Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Got milk? Maternal immune activation during the mid-lactational period affects nutritional milk quality and adolescent offspring sensory processing in male and female rats

Abstract

Previous studies have underscored the importance of breastfeeding and parental care on offspring development and behavior. However, their contribution as dynamic variables in animal models of early life stress are often overlooked. In the present study, we investigated how lipopolysaccharide (LPS)-induced maternal immune activation (MIA) on postnatal day (P)10 affects maternal care, milk, and offspring development. MIA was associated with elevated milk corticosterone concentrations on P10, which recovered by P11. In contrast, both milk triglyceride and percent creamatocrit values demonstrated a prolonged decrease following inflammatory challenge. Adolescent MIA offspring were heavier, which is often suggestive of poor early life nutrition. While MIA did not decrease maternal care quality, there was a significant compensatory increase in maternal licking and grooming the day following inflammatory challenge. However, this did not protect against disrupted neonatal huddling or later-life alterations in sensorimotor gating, conditioned fear, mechanical allodynia, or reductions in hippocampal parvalbumin expression in MIA offspring. MIA-associated changes in brain and behavior were likely driven by differences in milk nutritional values and not by direct exposure to LPS or inflammatory molecules as neither LPS binding protein nor interleukin-6 milk levels differed between groups. These findings reflected comparable microbiome and transcriptomic patterns at the genome-wide level. Animal models of early life stress can impact both parents and their offspring. One mechanism that can mediate the effects of such stressors is changes to maternal lactation quality which our data show can confer multifaceted and compounding effects on offspring physiology and behavior.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Maternal care and offspring huddling behaviors following maternal immune activation (MIA) during the mid-lactational period.
Fig. 2: Nutritional profile and microbiome community distribution of milk following maternal immune activation (MIA) during the mid-lactational period.
Fig. 3: Transcriptomic analyses of milk samples obtained on P10 from rat mothers exposed to either saline or maternal immune activation (MIA).
Fig. 4: Transcriptomic analyses of milk samples obtained on P11 from rat mothers exposed to either saline or maternal immune activation (MIA).
Fig. 5: Adolescent offspring physiology and behavior following maternal immune activation (MIA) during the mid-lactational period.
Fig. 6: Summary of mechanisms affecting milk quality and offspring brain and behavior following maternal immune activation (MIA) during the mid-lactational period.

Similar content being viewed by others

References

  1. Mahic M, Che X, Susser E, Levin B, Reichborn-Kjennerud T, Magnus P, et al. Epidemiological and serological investigation into the role of gestational maternal influenza virus infection and autism spectrum disorders. Msphere. 2017;2:e00159–17. https://doi.org/10.1128/mSphere.00159-17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Brown AS, Sourander A, Hinkka-Yli-Salomäki S, McKeague IW, Sundvall J, Surcel HM. Elevated maternal C-reactive protein and autism in a national birth cohort. Mol Psychiatry. 2014;19:259–64. https://doi.org/10.1038/mp.2012.197.

    Article  CAS  PubMed  Google Scholar 

  3. Meyer U. Neurodevelopmental resilience and susceptibility to maternal immune activation. Trends Neurosci. 2019;42:793–806. https://doi.org/10.1016/j.tins.2019.08.001.

    Article  CAS  PubMed  Google Scholar 

  4. Kentner AC, Bilbo SD, Brown AS, Hsiao EY, McAllister AK, Meyer U, et al. Maternal immune activation: reporting guidelines to improve the rigor, reproducibility, and transparency of the model. Neuropsychopharmacology. 2019;44:245–58. https://doi.org/10.1038/s41386-018-0185-7.

    Article  PubMed  Google Scholar 

  5. Brown R, Imran SA, Wilkinson M. Lipopolysaccharide (LPS) stimulates adipokine and socs3 gene expression in mouse brain and pituitary gland in vivo, and in N-1 hypothalamic neurons in vitro. J Neuroimmunol. 2009;209:96–103. https://doi.org/10.1016/j.jneuroim.2009.02.001.

    Article  CAS  PubMed  Google Scholar 

  6. Arsenault D, St-Amour I, Cisbani G, Rousseau L, Cicchetti F. The different effects of LPS and poly I:C prenatal immune challenges on the behavior, development and inflammatory responses in pregnant mice and their offspring. Brain Behav Immun. 2014;38:77–90. https://doi.org/10.1016/j.bbi.2013.12.016.

    Article  CAS  PubMed  Google Scholar 

  7. Estes ML, McAllister AK. Maternal immune activation: implications for neuropsychiatric disorders. Science. 2016;353:772–7. https://doi.org/10.1126/science.aag3194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Karolinski A, Mazzoni A, Belizan JM, Althabe F, Bergel E, Buekens P. Lost opportunities for effective management of obstetric conditions to reduce maternal mortality and severe maternal morbidity in Argentina and Uruguay. Int J Gynaecol Obstet. 2010;110:175–80. https://doi.org/10.1016/j.ijgo.2010.05.002.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kutlesic V, Breinski Isaacs M, Freund LS, Hazra R, Raiten DJ. Executive summary: research gaps at the intersection of pediatric neurodevelopment, nutrition, and inflammation in low resource settings. Pediatrics. 2017;139:1–11. https://doi.org/10.1542/peds.2016-2828C.

    Article  Google Scholar 

  10. John CC, Black MM, Nelson CA III. Neurodevelopment: the impact of nutrition and inflammation during early to middle childhood in low-resource settings. Pediatrics. 2017;139:e20162828.

    Article  Google Scholar 

  11. Hussein J, Mavalankar DV, Sharma S, D’Ambruoso L. A review of health system infection control measures in developing countries: what can be learned to reduce maternal mortality. Glob Health. 2011;7:14 https://doi.org/10.1186/1744-8603-7-14.

    Article  Google Scholar 

  12. Vilela FC, Antunes-Rodrigues J, Elias LL, Giusti-Paiva A. Corticosterone synthesis inhibitor metyrapone preserves changes in maternal behavior and neuroendocrine responses during immunological challenge in lactating rats. Neuroendocrinology. 2013;97:322–30. https://doi.org/10.1159/000346354.

    Article  CAS  PubMed  Google Scholar 

  13. Ling B, Alcorn J. LPS-induced inflammation downregulates mammary gland glucose, fatty acid, and L-carnitine transporter expression at different lactation stages. Res Vet Sci. 2010;89:200–2. https://doi.org/10.1016/j.rvsc.2010.03.004.

    Article  CAS  PubMed  Google Scholar 

  14. Nascimento AF, Alves GJ, Massoco CO, Teodorov E, Felicio LF, Bernardi MM. Lipopolysaccharide-induced sickness behavior in lactating rats decreases ultrasonic vocalizations and exacerbates immune system activity in male offspring. Neuroimmunomodulation. 2017;22:213–21. https://doi.org/10.1159/000363350.

    Article  CAS  Google Scholar 

  15. Hamprecht K, Maschmann J, Vochem M, Dietz K, Speer CP, Jahn G. Epidemiology of transmission of cytomegalovirus from mother to preterm infant by breastfeeding. Lancet. 2001;357:513–8. https://doi.org/10.1016/S0140-6736(00)04043-5.

    Article  CAS  PubMed  Google Scholar 

  16. Jones C. Maternal transmission of infectious pathogens in breast milk. PCH. 2001;37:576–82. https://doi.org/10.1046/j.1440-1754.2001.00743.x.

    Article  CAS  Google Scholar 

  17. Desgraupes S, Hubert M, Gessain A, Ceccaldi PE, Vidy A. Mother-to-child transmission of arboviruses during breastfeeding: From epidemiology to cellular mechanisms. Viruses. 2021;13:1312 https://doi.org/10.3390/v13071312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lesorogol C, Bond C, Dulience SJL, Iannotti L Economic determinants of breastfeeding in Haiti: the effects of poverty, food insecurity, and employment on exclusive breastfeeding in an urban population. Matern Child Nutr. 2018;14, https://doi.org/10.1111/mcn.12524.

  19. Mäkelä J, Linderborg K, Niinikoski H, Yang B, Lagström H. Breast milk fatty acid composition differs between overweight and normal weight women: the STEPS Study. Eur J Nutr. 2013;52:727–35. https://doi.org/10.1007/s00394-012-0378-5.

    Article  CAS  PubMed  Google Scholar 

  20. Chen Y, Wang J, Yang S, Utturkar S, Crodian J, Cummings S, et al. Effect of high fat diet on secreted milk transcriptome in midlactation mice. Physiol Genom. 2017;49:747–62. https://doi.org/10.1152/physiolgenomics.00080.2017.

    Article  CAS  Google Scholar 

  21. Grazia Di Benedetto M, Bottanelli C, Cattaneo A, Pariante CM, Borsini A. Nutritional and immunological factors in breast milk: a role in the intergenerational transmission from maternal psychopathology to child development. Brain Behav Immun. 2020;85:57–68. https://doi.org/10.1016/j.bbi.2019.05.032.

    Article  CAS  PubMed  Google Scholar 

  22. Edwards PD, Lavergne SG, McCaw LK, Wijenayake S, Boonstra R, McGowan PO et al. Maternal effects in animals: broadening our understanding of offspring programming. Front Neuroendocrinol. 2021; 62, https://doi.org/10.1016/j.yfrne.2021.100924.

  23. Browne PD, Aparicio M, Alba C, Hechler C, Beijers R, Rodríguez JM, et al. Human milk microbiome and maternal postnatal psychosocial distress. Front Microbiol. 2019;10:2333 https://doi.org/10.3389/fmicb.2019.02333.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hinde K, Skibiel AL, Foster AB, Del Rosso L, Mendoza SP, Capitanio JP. Cortisol in mother’s milk across lactation reflects maternal life history and predicts infant temperament. Behav Ecol. 2015;26:269–81. https://doi.org/10.1093/beheco/aru186.

    Article  PubMed  Google Scholar 

  25. Crum WR, Sawiak SJ, Chege W, Cooper JD, Williams S, Vernon AC. Evolution of structural abnormalities in the rat brain following in utero exposure to maternal immune activation: a longitudinal in vivo MRI study. Brain Behav Immun. 2017;63:50–59. https://doi.org/10.1016/j.bbi.2016.12.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Piontkewitz Y, Arad M, Weiner I. Abnormal trajectories of neurodevelopment and behavior following in utero insult in the rat. Biol Psychiatry. 2011;70:842–51. https://doi.org/10.1016/j.biopsych.2011.06.007.

    Article  PubMed  Google Scholar 

  27. Kirlic N, Young J, Aupperle RL. Animal to human translational paradigms relevant for approach avoidance conflict decision making. Behav Res Ther. 2017;96:14–29. https://doi.org/10.1016/j.brat.2017.04.010.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Powell SB, Zhou X, Geyer MA. Prepulse inhibition and genetic mouse models of schizophrenia. Behavl Brain Res. 2009;204:282–94. https://doi.org/10.1016/j.bbr.2009.04.021.

    Article  CAS  Google Scholar 

  29. Canetta S, Bolkan S, Padilla-Coreano N, Song LJ, Sahn R, Harrison NL, et al. Maternal immune activation leads to selective functional deficits in offspring parvalbumin interneurons. Mol Psychiatry. 2016;21:956–68. https://doi.org/10.1038/mp.2015.222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Drugs and Lactation Database (LactMed), 200g; Isoflurane. Bethesda, MD: National Library of Medicine (US). [Updated 2020 Nov 16]. Bookshelf. https://www.ncbi.nlm.nih.gov/books/.

  31. Lee JJ, Rubin AP. Breast feeding and anesthesia. Anaesthesia. 1993;48:616–25. https://doi.org/10.1111/j.1365-2044.1993.tb07130.x.

    Article  CAS  PubMed  Google Scholar 

  32. Par Pharmaceutical, Inc. Pitocin [Label]. Chestnut Ridge (NY): Par Pharmaceutical; 2020. https://dailymed.nlm.nih.gov/dailymed/fda/fdaDrugXsl.cfm?setid=6d4b2c25-2e5d-49b5-93bc-2ae8a20916d1&type=display.

  33. DeRosa H, Caradonna SG, Tran H, Marrocco J, Kentner AC. Milking it for all it’s worth: The effects of environmental enrichment on maternal nurturance, lactation quality, and offspring social behavior. eNeuro. 2022. https://doi.org/10.1523/ENEURO.0148-22.2022. Online ahead of print.

  34. Yan S, Kentner AC. Mechanical allodynia corresponds to Oprm1 downregulation within the descending pain network of male and female rats exposed to neonatal immune challenge. Brain Behav Immun. 2017;63:148–59. https://doi.org/10.1016/j.bbi.2016.10.007.

    Article  PubMed  Google Scholar 

  35. Connors EJ, Shaik AN, Migliore MM, Kentner AC. Environmental enrichment mitigates the sex-specific effects of gestational inflammation on social engagement and the hypothalamic pituitary adrenal axis-feedback system. Brain Behav Immun. 2014;42:178–90. https://doi.org/10.1016/j.bbi.2014.06.020.

    Article  CAS  PubMed  Google Scholar 

  36. Zhao X, Mohammed R, Tran H, Erickson M, Kentner AC. Poly (I: C)-induced maternal immune activation modifies ventral hippocampal regulation of stress reactivity: prevention by environmental enrichment. Brain Behav Immun. 2021a;95:203–15. https://doi.org/10.1016/j.bbi.2021.03.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Núñez Estevez KJ, Rondón-Ortiz AN, Nguyen JQT, Kentner AC. Environmental influences on placental programming and offspring outcomes following maternal immune activation. Brain Behav Immun. 2020;83:44–55. https://doi.org/10.1016/j.bbi.2019.08.192.

    Article  CAS  PubMed  Google Scholar 

  38. Miles J, Shevlin M. Applying regression and correlation: a guide for students and researchers. London: Sage; 2001.

  39. Ordoñes Sanchez E, Bavley CC, Deutschmann AU, Carpenter R, Peterson DR, Karbalaei R et al. Early life adversity promotes resilience to opioid addiction-related phenotypes in male rats and sex-specific transcriptional changes. Proc Natl Acad Sci USA. 2021;118, https://doi.org/10.1073/pnas.2020173118.

  40. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6. https://doi.org/10.1038/nmeth.f.303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12:60 https://doi.org/10.1186/gb-2011-12-6-r60.

    Article  Google Scholar 

  42. Schellekens H, Torres-Fuentes C, van de Wouw M, Long-Smith CM, Mitchell A, Strain C, et al. Bifidobacterium longum counters the effects of obesity: Partial successful translation from rodent to human. EBioMedicine. 2021;63:103176 https://doi.org/10.1016/j.ebiom.2020.103176.

    Article  CAS  PubMed  Google Scholar 

  43. Love MI, Hogenesch JB, Irizarry RA. Modeling of RNA-seq fragment sequence bias reduces systematic errors in transcript abundance estimation. Nat Biotechnol. 2016;34:1287–91. https://doi.org/10.1038/nbt.3682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lucas A, Gibbs JA, Lyster RL, Baum JD. Creamatocrit: simple clinical technique for estimating fat concentration and energy value of human milk. Br Med J. 1978;1:1018–20. https://doi.org/10.1136/bmj.1.6119.1018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Paul HA, Hallam MC, Reimer RA. Milk collection in the rat using capillary tubes and estimation of milk fat content by creamatocrit. J Vis Exp. 2015;106:1–6. https://doi.org/10.3791/53476.

    Article  CAS  Google Scholar 

  46. Wurfel MM, Wright SD. Lipopolysaccharide-binding protein and soluble CD14 transfer lipopolysaccharide to phospholipid bilayers: preferential interaction with particular classes of lipid. J Immunol. 1997;158:3925–34. PMID: 9103463.

    Article  CAS  PubMed  Google Scholar 

  47. Park B, Lee JO. Recognition of lipopolysaccharide pattern by TLR4 complexes. Exp Mol Med. 2013;45:e66 https://doi.org/10.1038/emm.2013.97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Quintana DS, Rokicki J, van der Meer D, Alnæs D, Kaufmann T, Córdova-Palomera A, et al. Oxytocin pathway gene networks in the human brain. Nat Commun. 2019;10:668 https://doi.org/10.1038/s41467-019-08503-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Oakley RH, Cidlowski JA. The biology of the glucocorticoid receptor: new signaling mechanisms in health and disease. J Allergy Clin Immunol. 2013;132:1033–44. https://doi.org/10.1016/j.jaci.2013.09.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Polman JA, Welten JE, Bosch DS, de Jonge RT, Balog J, van der Maarel SM, et al. A genome-wide signature of glucocorticoid receptor binding in neuronal PC12 cells. BMC Neurosci. 2012;13:118 https://doi.org/10.1186/1471-2202-13-118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhu X, Girardo D, Govek EE, John K, Mellén M, Tamayo P, et al. Role of Tet1/3 genes and chromatin remodeling genes in cerebellar circuit formation. Neuron. 2016;89:100–12. https://doi.org/10.1016/j.neuron.2015.11.030.

    Article  CAS  PubMed  Google Scholar 

  52. Ozkan H, Tuzun F, Taheri S, Korhan P, Akokay P, Yılmaz O, et al. Epigenetic programming through breast milk and its impact on milk-siblings mating. Front Genet. 2020;11:1–14. https://doi.org/10.3389/fgene.2020.569232.

    Article  CAS  Google Scholar 

  53. Zhang TY, Labonté B, Wen XL, Turecki G, Meaney MJ. Epigenetic mechanisms for the early environmental regulation of hippocampal glucocorticoid receptor gene expression in rodents and humans. NPP. 2013;38:111–23. https://doi.org/10.1038/npp.2012.149.

    Article  CAS  Google Scholar 

  54. Bowen WS, Gandhapudi SK, Kolb JP, Mitchell TC. Chapter three- immunopharmacology of lipid a mimetics. Adv Pharm. 2013;66:81–128. https://doi.org/10.1016/B978-0-12-404717-4.00003-2.

    Article  CAS  Google Scholar 

  55. Borish LC, Steinke JW. Cytokines and chemokines. J Allergy Clin Immunol. 2003;111:460–745. https://doi.org/10.1067/mai.2003.108.

    Article  CAS  Google Scholar 

  56. Ishii D, Matsuzawa D, Fujita Y, Sutoh C, Ohtsuka H, Matsuda, et al. Enhancement of acoustic prepulse inhibition by contextual fear conditioning in mice is maintained even after contextual fear extinction. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34:183–8.

    Article  PubMed  Google Scholar 

  57. Balogh SA, Radcliffe RA, Logue SF, Wehner JM. Contextual and cued fear conditioning in C57BL/6J and DBA/2J mice: context discrimination and the effects of retention interval. Behav Neurosci. 2002;116:947 https://doi.org/10.1037//0735-7044.116.6.947.

    Article  PubMed  Google Scholar 

  58. Boushra M, Rahman O. Postpartum infection. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2022. https://www.ncbi.nlm.nih.gov/books/NBK560804/.

  59. Clancy B, Finlay BL, Darlington RB, Anand KJS. Extrapolating brain development from experimental species to humans. NeuroToxicology. 2007;28:931–7. https://doi.org/10.1016/j.neuro.2007.01.014.

    Article  PubMed  Google Scholar 

  60. Patacchioli FR, Cigliana G, Cilumbriello A, Perrone G, Capri O, Alemà S, et al. Maternal plasma and milk free cortisol during the first 3 days of breast-feeding following spontaneous delivery or elective cesarean section. Gynecol Obstet Invest. 1992;34:159–63. https://doi.org/10.1159/000292751.

    Article  CAS  PubMed  Google Scholar 

  61. Angelucci L. A model for later-life effects of perinatal drug exposure: maternal hormone mediation. Neurotoxical Teratol. 1985;7:511–7. PMID: 4080068.

    CAS  Google Scholar 

  62. Brummelte S, Schmidt KL, Taves MD, Soma KK, Galea LA. Chronic corticosterone during pregnancy and postpartum affects maternal care, cell proliferation and depressive-like behavior in the dam. Horm Behav. 2010;58:769–79. https://doi.org/10.1016/j.yhbeh.2010.07.012.

    Article  CAS  PubMed  Google Scholar 

  63. Catalani A, Marinelli M, Scaccianoce S, Nicolai R, Muscolo LA, Porcu A, et al. Progeny of mothers drinking corticosterone during lactation has lower stress-induced corticosterone secretion and better cognitive performance. Brain Res. 1993;624:209–15. https://doi.org/10.1016/0006-8993(93)90079-3.

    Article  CAS  PubMed  Google Scholar 

  64. Catalani A, Casolini P, Cigliana G, Scaccianoce S, Consoli C, Cinque C, et al. Maternal corticosterone influences behavior, stress response and corticosteroid receptors in the female rat. Pharm Biochem Behav. 2002;73:105–14. https://doi.org/10.1016/S0091-3057(02)00755-4.

    Article  CAS  Google Scholar 

  65. Zietek M, Sochaczewska D, Swiatkowska-Freund M, Celewicz Z, Szczuko M. The possible role of corticosterone in regulating sodium and potassium concentrations in human milk. Ginekol Pol. 2021;92:812–7. https://doi.org/10.5603/GP.a2021.0072.

    Article  PubMed  Google Scholar 

  66. Sullivan EC, Hinde K, Mendoza SP, Capitanio JP. Cortisol concentrations in the milk of rhesus monkey mothers are associated with confident temperament in sons, but not daughters. Dev Psychol. 2011;53:96–104. https://doi.org/10.1002/dev.20483.

    Article  CAS  Google Scholar 

  67. Connor KL, Chehoud C, Altrichter A, Chan L, DeSantis TZ, Lye SJ. Maternal metabolic, immune, and microbial systems in late pregnancy vary with malnutrition in mice. Biol Reprod. 2018;98:579–92. https://doi.org/10.1093/biolre/ioy002.

    Article  PubMed  Google Scholar 

  68. Singh D, Fulekar MH. Biodegradation of petroleum hydrocarbons by Pseudomonas putida strain MHF 7109. CLEAN Soil Air Water. 2010;38:781–6. https://doi.org/10.1002/clen.200900239.

    Article  CAS  Google Scholar 

  69. Sheard NF, Walker WA. The role of breast milk in the development of the gastrointestinal tract. Nutr Rev. 1988;46:1–8. https://doi.org/10.1111/j.1753-4887.1988.tb05343.x.

    Article  CAS  PubMed  Google Scholar 

  70. Pannaraj PS, Li F, Cerini C, Bender JM, Yang S, Rollie A, et al. Association between breast milk bacterial communities and establishment and development of the infant gut microbiome. JAMA Pediatr. 2017;171:647–54.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Holingue C, Brucato M, Ladd‐Acosta C, Hong X, Volk H, Mueller NT, et al. Interaction between maternal immune activation and antibiotic use during pregnancy and child risk of autism spectrum disorder. Autism Res. 2020;13:2230–41. https://doi.org/10.1002/aur.2411.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Obata Y, Furusawa Y, Hase K. Epigenetic modifications of the immune system in health and disease. Immunol Cell Biol. 2015;93:226–32. https://doi.org/10.1038/icb.2014.114.

    Article  CAS  PubMed  Google Scholar 

  73. Golan-Gerstl R, Elbaum Shiff Y, Moshayoff V, Schecter D, Leshkowitz D, Reif S. Characterization and biological function of milk-derived miRNAs. Mol Nutr Food Res. 2017;61:1700009 https://doi.org/10.1002/mnfr.201700009.

    Article  CAS  Google Scholar 

  74. Manca S, Upadhyaya B, Mutai E, Desaulniers AT, Cederberg RA, White BR, et al. Milk exosomes are bioavailable and distinct microRNA cargos have unique tissue distribution patterns. Sci Rep. 2018;8:1–11. https://doi.org/10.1038/s41598-018-29780-1.

    Article  CAS  Google Scholar 

  75. Gilbert C, McCafferty D, Le Maho Y, Martrette JM, Giroud S, Blanc S. et al. One for all and all for one: the energetic benefits of huddling in endotherms. Biol Rev Camb Philos Soc. 2010;85:545–69. https://doi.org/10.1111/j.1469-185X.2009.00115.x.

    Article  PubMed  Google Scholar 

  76. Baharnoori M, Bhardwaj SK, Srivastava LK. Neonatal behavioral changes in rats with gestational exposure to lipopolysaccharide: a prenatal infection model for developmental neuropsychiatric disorders. Schizophr Bull. 2012;38:444–56. https://doi.org/10.1093/schbul/sbq098.

    Article  PubMed  Google Scholar 

  77. Soriano O, Regalado M, Torrero C, Salas M. Contributions of undernutrition and handling to huddling development of rats. Physiol Behav. 2006;89:543–51. https://doi.org/10.1016/j.physbeh.2006.07.021.

    Article  CAS  PubMed  Google Scholar 

  78. García-Torres E, Hudson R, Castelán F, Martínez-Gómez M, Bautista A. Differential metabolism of brown adipose tissue in newborn rabbits in relation to position in the litter huddle. J Therm Biol. 2015;51:33–41. https://doi.org/10.1016/j.jtherbio.2015.03.003.

    Article  PubMed  Google Scholar 

  79. Alberts JR, May B. Nonnutritive, thermotactile induction of filial huddling in rat pups. Dev Psychobiol. 1984;17:161–81. https://doi.org/10.1002/dev.420170207.

    Article  CAS  PubMed  Google Scholar 

  80. Kojima S, Alberts JR. Maternal care can rapidly induce an odor-guided huddling preference in rat pups. Dev Psychobiol. 2009;51:95–105. https://doi.org/10.1002/dev.20349.

    Article  PubMed  Google Scholar 

  81. Miele J, Makin JW, Russo S, Cameron K, Costantini F, Deni R. Huddling behavior of spiny mouse pups toward foster siblings from another species. Psychon Bull Rev. 1983;21:479–82. https://doi.org/10.3758/BF03330014.

    Article  Google Scholar 

  82. Fortier ME, Luheshi GN, Boksa P. Effects of prenatal infection on prepulse inhibition in the rat depend on the nature of the infectious agent and the stage of pregnancy. Behav Brain Res. 2007;181:270–7. https://doi.org/10.1016/j.bbr.2007.04.016.

    Article  PubMed  Google Scholar 

  83. Inceoglu B, Jinks SL, Schmelzer KR, Waite T, Kim IH, Hammock BD. Inhibition of soluble epoxide hydrolase reduces LPS-induced thermal hyperalgesia and mechanical allodynia in a rat model of inflammatory pain. Life Sci. 2006;79:2311–9. https://doi.org/10.1016/j.lfs.2006.07.031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Howland JG, Cazakoff BN, Zhang Y. Altered object-in-place recognition memory, prepulse inhibition, and locomotor activity in the offspring of rats exposed to a viral mimetic during pregnancy. Neuroscience. 2012;201:184–98. https://doi.org/10.1016/j.neuroscience.2011.11.011.

    Article  CAS  PubMed  Google Scholar 

  85. Manzano-Nieves G, Gaillard M, Gallo M, Bath KG. Early life stress impairs contextual threat expression in female, but not male, mice. Behav Neurosci. 2018;132:247 https://doi.org/10.1037/bne0000248.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Gerhard DM, Meyer HC, Lee FS. An adolescent sensitive period for threat responding: Impacts of stress and sex. Biol Psychiatry. 2021;89:651–8. https://doi.org/10.1016/j.biopsych.2020.10.003.

    Article  PubMed  Google Scholar 

  87. MacRae M, Macrina T, Khoury A, Migliore MM, Kentner AC. Tracing the trajectory of behavioral impairments and oxidative stress in an animal model of neonatal inflammation. Neuroscience. 2015;298:455–66. https://doi.org/10.1016/j.neuroscience.2015.04.048.

    Article  CAS  PubMed  Google Scholar 

  88. Zhao X, Tran H, DeRosa H, Roderick RC, Kentner AC. Hidden talents: Poly (I:C)-induced maternal immune activation improves mouse visual discrimination performance and reversal learning in a sex-dependent manner. G2B. 2021b;20, https://doi.org/10.1111/gbb.12755.

  89. Nakamura JP, Gillespie B, Gibbons A, Jaehne EJ, Du X, Chan A, et al. Maternal immune activation targeted to a window of parvalbumin interneuron development improves spatial working memory: Implications for autism. Brain Behav Immun. 2021;91:339–49. https://doi.org/10.1016/j.bbi.2020.10.012.

    Article  CAS  PubMed  Google Scholar 

  90. Vojtechova I, Maleninska K, Kutna V, Klovrza O, Tuckova K, Petrasek T, et al. Behavioral alterations and decreased number of parvalbumin- positive interneurons in wistar rats after maternal immune activation by lipopolysaccharide: sex matters. Int J Mol Sci. 2021;22:3274 https://doi.org/10.3390/ijms22063274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Callahan LS, Thibert KA, Wobken JD, Georgieff MK. Early-life iron deficiency anemia alters the development and long-term expression of parvalbumin and perineuronal nets in the rat hippocampus. Devel Neurosci. 2013;35:427–36. https://doi.org/10.1159/000354178.

    Article  CAS  Google Scholar 

  92. Naskar S, Narducci R, Balzani E, Cwetsch AW, Tucci V, Cancedda L. The development of synaptic transmission is time-locked to early social behaviors in rats. Nat Commun. 2019;10:1195 https://doi.org/10.1038/s41467-019-09156-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Champagne FA, Francis DD, Mar A, Meaney MJ. Variations in maternal care in the rat as a mediating influence for the effects of environment on development. Physiol Behav. 2003;79:359–71. https://doi.org/10.1016/S0031-9384(03)00149-5.

    Article  CAS  PubMed  Google Scholar 

  94. Francis DD, Young LJ, Meaney MJ, Insel TR. Naturally occurring differences in maternal care are associated with the expression of oxytocin and vasopressin (V1a) receptors: gender differences. J Neuroendocrinol. 2002;14:349–53.

    Article  CAS  PubMed  Google Scholar 

  95. van Hasselt FN, Cornelisse S, Yuan Zhang T, Meaney MJ, Velzing EH, Krugers HJ, et al. Adult hippocampal glucocorticoid receptor expression and dentate synaptic plasticity correlate with maternal care received by individuals early in life. Hippocampus. 2012;22:255–66. https://doi.org/10.1002/hipo.20892.

    Article  CAS  PubMed  Google Scholar 

  96. Francis DD, Kuhar M. Frequency of maternal licking and grooming correlates negatively with vulnerability to cocaine and alcohol use in rats. Pharm Biochem Behav. 2008;90:497–500. https://doi.org/10.1016/j.pbb.2008.04.012.

    Article  CAS  Google Scholar 

  97. Nguyen R, Morrissey MD, Mahadevan V, Cajanding JD, Woodin MA, Yeomans JS, et al. Parvalbumin and GAD65 interneuron inhibition in the ventral hippocampus induces distinct behavioral deficits relevant to schizophrenia. J Neurosci. 2019;34:14948–60. https://doi.org/10.1523/JNEUROSCI.2204-14.2014.

    Article  CAS  Google Scholar 

  98. Bison S, Carboni L, Arban R, Bate S, Gerrard PA, Razzoli M. Differential behavioral, physiological, and hormonal sensitivity to LPS challenge in rats. Int J Interferon Cytokine Res. 2009;1:1–13. https://doi.org/10.2147/IJICMR.S4273.

    Article  CAS  Google Scholar 

  99. Pålsson-McDermott EM, O’Neill LAJ. Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4. Immunology. 2004;113:153–62. https://doi.org/10.1111/j.1365-2567.2004.01976.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the MCPHS Schools of Pharmacy and Arts & Sciences for their continual support, the Bioinformatic Resource Center at the Rockefeller University where the RNA-seq was performed, and the University of Massachusetts Boston where HD is a graduate student. Figure 6 was made with BioRender.com and an earlier version of this manuscript was posted on the preprint server bioRvix. The content is solely the responsibility of the authors and does not necessarily represent the official views of any of the financial supporters.

Funding

This project was funded by NIMH under Award Number R15MH114035 (to ACK) and the Massachusetts College of Pharmacy and Health Sciences (MCPHS) Center for Undergraduate Research (H.T).

Author information

Authors and Affiliations

Authors

Contributions

H.D., S.G.C., H.T., and A.C.K., ran the experiments; H.D., S.G.C., J.M., & A.C.K. analyzed and interpreted the data; H.D. and A.C.K. wrote the manuscript; A.C.K., designed and supervised the study.

Corresponding author

Correspondence to Amanda C. Kentner.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DeRosa, H., Caradonna, S.G., Tran, H. et al. Got milk? Maternal immune activation during the mid-lactational period affects nutritional milk quality and adolescent offspring sensory processing in male and female rats. Mol Psychiatry 27, 4829–4842 (2022). https://doi.org/10.1038/s41380-022-01744-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-022-01744-y

This article is cited by

Search

Quick links