shot

spin echo EPI sequence on the same scanner with the following parameters:
TE= 74 ms; TR= 4970 ms; flip angle α= 90°; parallel GRAPPA acceleration
factor= 2, matrix: 130 × 130; FOV= 208 × 208mm2; spatial resolution= 1.6
× 1.6 × 1.6mm3; multiband acceleration factor= 2; phase-encoding direc-
tion: anterior > > posterior; 228 isotropically distributed diffusion sensitiza-
tion directions (38 at b= 1.000 s/mm2, 76 at b= 2.000 s/mm2, and 114 at
b= 3.000 s/mm2) and 14 b= 0 s/mm2 images (interspersed throughout the
acquisition) were collected. The sampling scheme was designed according
to Caruyer (http://www.emmanuelcaruyer.com/q-space-sampling.php; [83].
To generate appropriate fieldmaps to correct for susceptibility-induced
distortions, nine b= 0 s/mm2 images with reversed phase encoding
(posterior > > anterior) were also acquired. The total scan duration was
22min 31 s.
Functional MRI data were collected using a Siemens MAGNETOM 7 T MRI

scanner with Siemens Syngo VB17 software and a 32-channel head coil
using a multi-band accelerated T2*-weighted echo-planar imaging (EPI)
sequence. We acquired eyes-closed resting-state fMRI data with total scan
duration of 35min. For parameters of the 7T fMRI sequence we refer to
the Supplementary Methods.

Definition of individual LC location
The LC was manually segmented in the subjects by a radiologist
experienced in neuroradiology as described in our previous study [22]
(Supplementary Methods).

Brain parcellation
T1 images were processed using the FreeSurfer pipeline [84] version 7.0
with default parameters which included defining ROIs according to the
HCP MMP 1.0 atlas [85]. The output of every subject was checked visually
by viewing the subcortical segmentation and the white and pial surfaces
using the freeview tool available in FreeSurfer and two subjects were
excluded due to insufficient anatomical parcellation. The resulting
segmentations (aparc- and aseg-files) comprised all cortical and subcortical
regions (180 atlas regions on each cortical hemisphere, plus 19 subcortical
regions (2 × 9 plus brainstem)). In total 379 nodes were defined. Using the
MRtrix [86] tools mrcalc and mrtransform the brainstem region was
excluded and replaced by the LC region (Supplementary Fig. 7 for an
illustration of parcellation).

dMRI preprocessing
DICOM to NIFTI conversion was carried out using dcm2niix (https://
github.com/rordenlab/dcm2niix). Afterward, the data were denoised with
the dwidenoise tool and Gibbs ringing artifacts were removed with
mrdegibbs tool of MRtrix. The FMRIB software library (FSL, University of
Oxford, https://fsl.fmrib.ox.ac.uk/fsl/) version 6.0.1 was used for the
correction of EPI distortions, eddy current artifacts, and subject movements
along with the dMRI scans. All corrections were simultaneously done using
the topup/eddy procedure [87]. To improve the brain mask estimation
using the dwi2mask tool a bias field correction of the data was done
before applying the dwi biascorrect tool and the -ants option [88]. Using
dwi2respose (with the “dhollander” algorithm for multi-shell data [89]), we
estimated response functions from the preprocessed diffusion-weighted
data. These were then used to estimate fiber orientation distribution (FOD)
based on 8th order constrained spherical deconvolution using dwi2fod
[90]. Specifically, the msmt_csd algorithm [91], which facilitates the
computations of three separate FODs for gray-matter (WM), white-matter
(GM), and cerebrospinal fluid (CSF) based on multishell data was used. A
global intensity normalization of the FODs was done (MRtrix command
mtnormalise) to get comparable FODs between subjects.

Fiber tracking and connectome construction
Anatomical images and parcellations were affine transformed to the
undistorted dMRI space using the FSL tool flirt as a rigid body
transformation [92]. To take advantage of anatomical constrained
tractography (ACT; [93]) the tool 5ttgen implemented in MRtrix was
applied to the T1 images based on masks for the GM/WM-boundary which
were created using the MRtrix tool 5tt2gmwmi. Probabilistic tractography
was performed in two ways: (a) whole-brain probabilistic tractography by
randomly seeding 50 million fibers within the GM/WM mask and (b) seed-
based tractography with the binary LC mask as seed and 20 million fibers
for each subject. The MRtrix tool tckgen with default parameters assisted
by ACT, the -backtrack option and a maximal path length of 200mm was
used. After the fiber tract generation both tracts were combined for each
subject using tckedit and the spherical-deconvolution Informed Filtering of
Tractograms (SIFT2) procedure (MRtrix command tcksift2) was applied [32].
Finally, the SIFT2 outputted streamlines were parcellated into a set of 379
regions of the HCP MMP 1.0 atlas (MRtrix command tck2connectome) [32].
For visualization with mrview streamlines were extracted from the
tractograms based on their assignment to parcellated nodes (MRtrix
command connectome2tck).

fMRI preprocessing
The fMRI preprocessing pipeline was similar to our previous publication
[22], but no registration of the subjects into MNI space and no smoothing
of the data was performed (Supplementary Methods). Five subjects had to
be discarded because of strong EPI distortion and consecutive insufficient
registration to the anatomical template.

Statistical analysis
For statistical analysis, SPSS Version 20 and R Version 4.0 [94] were used.
For intraclass correlation calculation, Generalizability Theory [95] was
applied ([96] for an review of the Generalizability Theory method,
Supplementary Methods).
For calculation of a possible linear relationship of functional and

structural connectivity on the group level, we computed Pearson
permutation correlation coefficients in R with 50,000 iterations, with brain
region-specific averaged z-transformed h-values extracted from CONN
served as functional connectivity measure and brain region-specific
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averaged z-transformed SIFT2 fiber count served as the structural measure.
We split this investigation to examine regions with high and low fiber
count (z > 0, z < 0, with 0 representing the mean of the data) after
revealing a significant positive relationship of all data (p < 0.001). For
calculation of individual regions’ LC connectivity variability, we calculated
the coefficient of variation (the ratio of the standard deviation to the
mean) of positively functionally connected regions (z > 0) and for
structurally connected regions with high fiber count (z > 0). The
coefficients of variation of the single regions were then Spearman-
correlated to the mean connectivity strength of the respective regions
using SPSS (Supplementary Fig. 5). Group statistics of functional
connectivity data were performed by CONN built-in functions. For ROI-
to-ROI functional connectivity analysis, a matrix of Fisher-transformed
bivariate correlation coefficients between the individual LC masks’ time
series and individual Freesurfer segmented brain regions was individually
calculated. Then, a ROI-to-ROI analysis was performed, with NBS based [97]
intensity thresholding (computing the sum of test statistic values across all
connections comprising the component as an alternative to ’extend’
thresholding, which simply counts the number of connections, equivalent
to ‘cluster mass’ as known in cluster-based statistics [98] and seed-level
threshold to an FDR p < 0.05 after permutation testing was performed
(1000 iterations) to account for the total number of connections included
in the analysis, as suggested by default CONN settings. T-statistic values
and h values, as a measure of effect size, were reported, with h values
representing the mean Fischer transformed pairwise correlations between
LC and the connected ROI’s. CONN calculation formulas are presented in
the supplementary material. Group statistics of structural connectivity data
were performed with network-based statistics (NBS, [97]) built-in FDR
function performing a one-sample test based on 100,000 permutations.
The relationship of STAI and ANT alertness scores and LC structural
connectivity was assessed with one-sided Pearson permutation correla-
tions with 50,000 iterations in R. Only brain areas with structural
connectivity in at least 10 subjects were included in the analysis [99].
The results were FDR corrected for multiple comparisons using R. STAI and
ANT scores, and STAI and ANT r-correlation coefficients, that were then
used to distinguish the strength of the relationship of STAI and ANT scores
with LC structural connectivity to certain brain regions (Fig. 4), did not
correlate with each other (Spearman correlation p= 0.212 and p= 0.394,
respectively).

Data illustrations
Figures 1, 2b and 4 were created with the mrview tool of Mrtrix [86]
(Supplementary Methods). Figure 2a was created with Circos Table Viewer
[100]. The data panels in Fig. 3 were created with R [94].
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