
ARTICLE OPEN

Pathway-specific contribution of parvalbumin interneuron
NMDARs to synaptic currents and thalamocortical feedforward
inhibition
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Prefrontal cortex (PFC) is a site of information convergence important for behaviors relevant to psychiatric disorders. Despite the
importance of inhibitory GABAergic parvalbumin-expressing (PV+) interneurons to PFC circuit function and decades of interest in
N-methyl-D-aspartate receptors (NMDARs) in these neurons, examples of defined circuit functions that depend on PV+ interneuron
NMDARs have been elusive. Indeed, it remains controversial whether all PV+ interneurons contain functional NMDARs in adult PFC,
which has major consequences for hypotheses of the pathogenesis of psychiatric disorders. Using a combination of fluorescent
in situ hybridization, pathway-specific optogenetics, cell-type-specific gene ablation, and electrophysiological recordings from PV+
interneurons, here we resolve this controversy. We found that nearly 100% of PV+ interneurons in adult medial PFC (mPFC) express
transcripts encoding GluN1 and GluN2B, and they have functional NMDARs. By optogenetically stimulating corticocortical and
thalamocortical inputs to mPFC, we show that synaptic NMDAR contribution to PV+ interneuron EPSCs is pathway-specific, which
likely explains earlier reports of PV+ interneurons without synaptic NMDAR currents. Lastly, we report a major contribution of
NMDARs in PV+ interneurons to thalamus-mediated feedforward inhibition in adult mPFC circuits, suggesting molecular and
circuit-based mechanisms for cognitive impairment under conditions of reduced NMDAR function. These findings represent an
important conceptual advance that has major implications for hypotheses of the pathogenesis of psychiatric disorders.
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INTRODUCTION
The prefrontal cortex (PFC) is a site of convergence of long-range
glutamatergic innervation from cortical and subcortical structures,
including the thalamus. Convergent innervation allows the PFC to
integrate multiple modalities of internally and externally gener-
ated information to produce goal-directed behaviors [1, 2] that are
disrupted in psychiatric disorders, including Schizophrenia (Scz),
bipolar disorder (BD), and autism spectrum disorder (ASD) [3, 4].
Inhibitory GABAergic parvalbumin-expressing (PV+) interneurons
in PFC are implicated across psychiatric disorders [5–7], and PV+
interneurons exhibit electrophysiological and anatomical specia-
lizations that render them uniquely suited among GABAergic
interneuron subtypes to coordinate neuronal activity [8, 9]. High-
frequency PV+ interneuron-mediated inhibition temporally con-
strains pyramidal neuron excitation and generates gamma
oscillations (≈30–100 Hz) that shape cortical function and are
associated with information processing [10–17]. Patients diag-
nosed with Scz, BD, and ASD exhibit abnormal gamma oscillations
as well as markers of altered PV+ interneuron metabolism and
function [5–7, 14, 17–20]. Moreover, animal models that directly
manipulate PV+ interneuron activity indicate that these fast-
spiking interneurons contribute to behaviors relevant to psychia-
tric disorders, which depend on long-range innervation of the PFC
[21–27]. Furthermore, PV+ interneuron-mediated thalamocortical

feedforward inhibition (FFI) is altered in genetic models of Scz and
ASD [28–30]. Despite the basic and translational significance of
glutamatergic excitation of PV+ interneurons, controversy sur-
rounding whether PV+ interneurons express functional N-methyl-
D-aspartate receptors (NMDARs) in the adult PFC has persisted for
over a decade [5, 31–36].
The hypothesis of NMDAR hypofunction in psychiatric dis-

orders originates from the observation that acute administration
of NMDAR antagonists produces a range of Scz-like symptoms in
humans and is further supported by the discovery of NMDAR-
encephalitis-induced psychosis [37–42]. More recently, there has
been converging evidence that reduced NMDAR function in PV+
interneurons is relevant to the etiology of psychiatric disease. In
adult humans and rodents, psychotomimetic NMDAR antagonists
increase the baseline power of gamma oscillations, potentially as
a result of selective inhibition of NMDARs on PV+ interneurons
[43–47], but differences between acute NMDAR antagonism and
Scz have been noted [48]. Moreover, selective deletion of the
obligatory GluN1 subunit of the NMDAR by crossing GluN1fl/fl

mice with either PV-Cre or Ppp1r2-Cre mice, which targets a
population of corticolimbic interneurons including PV+ inter-
neurons, mimics NMDAR antagonist-induced increases in base-
line gamma power and occludes the oscillatory and psychomotor
effects of the non-competitive NMDAR antagonist MK-801
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[49–53]; for review see [54]. Furthermore, NMDAR antagonism in
adult mice reproduces molecular markers of altered PFC PV+
interneuron function observed in Scz [55], indicating an ongoing
role for NMDAR in adult PV+ interneurons. Finally, the
neuregulin/ErbB signaling pathway, which is genetically asso-
ciated with psychiatric disease, downregulates NMDAR but not α-
amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor
(AMPAR) function in cortical and hippocampal PV+ interneurons
[56, 57].
In conflict with these observations underscoring a physiologi-

cally important role of NMDARs in PV+ interneurons in vivo,
previous slice electrophysiological studies using traditional
electrical stimulation reported that synaptic NMDAR currents are
either undetectable or extremely limited in adult mPFC PV+
interneurons [32, 33, 58], and that PV+ interneurons in juvenile
animals exhibit smaller NMDAR currents than pyramidal neurons
and other GABAergic interneurons (see ref. [59]). These observa-
tions, and the hypothesis that the long duration of NMDAR
currents conflicts with temporal precision that is a hallmark of PV+
interneurons, have been interpreted to indicate that PV+
interneuron NMDARs have limited significance to mature PFC
function [5, 34, 35]. Although this view is inconsistent with the
large body of in vivo pharmacological and genetic literature
discussed above, and a more recent study using optogenetic
stimulation of long-range inputs to adult PFC fast-spiking
interneurons [36], it may have persisted because the traditional
approaches used to measure NMDAR currents in PV+ interneur-
ons have limitations (see Discussion) and concrete examples of
the impact of NMDAR activity in PV+ interneurons on adult PFC
circuit function remain elusive. Therefore, resolving this issue is
critical to understanding basic mechanisms of cortical circuit
function, and for refining hypotheses of how NMDAR hypofunc-
tion contributes to cognitive deficits associated with psychiatric
disorders. Utilizing a combination of experimental approaches not
used to address this question previously, including fluorescent
in situ hybridization, glutamate uncaging and pathway-specific
optogenetics, we resolve this controversy by demonstrating that
the vast majority of adult PV+ interneurons express functional
NMDARs. Furthermore, we demonstrate that synaptic NMDAR
contribution to PV+ interneuron EPSCs is pathway-specific and
that NMDAR activity in PV+ interneurons is important for thalamo-
prefrontal cortical FFI.

METHODS
(See Supplementary Information for details).

Animal subjects
Adult (P70-100) male and female mice were used for all experiments
(Supplementary Fig. 1). C57BL/6J mice were obtained from Jackson
Laboratories (Bar Harbor, ME, USA) or bred in house for in situ
hybridization. PV-Cre::TdTomato, PV-Cre::GluN1fl/fl, and Cre-negative::-
GluN1fl/fl littermate controls were bred in house. Procedures were
performed in accordance with NIH Animal Welfare guidelines.

Fluorescent in situ hybridization
Fluorescent in situ hybridization for RNA coding for parvalbumin (Pvalb),
GluN1 (Grin1), and GluN2B (Grin2b) experiments were performed on adult
mouse brain sections (12 μm) using the RNAscope Fluorescent Multiplex
Assay (Advanced Cell Diagnostics (ACD); Newark, CA, USA) as previously
described [60]. Images were acquired using a Zeiss LSM 780 (Carl Zeiss
Microscopy; White Plains, NY, USA) microscope with a 20x objective at 2x
zoom. Image acquisition settings were kept constant.

Electrophysiology
Whole-cell voltage-clamp recordings were made in coronal mPFC slices
(300 µm). Adult PV-Cre::TdTomato mice were used to measure whole-cell
and synaptic currents in PV+ interneurons and adult PV-Cre::GluN1fl/fl mice

and Cre-negative::GluN1fl/fl littermate controls were used to measure FFI in
pyramidal neurons. The experimenter was blind to genotype for recording
and analysis of FFI.

Data acquisition. Recording pipettes were filled with Cs+-based internal
solution. Recordings were acquired at 20 kHz and low-pass filtered at
10 kHz. Access resistance (Ra) was monitored for the duration of each
experiment, and data was excluded when Ra changed >25% or exceeded
25MΩ. Except for MK-801 (1mM in the recording pipette [61] during
recordings of FFI; Tocris; Minneapolis, MN, USA), drugs were bath-applied
at the following concentrations: MNI-Glutamate (MNI-Glu; 50 µm; Tocris);
2,3-Dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide
(NBQX; 10 µM; Tocris); picrotoxin (100 µM; Tocris); and tetrodotoxin (TTX;
1 µM; Tocris); 4-Aminopyridine (4-AP; 100 µM; Sigma Aldrich; St. Louis, MO,
USA); D-AP5 (50 µM; Tocris); D-serine (100 µM; Tocris; glutamate uncaging).
Recording artificial cerebrospinal fluid (aCSF) contained 1.3 mM Mg2+ and
2.5 mM Ca2+. To facilitate Chronos-mediated neurotransmitter release with
TTX and 4-AP [62] (PV+ interneuron EPSC recordings) aCSF was modified
to contain 4mM Ca2+ [63]. Ultraviolet (glutamate uncaging) and blue
(optogenetic stimulation) illumination was generated using a CoolLED pE-
300ultra (CoolLED; Andover, UK) and delivered to the slice through a ×40
objective.

Stereotaxic injection
Microinjections (0.6 µl) of AAV5-Syn-Chronos-GFP (Addgene; Watertown,
MA, USA) were targeted to either contralateral mPFC or ipsilateral medial
dorsal region of the thalamus in 4–5-week-old mice anesthetized with
isoflurane.

Data analysis
CellProfiler 4 (www.cellprofiler.org; Broad Institute; Cambridge, MA, USA)
[64] was used for automated in situ hybridization analysis. Electrophysio-
logical data was filtered offline at 2 kHz or 1 kHz (single-trial glutamate
uncaging measurements) and analyzed using Clampfit (Molecular Devices;
San Jose, CA, USA). Statistical analyses (two-tailed, p < 0.05 for significance)
were conducted in GraphPad Prism (Version 8.4.3; GraphPad Software; San
Deigo, CA, USA). The Wilcoxon signed ranks test (paired comparisons) or
the Mann–Whitney test (unpaired comparisons) were used. p-values for
glutamate uncaging LED-response relationships were obtained from a
simple linear regression. Data represented as mean ± SEM and p < 0.05 was
the significance threshold.

RESULTS
PV+ interneurons throughout the adult mouse mPFC co-
express NMDAR transcripts necessary to encode functional
receptors
NMDARs are comprised of two obligatory GluN1 subunits and two
GluN2 (or more rarely GluN3) subunits that assemble into functional
heterotetrameric ionotropic ligand-gated channels [65, 66]. To
analyze the proportion of PV+ interneurons in the prelimbic (PL)
and infralimbic (ILA) adult mouse mPFC that co-express NMDAR
subunits that may form functional receptors, we used a multi-
fluorescent (3-fluorophores) in situ hybridization approach (RNA-
scope) with probes to identify RNAs encoding GluN1 (Grin1) and
GluN2B (Grin2b) in parvalbumin (Pvalb) containing nuclei (Fig. 1a, b).
Grin2bwas chosen because it is abundantly and widely expressed in
adult mouse cortex and, importantly, co-assembly of GluN2B with
GluN1 is sufficient to form functional diheteromeric receptors. An
automated image analysis pipeline [60] (see Methods and
Supplementary Methods) was used to quantify the proportion of
Pvalb+ interneurons that co-express Grin1 and Grin2b mRNAs in an
unbiased manner (Fig. 1c). We found that the vast majority of
Pvalb+ interneurons (91.8 ± 2.4%) co-express Grin1 and Grin2b
transcripts, greatly outnumbering those only expressing either Grin1
(1.1 ± 0.7%), Grin2b (5.2 ± 1.8%) or Pvalb (1.9 ± 0.9%; Fig. 1c). To
examine the layer-dependent distribution of Grin1/Grin2b/Pvalb-
expressing cells, we compared the density (cells/mm2) of all Pvalb+
interneurons (Fig. 1d) to the density of triple-positive neurons
(Fig. 1e) in 100-μm intervals across mPFC layers. Consistent with
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previous reports [67, 68], Pvalb+ interneurons are present in all
mPFC layers and are most concentrated in layers 5 and 6 (Fig. 1d).
Furthermore, the distribution of Pvalb+ interneurons expressing
Grin1 and Grin2b transcripts closely follows the general distribution
of all Pvalb+ interneurons (Fig. 1d, e). Therefore, virtually all mPFC
PV+ interneurons co-express NMDAR subunit transcripts required
to produce functional NMDARs, regardless of laminar location.

Electrophysiological identification of NMDAR-mediated
currents in adult PV+ interneurons
Next, we targeted fluorescently labeled PV+ interneurons in acute
slices of adult mouse mPFC from PV-Cre::TdTomato mice [69, 70] to
test for functional NMDARs electrophysiologically. Given that
NMDARs accumulate synaptically and extrasynaptically, we began
by uncaging glutamate (MNI-Glu; bath applied) with ultraviolet (UV)
light delivered through the microscope objective. With AMPARs,
GABA-ARs and voltage-gated sodium channels inhibited (Fig. 2a),
we analyzed the current–voltage relationship of excitatory post-
synaptic currents (UVEPSCs) at a series voltages (−80 to 40mV,
20mV intervals; Fig. 2b, c). The current-voltage relationship of UV

EPSCs was typical of NMDAR-mediated currents in the presence of
extracellular Mg2+ [71, 72], and UVEPSCs were blocked by the
NMDAR antagonist D-AP5 (−55mV holding potential; Fig. 2d, e).
UVEPSC charge (Fig. 2f) and peak amplitude (Fig. 2g) were reduced
by D-AP5, confirming that UVEPSCs represent NMDAR currents.

All PV+ interneurons contain functional somatodendritic
NMDARs
Despite decades of interest and controversy surrounding NMDAR
function in PV+ interneurons, the proportion of these neurons
with functional NMDARs in adult PFC has not been formally tested.
Reports that NMDAR currents are undetectable in some PV+
interneurons are based on synaptic stimulation [32, 58], which is
likely to underestimate the number of PV+ interneurons with
functional NMDARs. To generate a systematic, unbiased estimate
of the proportion of adult mPFC PV+ interneurons with functional
NMDARs, we recorded UVEPSCs from 37 PV+ interneurons (8 with
and 29 without D-AP5; −55mV holding potential) located
300–850 µm from the pial surface using the approach described
above (Fig. 2a). LED intensity was increased in increments of 20%
from 20 to 100% in the absence (Fig. 3a) or presence (Fig. 3b) of
D-AP5. Using a linear regression, the dose-response relationship
between LED intensity and single-trial UVEPSC amplitude was
quantified for each neuron (Fig. 3c). We then tested whether the
slope of this relationship deviated statistically from zero, as
predicted for neurons with functional somatodendritic NMDARs.
We found that 100% of PV+ interneurons (29 of 29) exhibited
NMDAR-mediated UVEPSCs, whereas in presence of D-AP5, the
slope of the linear regression did not deviate from zero for 37.5%
of PV+ interneurons. Moreover, across all neurons, the slope of
the regression line was steeper in the absence of D-AP5 than in its
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Data are represented as mean ± SEM.
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presence (Fig. 3d). Together, our data indicate that all PV+
interneurons contain functional somatodendritic NMDARs.

NMDARs contribute to contralateral prefrontal cortex-evoked
synaptic currents in PV+ interneurons
Having established that all adult mPFC PV+ interneurons express
functional NMDARs, we sought to understand the contribution of
NMDARs to glutamatergic synaptic currents, including differences
between distinct glutamatergic inputs onto these neurons. The
latter point is important because pathway-specific contributions of
AMPARs and NMDARs have been observed in hippocampal and
visual cortical (V1) PV+ interneurons [73–75], which could explain
why some studies report little or no synaptic NMDAR current
[32, 33, 58]. Since contralateral mPFC is the largest source of long-
range glutamatergic input to mPFC PV+ interneurons [76], we
initially transduced neurons in the opposite cortical hemisphere
with an adeno-associated virus (AAV) coding for the rapidly acting
channelrhodopsin Chronos tagged with GFP [77] to measure light-
evoked PV+ interneuron EPSCs (see Fig. 4a). Monosynaptic EPSCs
(−55mV holding potential) were isolated by optically stimulating
fibers in the presence of TTX, 4-AP and picrotoxin [62, 63] (Fig. 4b).
After recording baseline EPSCs, the AMPAR antagonist NBQX was
applied to isolate the NMDAR-mediated EPSC component
(Supplementary Fig. 2). In a subset of neurons (9 of 12), AP5
was subsequently co-applied with NBQX to test whether the
residual current was mediated by NMDARs. Since NMDAR-
mediated EPSCs have a longer decay time constant (tau) than
AMPAR-mediated EPSCs, we digitally subtracted the NMDAR-

mediated current from the baseline current and compared tau of
the baseline EPSC and the AMPAR-only EPSC (subtraction; Fig. 4c).
Consistent with the presence of NMDARs at contralateral mPFC
inputs to PV+ interneurons, tau was longer for baseline EPSCs
than for AMPAR-only EPSCs. Moreover, with AMPAR inhibited by
NBQX, application of D-AP5 further reduced EPSC charge (Fig. 4d)
and amplitude (Fig. 4e), confirming that NMDARs in PV+
interneurons provide a small, yet detectable, contribution to
EPSCs originating from contralateral mPFC glutamatergic inputs.

Larger NMDAR contribution to ipsilateral thalamic compared
to contralateral mPFC synaptic currents in PV+ interneurons
Thalamic innervation of PFC is critical to cognition [78–81].
Therefore, we tested the contribution of NMDARs to ipsilateral
thalamus-evoked EPSCs in PV+ interneurons by injecting AAV-
Chronos-GFP unilaterally into the medial dorsal region of the
thalamus (Fig. 5a). The contribution of NMDARs and AMPARs to
monosynaptic EPSCs (−55mV holding potential; Fig. 5b and
Supplementary Fig. 3) was tested as above (Fig. 4b). Tau was
longer for baseline EPSCs than for AMPAR-only EPSCs obtained by
subtraction (Fig. 5c), indicating that NMDARs contribute to
thalamus-evoked EPSCs. Moreover, with AMPARs inhibited,
D-AP5 reduced EPSC charge (Fig. 5d) and amplitude (Fig. 5e),
confirming that NMDARs contribute to thalamus-derived PV+
interneuron EPSCs.
Our data also suggested that NMDARs contribute relatively

more to thalamic EPSCs (Fig. 5c) compared to contralateral PFC
EPSCs (Fig. 4c), so we examined this relationship quantitatively.
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AMPAR EPSCs were kinetically similar at thalamic and contralateral
mPFC synapses (Fig. 5f), but NMDARs contribute more to baseline
EPSC duration at ipsilateral thalamus compared to contralateral
mPFC synapses. Subtracting NMDAR current from baseline EPSCs
reduces tau of thalamic EPSCs by 19.58 ± 3.05% compared to
6.04 ± 1.49% for contralateral mPFC EPSCs (Fig. 5g). Furthermore,
the ratio of NMDAR to AMPAR (hereafter denoted as NMDA/AMPA
ratio) charge (Fig. 5h) or amplitude (Fig. 5i) is approximately twice
as large for thalamic EPSCs (charge ratio: 0.61 ± 0.14; amplitude
ratio: 0.11 ± 0.02) compared to contralateral mPFC EPSCs (charge
ratio: 0.3 ± 0.04; amplitude ratio: 0.05 ± 0.01). Therefore, NMDARs
contribute relatively more to excitatory synaptic drive at synapses
onto PV+ interneurons that originate from the thalamus. The
modest contribution of NMDAR to EPSCS from contralateral mPFC
inputs, which are more abundant, may explain why studies that
stimulated EPSCs electrically reported little or no synaptic NMDAR
current [32, 33, 58].

NMDARs in PV+ interneurons contribute to thalamus-evoked
FFI in mPFC pyramidal neurons
Most FFI in thalamocortical circuits is mediated by PV+
interneurons [82, 83] and FFI is important for information
processing in cortical circuits [84, 85]. Despite the behavioral
and disease relevance of this circuit [78–81, 86], to our knowledge,
the contribution of PV+ interneuron NMDARs to FFI of pyramidal
neurons in the PFC has never been tested. An obstacle to

selectively testing the acute role of NMDARs in PV+ interneurons
in PFC function is that bath-applied antagonists will indiscrimi-
nately inhibit NMDARs on all neuron types. To overcome this
experimental limitation, we compared the effects of D-AP5
application on FFI between Cre-negative GluN1fl/fl mice, which
have intact NMDAR expression, and PV-Cre::GluN1fl/fl mice [87]
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isons (d).
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interneurons (−55mV holding potential). Left: Unilateral microinjec-
tion of AAV-Syn-Chronos-GFP into mPFC. Middle: TdTomato-labeled
PV+ interneurons in the contralateral hemisphere are targeted for
recording and EPSCs are evoked optogenetically. Right: Coronal
section of mPFC showing the injection site of AAV-Syn-Chronos-GFP
(green) with DAPI (blue). Scale bar indicates 1 mm. b Representative
traces of monosynaptic contralateral mPFC-evoked EPSCs in a PV+
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NBQX+D-AP5: −94.77 ± 28.85 fC) and e amplitude (NBQX:
−9.52 ± 1.73 pA; NBQX+D-AP5 −1.28 ± 1.1 pA) are reduced by
application of D-AP5 (n= 9 neurons; sum of signed ranks= 45;
p= 0.004 for both). Group data (c–e) represented as mean ± SEM.
**p < 0.01; Wilcoxon signed ranks test for paired comparisons (c–e).
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that lack NMDARs selectively in PV+ neurons (Fig. 6a). With the
experimenter blind to genotype, we measured the amplitude of
feedforward inhibitory post-synaptic currents (IPSCs; 0 mV holding
potential) in layer 5/6 pyramidal neurons before and during
application of D-AP5 (Fig. 6b, c). We found that in slices from

control mice D-AP5 decreased IPSC amplitude by 45.71 ± 7.0%,
whereas in slices from PV-Cre::GluN1fl/fl mice the magnitude of the
D-AP5 effect was reduced to 16.87 ± 2.37% (Fig. 6d). These
findings indicate that the reduction of FFI by D-AP5 in adult
mouse PFC is due to inhibition of NMDARs on PV+ interneurons,
and not to inhibition of NMDARs on other cell types. Our
experiments therefore uncovered an acute role for mature PV+
interneuron NMDARs in shaping thalamo-prefrontal cortical circuit
function.

DISCUSSION
After decades of interest and debate about the expression and
function of NMDARs in mature PFC PV+ interneurons, we carried
out the first systematic quantitative analysis of the proportion of
PV+ interneurons with functional somatodendritic NMDARs in
adult PFC (Figs. 1–3). By using fluorescent in situ hybridization and
glutamate uncaging, which to our knowledge have not been used
previously to address this issue, we found that virtually all PV+
interneurons in the adult rodent mPFC do express functional
NMDARs, resolving a controversy that has lingered for more than a
decade [5, 32–36, 58]. Using pathway-specific optogenetic
approaches, we found that NMDARs contribute more to EPSCs
in PV+ interneurons at thalamic than contralateral mPFC synapses
(Fig. 5). The pathway-specificity of synaptic NMDAR function in
PV+ interneurons may explain previous reports that a large
percentage of PV+ interneurons do not exhibit synaptic NMDAR
currents in adult mPFC, as very small NMDAR currents at synapses
from contralateral PFC may have been overlooked in previous
studies [32, 58]. This points to a limitation of using electrical
stimulation to measure NMDAR EPSCs in mPFC PV+ interneurons.
Namely, nonspecific stimulation may be biased to evoke
glutamate release from more numerous sources like the
contralateral PFC that have limited NMDAR currents, over less
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paired comparisons (c–e). Mann–Whitney test for unpaired compar-
isons (f–i).
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numerous ones with more prominent currents like the thalamus.
Finally, by combining optogenetic stimulation, PV+ neuron-
specific ablation of NMDARs and acute pharmacological manip-
ulation, we discovered that PV+ interneuron NMDARs play a role
in thalamus-evoked FFI of PFC pyramidal neurons in adult mice
(Fig. 6).

Implications of NMDAR activity in PV+ interneurons
Together, these experiments represent a significant advance by
establishing a defined circuit function for NMDARs in adult mPFC
PV+ interneurons, beyond their recognized developmental role
[50, 88, 89]. Our observations have major implications for
experiments using in vivo manipulations of NMDAR function in
humans, primates and rodents [43–47, 49, 51, 55, 90–93] (for
review see [54]), and generally support two major hypotheses: (1)
that non-competitive NMDAR channel blockers can preferentially
inhibit PV+ interneuron NMDAR to produce cortical disinhibition
and increase the baseline power of gamma oscillations
[31, 54, 94, 95] and (2) that PV+ interneuron NMDAR function
contributes to the pathogenesis of psychiatric disorders
[20, 96, 97]. For example, these results contextualize the

observation that genes associated with psychiatric disorders, like
those in the neuregulin/ErbB signaling pathway, regulate NMDAR
currents in PV+ interneurons [56, 57], and that NMDAR-relevant
markers of oxidative stress in PV+ interneurons and are increased
in patients and across models of psychiatric disorders
[19, 20, 55, 98]. Furthermore, our findings have implications for
the mechanism of action of ketamine as a fast-acting antidepres-
sant, and the possibility that gamma oscillations may be a useful
clinical biomarker for the treatment of depression [99, 100]. Finally,
the discovery of pathway-specific NMDAR contributions to EPSCs
in PFC PV+ interneurons represents a conceptual advance in long-
range control of PFC circuit function, suggesting that reduced
NMDAR function in PV+ interneurons could have synapse-specific
impacts on synaptic integration, long-range connectivity and
cognition.

Implications for thalamo-prefrontal cortex circuit function
Since NMDARs contribute to thalamus-mediated FFI of PFC
pyramidal neurons (Fig. 6), it follows that NMDAR hypofunction
in PV+ interneurons would alter the temporal relationship
between neuronal activity in PFC and upstream brain regions
[84] while decreasing the dynamic range of PFC circuits, further
degrading function [85]. Thalamic control over the temporal
pattern and rate of action potential generation in the PFC is
important for cognitive behavior [78, 80, 81], and our work
indicates that PV+ interneuron NMDARs are important for this
thalamic function. Based on our results, we hypothesize that
cognitive functions that require coordinated activity of thalamus
and PFC will be particularly impacted by acute, adult inhibition of
PV+ interneuron NMDAR but testing this hypothesis will require
technical advances. Furthermore, reduced PV+ interneuron-
mediated FFI due to NMDAR hypofunction represents a molecular
and circuit-based mechanism to explain reduced functional
connectivity between higher-order thalamus and PFC in Scz
patients, as well as cognitive deficits elicited by non-competitive
NMDAR antagonists and observed in psychiatric disorders
[3, 38, 86]. Notably, PV+ interneuron-mediated FFI is independent
of NMDAR in somatosensory cortex [82], consistent with the
observation that there are substantial differences between PV+
interneuron-mediated FFI in PFC and somatosensory cortex,
including a slower time course of FFI onset in PFC [83].
Mechanistic differences in PV+ interneuron-mediated FFI may
support different computational requirements of PFC and primary
sensory cortices.

Pathway-specific NMDAR function in PV+ interneurons
Our finding that NMDARs contribute more to adult PV+
interneuron EPSCs at thalamo-prefrontal synapses, relative to
corticocortical synapses (Figs. 4, 5), points to pathway-specific
differences in information processing at glutamatergic inputs that
drive PV+ interneuron activity. Therefore, differences in stimula-
tion parameters or brain state might explain conflicting evidence
about whether NMDAR antagonists produce disinhibition in the
PFC [33, 44, 101, 102]. Input-specific differences have been
reported in visual cortical and hippocampal PV+ interneurons
[73–75], where EPSPs evoked by glutamate uncaging exhibit
NMDAR-dependent supralinear summation in dendrites [75].
Beyond impacting synaptic integration, pathway-specific NMDAR
and AMPAR expression patterns enforce differing rules of synaptic
plasticity in hippocampal interneurons [73, 103, 104], and may in
PFC as well. Furthermore, although we focused on long-range
inputs to PV+ interneurons here, PFC PV+ interneurons also
receive abundant glutamatergic innervation from local pyramidal
neurons [76]. NMDAR currents are stronger at feedback compared
to feedforward inputs to hippocampal PV+ interneurons [73],
where they may contribute to the formation of stable neural
ensembles [75]. Testing the contribution of NMDAR at local
recurrent synapses onto PV+ interneurons may offer further
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insight into reports of synaptic currents devoid of an NMDAR-
mediated component and will benefit our understanding of PFC
circuit function.
Here we focused on co-expression of Grin1 and Grin2b in adult

PFC PV+ interneurons to establish the proportion of neurons
expressing the minimal transcripts necessary to produce func-
tional NMDAR. Given that GluN2 subunit composition changes
across development and confers NMDAR with functional diversity
[66], in future studies it will be informative to test whether PV+
interneuron NMDARs with distinct subunit composition contribute
to discreet cellular or circuit function in adult PFC, and whether
developmental changes in subunit composition play a causal role
in establishing adolescence as a sensitive period for pathway-
specific maturation of GABAergic neurotransmission in PFC [105].
Taken together, recent studies which indicate that a GluN2C/2D-
specific positive allosteric modulator impacts both excitability and
NMDAR-mediated EPSCs in adult PFC fast-spiking interneurons
[106], that mice lacking the GluN2A subunit in PV+ interneurons
exhibit a blunted electrophysiological response to ketamine in V1
[107], and that PV+ interneurons can exhibit pathway-specific
changes in NMDA/AMPA ratio across developmental critical
periods [74] underscore the point that nuanced, input-specific
analysis will be required to understand the contribution of distinct
GluN2 subunits in PV+ interneurons to adolescent PFC maturation
and adult function. Despite the challenges, further understanding
of pathway-specific mechanisms of glutamatergic transmission in
PFC PV+ interneurons during development and adulthood is
critical to advance the field’s understanding of PFC function, and
may contribute to explanations of cognitive impairment in
developmental psychiatric disorders like Scz and ASD.
Our results partially contrast with the only other study to

compare NMDA/AMPA ratios at long-range inputs to PFC PV+
interneurons [36]. No significant difference in NMDA/AMPA ratios
was reported between thalamic, ventral hippocampal, and
contralateral PFC inputs to PV+ interneurons, although there
was a trend toward greater NMDAR contribution at thalamic
inputs compared with the other two [36]. This discrepancy is likely
the result of two main differences in experimental approach. First,
we used Cs+-based, rather than K+-based, internal solution to
enhance space clamp therefore improving our ability to resolve
currents throughout the dendritic arbor. Second, we used a
combination of TTX and 4AP to pharmacologically isolate
monosynaptic inputs, as suggested previously [62], prior to
measuring NMDA/AMPA ratios to reduce measurement errors
stemming from polysynaptic EPSCs.

Significance of NMDAR function in PV+ interneurons for high-
frequency cortical activity
Since PV+ interneurons exhibit functional specializations to
respond to glutamatergic input with high temporal fidelity [8],
including expression of Ca2+-permeable AMPAR with rapid
kinetics [58, 82, 108], an influential perspective has held that the
comparatively long EPSCs produced by NMDARs are at odds with
generation of temporally precise action potentials and gamma
oscillations [5, 34, 35]. Since virtually all PV+ interneurons contain
NMDARs (Figs. 1–3), high-frequency temporal fidelity must be
compatible with prolonged somatodendritic excitatory currents
generated by NMDARs. In contrast to the comparatively quiescent
conditions in acute brain slices, in vivo, fast AMPAR-mediated
events may be superimposed on slower NMDAR currents, thereby
increasing the probability that AMPAR-mediated events induce
action potentials. This hypothesis is supported by data indicating
that, during periods of elevated cortical activity, PV+ interneurons
exhibit prolonged depolarizations [109, 110] to voltages at which
PV+ interneuron NMDAR Mg2+ block is substantially reduced
(Fig. 2) and is also consistent with recent work suggesting that
extrasynaptic NMDARs contribute to GABAergic interneuron
excitability [111]. Furthermore, like NMDAR antagonists, PV+

neuron-specific knockout of NMDAR is detrimental to cognitive
function and increases baseline gamma power [54]. Considered
alongside our data, this indicates that NMDAR currents in PV+
interneurons contribute to healthy PFC function, whether or not
PV+ interneurons could theoretically generate more temporal
precision or higher power gamma oscillations without them.

Summary
By demonstrating that nearly all PV+ interneurons express
functional NMDARs, and that their contribution to EPSCs is
pathway-specific, we have resolved a major controversy in the
field and provided an explanation for previous reports that most
PV+ interneurons in adult PFC do not exhibit synaptic NMDAR
currents. Furthermore, our data reveal a defined circuit function
for NMDARs in adult PV+ interneurons that has previously eluded
the field, and our findings potentially offer a molecular and circuit-
based explanation for why cognitive impairments emerge under
conditions of reduced NMDAR function in PV+ interneurons. In
the future, it will be interesting to test how NMDAR function in
PV+ interneurons contributes to connectivity between distal brain
regions and PFC, as well as to behaviors that depend on that
connectivity. Furthermore, it will be interesting to test the extent
to which models of psychiatric disease exhibit altered NMDAR
function in PV+ interneurons, how this is related to oxidative
stress and whether pharmacological interventions that target
NMDARs with distinct subunit composition can ameliorate deficits
in PV+ interneuron function.
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