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TO THE EDITOR:
With this letter we would like to refer to the review on the topic
of neuroplasticity, hippocampus and depression, in which,
however, electroconvulsive therapy (ECT) was overlooked [1].
In our opinion, no other specific form of psychiatric therapy
plays a more important role for the neuroplasticity hypothesis of
depression than ECT, which we would like to highlight by the
following.
The neurotrophin/neuroplasticity hypothesis has historically

evolved from the catecholamine hypothesis [2], which posits that
that depletion of monoamines such as serotonin or norepinephr-
ine can trigger depression. Normalization of the concentration of
monoamines in the synaptic cleft (e.g., by selective serotonin
reuptake inhibitors) does not immediately lead to remission of
depressive symptoms, which suggests delayed changes on the
level of gene activation [3]. This finding led to the suggestion –
almost 20 years ago – that development of new medications
might focus more on downstream changes [4], where ECT was
already prominently featured. Tartt et al. mention that the delayed
action of selective serotonin and serotonin norepinephrine
reuptake inhibitors increased the need for rapid acting anti-
depressants – ECT is exactly that, and likely because it directly
induces downstream changes [5, 6].

FINDINGS FROM ANIMAL MODELS
Since the authors describe magnetic resonance spectroscopy
(MRS) in the context of measuring GABA and glutamate
concentrations [1], it seems noteworthy that in an animal model
of depression, electroconvulsive shock (ECS, the analogue to ECT)
led to a normalization of altered glutamate/GABA ratios within the
prefrontal cortex (PFC) and hippocampus [7].
ECS also leads to a dose-dependent increase of hippocampal

dendritic arborization and dose-dependent cell proliferation in the
subgranular region [8–10]. Further, ECS series and “maintenance”
ECS induced a significant increase in newborn neurons in mice
hippocampi, suggesting a cellular mechanism for the beneficial
effect of ECT [10, 11]. This finding was replicated [12] and
extended for synaptogenesis indicating that neuronal survival is
key to the efficacy of ECS [13]. ECS elevates hippocampal cell
proliferation, while repetitive transcranial magnetic stimulation
(rTMS) does not [14].
For brain-derived neurotrophic factor (BDNF), ECS induces a

tissue concentration increase in hippocampus and PFC while
concentration of BDNF in peripheral serum takes longer (days) to
come to a new equilibrium [15].

PATIENT FINDINGS
BDNF is lower in depressed patients’ serum and rises with ECT,
both of which is supported by meta-analytical findings [16, 17].
Additionally, like in the animal models, there is evidence that
peripheral BDNF concentrations reach a new equilibrium with
some delay after ECT [18]. Consequently, researchers looked for
ECT induced hippocampal grey matter volume increases, which
were first described by a Swedish group [19] and have since been
replicated in large multisite samples [20, 21]. While a mega-
analysis did not find a positive association of hippocampal volume
change and clinical outcome, a more recent smaller study did find
larger hippocampal volume increases in ECT remitters vs. non-
remitters [22].
Initial genetic findings corroborate an influence of ECT on e.g.

DNA methylation: RAP-GEF2, a protein-encoding gene sug-
gested to be involved in signal transmission and in BDNF
receptor pathway signaling in depression is associated with ECT
as well as FKBP5, a gene that is involved in stress hormone
regulation [23].
MRS-studies in depressed patients treated with ECT also

showed a normalization of glutamate levels in the hippocampus
and anterior cingulate cortex which were associated with both
ECT and symptom improvement [24, 25].
Another relevant aspect mentioned in the introduction of Tartt

et al. [1] concerns the assumed relationship between immuno-
logic and neurotrophic processes in the hippocampus. Regarding
ECT, decreased systemic levels of interleukins and cortisol after an
ECT series have been described in a systematic review [26] and
increased immune activation measured in the cerebrospinal fluid
at baseline has been shown to predict better seizure quality [27]
and better treatment response to ECT [28]. Given the inverse
relationship between cortisol exposition and hippocampal
volumes in both animal and human studies [29], the reduction
of inflammatory processes by ECT may also contribute to
increased hippocampal volumes after ECT [30] in addition to
more direct neurotrophic effects. There is some evidence from
ECT research that inflammatory activity can influence the
relationship between BDNF and ECT treatment outcomes [31].
However, it may be that neuroplastic effects of ECT are necessary
but not sufficient for a response. Other hypotheses include that
ECT-induced seizures elicit a variety of processes in the brain,
some of which having antidepressant effects, others having
anticatatonic effects, and yet others leading to a grey matter
increase [32, 33].
To conclude, ECT research has had important influence on the

development of the hippocampal neurotrophin/neuroplasticity
hypothesis (and other hypotheses) of depression [33], which
should not be overlooked. With the inclusion of severely ill
patients and a large antidepressant effect size, ECT studies in
particular offer optimal conditions to make contributions to the
elucidation of the etiopathogenesis of depression.
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