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Integrative multi-omics landscape of fluoxetine action across 27
brain regions reveals global increase in energy metabolism and
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Depression and anxiety are major global health burdens. Although SSRIs targeting the serotonergic system are prescribed over 200
million times annually, they have variable therapeutic efficacy and side effects, and mechanisms of action remain incompletely
understood. Here, we comprehensively characterise the molecular landscape of gene regulatory changes associated with
fluoxetine, a widely-used SSRI. We performed multimodal analysis of SSRI response in 27 mammalian brain regions using 310 bulk
RNA-seq and H3K27ac ChIP-seq datasets, followed by in-depth characterisation of two hippocampal regions using single-cell RNA-
seq (20 datasets). Remarkably, fluoxetine induced profound region-specific shifts in gene expression and chromatin state, including
in the nucleus accumbens shell, locus coeruleus and septal areas, as well as in more well-studied regions such as the raphe and
hippocampal dentate gyrus. Expression changes were strongly enriched at GWAS loci for depression and antidepressant drug
response, stressing the relevance to human phenotypes. We observed differential expression at dozens of signalling receptors and
pathways, many of which are previously unknown. Single-cell analysis revealed stark differences in fluoxetine response between
the dorsal and ventral hippocampal dentate gyri, particularly in oligodendrocytes, mossy cells and inhibitory neurons. Across
diverse brain regions, integrative omics analysis consistently suggested increased energy metabolism via oxidative phosphorylation
and mitochondrial changes, which we corroborated in vitro; this may thus constitute a shared mechanism of action of fluoxetine.
Similarly, we observed pervasive chromatin remodelling signatures across the brain. Our study reveals unexpected regional and cell
type-specific heterogeneity in SSRI action, highlights under-studied brain regions that may play a major role in antidepressant
response, and provides a rich resource of candidate cell types, genes, gene regulatory elements and pathways for mechanistic
analysis and identifying new therapeutic targets for depression and anxiety.
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INTRODUCTION
Depression is a severely debilitating mental health condition that
affects ~300 million individuals worldwide and is now a leading
global disability burden [1, 2]. Selective serotonin reuptake
inhibitors (SSRIs) such as fluoxetine (FT) are routinely prescribed
for depression, as well as for a range of co-morbid conditions such
as anxiety and bipolar disorder [3, 4]. Approximately 81% of patients
diagnosed as depressed receive at least one prescription for
antidepressants (ADs), with SSRIs constituting 60% of such
prescriptions (~250 million people worldwide) [5, 6]. Moreover,
SSRIs have pronounced side effects, including mental sluggishness,
sexual dysfunction and increased suicidality, perhaps indicating that
they have complex effects on multiple brain regions [7, 8]. It is thus

important to develop novel drugs and drug combinations that
could deliver the beneficial effects of SSRIs with lower rates of
treatment failure and fewer side effects [9].
A major hurdle in the development of alternative therapeutics is

that the mechanism of action of SSRIs is not well characterised
[9–12]. For example, although their clinical benefit was initially
attributed to inhibition of serotonin reuptake [13–15], multiple
additional mechanisms of action have subsequently been
proposed, including enhanced adult neurogenesis and increased
synaptic plasticity [16–20]. Even this list of candidate mechanisms
is almost certainly incomplete, for reasons described below. It is
thus imperative that a comprehensive, unbiased analysis of the
molecular landscape of SSRI effects across the brain is performed,
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to advance our understanding of the biology of SSRI response and
support the development of new therapeutics.
In agreement with the diversity of proposed mechanisms,

multiple studies have shown that commonly-used antidepressants
can alter the expression of few hundreds of genes [21–23],
potentially by inducing epigenetic alterations [24, 25]. However,
one major limitation is that previous studies of SSRI action have
focused on a limited set of candidate brain regions or a limited set
of gene loci [22, 26, 27]. Moreover, omics analyses of SSRI action are
exclusively unimodal, i.e. based either on gene expression or
epigenetic profiling, but not both [23, 26, 27]. Lastly, these omics
studies rely exclusively on bulk-tissue profiling, which limits our
ability to identify the underlying alterations in cell type abundance
and cell-type-specific gene regulatory networks. Nevertheless, there
is evidence that antidepressants induce a substantial number of
molecular alterations in multiple brain regions, including changes in
chromatin state and gene expression [28, 29]. Thus, a comprehen-
sive, multimodal characterisation of gene regulatory changes
associated with SSRI treatment, integrating both bulk and single-
cell approaches, could reveal avenues for identifying novel
targetable pathways and molecules [30–32]. The use of naïve,
healthy animals in such an approach limits common confounds
known to be associated with current models of depression [33].
We report a comprehensive multi-omics map of the molecular

effects of fluoxetine on rat brain, a widely-used model of human
depression and antidepressant response [34–36]. We profiled gene
expression (bulk RNA-seq, 210 datasets) and chromatin state (bulk
chromatin immunoprecipitation sequencing (ChIP-seq) for the
histone marker H3K27ac, 100 datasets) in a broad, unbiased panel
of 27 brain regions across the entire rodent brain, in naive and
fluoxetine-treated animals. We complemented this approach with
single-cell RNA-seq (scRNA-seq) analysis of two of the major zones
of neuronal proliferation in the adult brain: the dorsal and ventral
dentate gyri of the hippocampus [37]. Using diverse integrative data
analysis techniques and comparisons to human genome-wide
association studies (GWAS) and the Psychiatric disorders and Genes
association NETwork (PsyGeNET), we characterised the complex and
multifaceted effects of fluoxetine on region-specific and cell-type-
specific gene regulatory networks and pathways. Remarkably, we
observed profound molecular changes across the brain (>4000
differentially expressed genes and differentially acetylated ChIP-seq
peaks each) that were highly region-dependent, with the raphe,
nucleus accumbens, locus coeruleus and dorsal hippocampus
emerging as the most strongly altered by fluoxetine. We observed
a global shift in pathways related to histone and chromatin
modifications, metabolism, and mitochondria, suggesting chroma-
tin remodelling and increased energy production in 24/27 brain
regions upon administration of fluoxetine. In bulk and single-cell
analyses, specific oligodendrocyte and neuronal subtypes emerged
as the major responders to fluoxetine. We also detected a steep
gradient in molecular responses to fluoxetine along the dorso-
ventral axis of the hippocampus. These results provide the first
comprehensive map of the molecular effects of fluoxetine on the
mammalian brain and suggest new directions for mechanistic
investigation and eventual therapeutics development.

METHODS
Animal housing and treatment
All procedures were performed in accordance with the guidelines established
by the Canadian Council on Animal Care with protocols approved by the
McGill University Facility Animal Care Committee. Long-Evans rats were
purchased from Charles River (RRID:RGD_2308852) and bred at the Douglas
Mental Health University Institute animal facility. 60-day old uncharacterised
male rats were housed in pairs and separated as control (Sham) group and
fluoxetine-treated (FT) group. Fluoxetine (18mg/kg/day) was provided ad
libitum in the drinking water and this formed the treatment group, while rats
in the Sham group received only water. See Supplementary Methods for
details on materials, animal handling and behavioural assessments.

Bulk RNA-seq
Frozen, pooled brain tissue punches for each region were processed for
RNA extraction and subsequent cDNA synthesis (Supplementary Methods,
n= 4 replicates pooled from 40 animals per treatment group). cDNA
libraries were prepared using 300 ng of total RNA, from 27 regions in every
replicate. Multiplexed RNA-seq libraries were sequenced as paired-end,
76 bp reads on Illumina HiSeq 2500 v4. QC and all downstream data
analysis pipelines are detailed in Supplementary Methods.

Bulk ChIP-seq
For each ChIP-seq assay ~5–25mg of frozen brain tissue per replicate per
region was processed for pulldown assay (n= 2 replicates pooled from 20
animals per treatment group). ChIP and subsequent library preparation
was performed as described in Supplementary Methods as well as here
[38]. Protein-DNA complexes were immuno-precipitated using 3 µg of
H3K27ac antibody of the same lot no. for all 108 (27 regions × 2
replicates × 2 treatment groups) ChIP experiments. Multiplexed ChIP-seq
libraries were sequenced as paired-end, 76 bp reads on Illumina HiSeq
2500 v4. QC and all downstream data analysis pipelines are detailed in
the Supplementary Methods.

Single cell RNA-seq
dorDG and venDG tissues were punched from fresh brains of the two
treatment groups (n= 5 replicates pooled from 15 animals per treatment
group). Single cells gel emulsions and their cDNA were isolated following
manufacturer’s recommendations for the 10x Genomics Chromium single
cell 3’ reagent kit v2. Single cell libraries were sequenced on the Illumina
HiSeq 4000. QC and all downstream data analysis pipelines are presented
in the Supplementary Methods.

RESULTS
Transcriptomic landscape of fluoxetine action across 27 brain
regions
Affected brain regions and magnitude of region-specific changes.
To confirm the behavioural effects of fluoxetine, we treated naïve
rats with either vehicle or fluoxetine for 6 weeks, and tested
behavioural despair using the forced-swim test (Fig. 1a) [39].
Animals that received chronic fluoxetine treatment for 6 weeks
showed a significant increase in swim time and a corresponding
reduction in immobility compared to control animals (P-val < 0.05,
Fig. 1b, Supplementary Table TS1). Thus, our fluoxetine treatment
of naïve animals successfully reproduced the well-known reduc-
tion in behavioural despair induced by antidepressants [39].
Next, to comprehensively characterise the genome-wide tran-

scriptomic response to fluoxetine, we used bulk RNA-seq to profile
four treated (FT) and four control (Sham) samples from each of 27
regions spanning the entire rat brain (27*8= 216 transcriptomes;
Fig. 1a, Supplementary Table TS1). To reduce the effects of inter-
animal biological variation within treatment groups, each sample
was pooled from ten animals (40 in Sham, 40 in FT; 80 animals in
total). Most datasets were found to be of high quality; only six RNA-
seq profiles were discarded during quality-control (QC, Supplemen-
tary Methods). As expected, the averaged transcriptomes of the 27
brain regions formed distinct clusters based on anatomical proximity
(Supplementary Fig. S1a). For example, cortical regions clustered
with the striatal and hippocampal substructures and were relatively
distant from the thalamic and caudal nuclei. Thus, the data were
consistent with the expected anatomical relationships in the brain.
Within each brain region, the transcriptomes of treated and

untreated samples were clearly distinct, indicating strong and
widespread gene expression changes in response to fluoxetine
(Fig. 1c, d, Supplementary Fig. S1b, Supplementary Table TS2).
Strikingly, as many as 4447 transcripts were altered by antidepres-
sant treatment in at least one brain region (absolute log2 fold-
change (log2FC) ≥ log2 (1.25), false discovery rate (FDR) Q-val ≤ 0.1).
The median number of differentially expressed genes (DEGs) in any
individual brain region was 311 (Fig. 1d, Supplementary Table TS2).
These statistics imply that fluoxetine has strong effects on gene
expression that vary substantially across brain regions.
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The brain region where the transcriptome was most strongly
affected by fluoxetine treatment was the raphe (1243 DEGs,
Fig. 1d, Supplementary Table TS3). The next four brain regions,
in descending order, were nucleus accumbens shell (NAcSh) and
core (NAcC), arcuate nucleus (Arc) and the locus coeruleus (LC).
Notably, all of the five brain regions highlighted by this unbiased

molecular analysis are major monoaminergic centres [40, 41].
Thus, our transcriptomic analysis supports the centrality of
monoaminergic signalling to fluoxetine response, including
brain regions such as LC [42] and Arc [43] that have not
previously been characterised in omics studies of fluoxetine
response (Fig. 1d).
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We hypothesised that some DEGs may be shared across brain
regions, due to sharing of cell subtypes and long-range neural
circuitry. Indeed, we found that, while 47% of DEGs were specific to
a single brain region, 33% were altered in three or more regions
(Fig. 1e, Supplementary Table TS4a). Intriguingly, Otub1, the most
broadly upregulated gene (23/27 regions), contributes to neuro-
genesis and elevates protein synthesis and cellular metabolism
[44, 45]. Trim28 (KAP1), an epigenetic co-repressor gene upregulated
in 19 brain regions, has a knockout phenotype of heightened
anxiety [46]. Thus, two of the three most broadly upregulated DEGs
are functionally associated with hallmark therapeutic effects of
fluoxetine treatment. Remarkably, amongst the most broadly
downregulated genes, four of the top five annotated transcripts
contribute to neurotransmitter synthesis, packaging or release:
Mat2a [47], Napb [48], Cds2 [49] and Gabrg2 [50] (Fig. 1e). Their
downregulation could potentially dampen serotonin release at
synapses as part of a homoeostatic negative feedback loop [51, 52]
compensating for the perturbation introduced by drug treatment.
Fluoxetine-responsive genes with the strongest region-specific

upregulation were Npvf (log2FC:4.1, mPoA), a neuropeptide gene in
the hypothalamic circuit regulating pain, sleep and appetite [53],
and Pde6h (log2FC:3.7, raphe), a phosphodiesterase gene that
regulates light sensitivity and pain perception [54]. Slc6a3 (log2FC:-
4.8, Arc), the dopamine reuptake transporter gene [55], and Kcnk9
(log2FC:-3.8, mPoA), a potassium channel gene implicated in sleep
regulation [56], showed the strongest region-specific downregula-
tion in response to fluoxetine. Thus, in addition to monoamine
signalling, the most strongly altered genes are involved in pain
perception and sleep regulation, two well-known targets of
fluoxetine [7]. Indeed, SSRIs are prescribed for problems of chronic
pain and to enhance sleep quality [57, 58]. Overall, the above results
reveal considerable variation in the molecular response to fluoxetine
across brain regions and provide novel mechanistic hypotheses for
the known therapeutic and adverse effects of fluoxetine (Fig. 1e,
Supplementary Table TS4b, and Supplementary Fig. S2).
To assess the reliability of our expression analysis, we prioritised

96 top-ranked DEGs from six brain regions (8 up and 8 down-
regulated genes per region, Supplementary Methods) for indepen-
dent validation using the Fluidigm Biomark qPCR assay. We
quantified the expression of the 96 genes in the corresponding
brain regions and observed that expression fold-changes in the
qPCR assay were consistent with “Up” and “Down” status in the RNA-
seq dataset (Supplementary Fig. S3a). To further corroborate our
results, we performed single-molecule RNA-FISH (RNAscope) on
brain sections from sham and fluoxetine-treated animals. For this
analysis, we prioritised the abovementioned Otub1 and Trim28
genes, as well as Sirt2, a DEG that may play a role in depressive
behaviour and modulation of chromatin by SSRIs [59]. All three
genes showed substantial region-specific changes in expression
consistent with their respective bulk RNA-seq status (Fig. 1f,
Supplementary Fig. S3b–e). Thus, these independent assays support
the robustness of our DEG set.

Correspondence with independent analyses. To assess relevance to
human clinical phenotypes, we asked whether the DEGs identified

in our data overlapped with those identified by GWAS. We
examined GWAS gene sets and summary statistics for five
phenotypes: SSRI response, broad antidepressant response, MDD,
Alzheimer’s and alcoholism (Supplementary Methods). In seven
brain regions, we found highly significant overlap (FDR Q-val ≤ 5e-5)
between our DEGs and those associated with SSRI/antidepressant
response. Notably, six of these seven regions ranked above the
median in terms of number of DEGs, including two monoaminergic-
related centres (raphe and NAcC, Fig. 1g). The identification of the
raphe as a highly-enriched region is in agreement with reports of
SSRI effects on Htr1a autoreceptor regulation in this region [60].
Consistent with the idea that antidepressants target molecular
processes dysregulated in depression [61], DEGs in four of the above
six regions (raphe, NAcC, LH and MS) also showed highly significant
overlap withMDD genes. Intriguingly, DEGs in three of the four brain
regions were enriched for genes associated with Alzheimer’s. This
result is potentially attributable to the genetic relationship between
Alzheimer’s and depression [62] and consistent with the use of
fluoxetine as a treatment for Alzheimer’s [63]. Finally, two regions
(raphe and NAcC) showed significant overlap between DEGs and
genes associated with alcoholism, which is often co-morbid with
MDD [64] (Fig. 1g, Supplementary Table TS5). In addition, to capture
overlap with neuropsychiatry gene sets beyond GWAS, we
performed enrichment analyses using the PsyGeNET database
(Supplementary Methods). We observed a significant enrichment
between our DEGs and curated gene sets linked to depressive
phenotypes, bipolar disorder, schizophrenia and cocaine (min FDR
Q-val: 0.0027, Supplementary Table TS5, Supplementary Fig. S5a).
Interestingly, some of the overlapping genes are known targets of
drugs used in the treatment of psychiatric disorders (see Discussion).
Overall, these results indicate strong correspondence between our
DEG sets and genes related to human depression, treatment
response and therapeutic relevance in psychiatric disorders.
Next, we examined the overlap in gene expression changes

between our data from naïve rats and antidepressant-response
studies of stressed mice [65, 66] (Supplementary Fig. S6, Supplemen-
tary Methods). Transcriptional alterations associated with effective
behavioural response to fluoxetine in stressed mice (FT responders in
stressed mice (corticosterone+FT); [66]) showed a significant overlap
with the naïve fluoxetine response, with a stronger concordance
(max(–log10p-value)= 18.3) among the downregulated genes in the
hippocampus (Supplementary Fig. S6a). This finding suggests
similarity in SSRIs response across both naïve and stressed animals.
Next, to assess the influence of a different stress model and non-SSRI
treatment, we performed the overlap analysis with gene expression
changes associated with responders to the tricyclic antidepressant,
imipramine [65]. We again observed a strong concordance in gene
expression changes in 6/7 brain regions examined, particularly in the
amygdala (BLA, CMA; max (–log10p-value)= 52.6) and the nucleus
accumbens (NAcC, NAcSh; max (–log10p-value)= 54.6) (Supplemen-
tary Fig. S6b) suggesting common gene regulatory mechanisms
between fluoxetine and imipramine. Finally, we compared differential
expression in our data with fluoxetine-induced changes in mouse
venDG following chronic variable stress (Anacker et al., unpublished).
We once again observed significant overlap within both up-and

Fig. 1 Genome-wide transcriptome changes by fluoxetine. a Schematic overview of data generation and workflow. b Forced swim test
following chronic fluoxetine treatment in adult rats. Time spent swimming, being immobile are shown for sham and fluoxetine treated
groups. * indicates P-val < 0.05. c RNA-seq dataset QC: Principal Component Analysis (PCA) visualisation of eight samples of the raphe region.
Sham replicates are coloured in blue and FT coloured in red. d Statistics of RNA-seq dataset: Number of upregulated and downregulated DEGs
across 27 brain regions (and number in each category shared between regions). See Supplementary Tables TS1a for brain region names. e Top:
table showing DEGs shared in ≥15 regions, along with the maximum log2FC and its corresponding FDR. Bottom: table showing strongest
upregulated and downregulated region-specific DEGs. f Regional variation in fluoxetine DEGs as measured by RNAscope. For each gene,
arrows denote regions with significant differential expression between FT and Sham that are consistent with bulk RNA-seq results. g Circular
heat map showing the fold-enrichment of identified region-wise DEGs in GWAS loci for five phenotypes. * indicates FDR Q-val ≤ 0.05; ** FDR
Q-val ≤ 0.01. h Differential expression status of key neurotransmission genes identified. Grey boxes denote previous findings reported in the
literature (see Supplementary Tables TS6).
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down-regulated genes (max (–log10p-value)= 12.4) across datasets
(Supplementary Fig. S6c). Taken together, the analyses suggest that
the gene expression changes in fluoxetine-treated naïve rats overlap
substantially with antidepressant treatment in several paradigms of
stressed rodents.
Lastly, we examined the correspondence between previously

reported effects of SSRIs on serotonin receptors and our datasets. In
the hippocampus and raphe, fluoxetine and other SSRIs are known to
decrease Htr1a receptor expression and serotonin binding. Moreover,
Htr1a blockade reverses depressive behaviours in mice [60, 67, 68].
Consistent with this, we observed a significant reduction in Htr1a
expression in the raphe and dorDG (Fig. 1h). Similarly, we
recapitulated the previously reported SSRI-induced downregulation
of Htr2c in NAcC [69–71] (Fig. 1h). Examining a broader set of
signalling receptors, we find that fluoxetine significantly modulates
receptor expression in a plethora of brain regions not previously
subjected to unbiased transcriptome profiling. These include broad
downregulation of the GABA receptor subunits Gabrb2 and Gabrg2 in
>10 regions and upregulation of the NMDA receptor subunit Grin2c in
7 regions, as well as Grm3 and Chrm1 in 3 regions (Fig. 1h,
Supplementary Fig. S4a). We also detected numerous region-specific
alterations in the expression of Wnt-Notch (Fzd6, Megf8, Lrp5),
purinergic (Adora2a, P2ry1), nuclear hormone (Nr2c1, Nr4a2) and
transmembrane protein kinase (Bmpr1a, Ntrk2) signalling receptors,
as well as their downstream solute carriers (Slc6a11, Slc7a10) and
metabolite regulators (Apoe, Cds2) (Fig. 1h, Supplementary Fig. S4b,
Supplementary Table TS6). These results demonstrate the diversity of
fluoxetine’s effects and highlight novel fluoxetine-responsive recep-
tor categories for further investigation.

Cell type and pathway signatures of fluoxetine response. We asked
if fluoxetine-induced DEGs in the 27 brain regions could be
matched to specific cell types. To address this, we tested for
enrichment of DEGs in cell-type markers derived from the
BRETIGEA database [72] (Supplementary Methods). In multiple
brain regions, upregulated DEGs were significantly enriched for
oligodendrocyte (6 regions), neuronal (5 regions) and microglial (3
regions) markers. Downregulated DEGs were overwhelmingly
enriched for neuronal (17 regions) and oligodendrocyte (12
regions) markers (Supplementary Fig. S5b, Supplementary Table
TS7). Together, these results extend previous low-throughput
studies that suggested oligodendrocyte and neuronal alterations
in depression and antidepressant response [73]
MDD and rodent stress models report dysregulation of

oligodendrocyte-specific genes, including those related to
myelin, in the NAc as a whole [74, 75]. However, the NAcC
and NAcSh are functionally distinct subregions with disparate
roles in regulation of depression and addiction [76, 77]. Indeed,
we observed distinct fluoxetine responses in these subregions.
Upregulated DEGs in NAcC were strongly associated with
oligodendrocytes (FDR Q-val: 1.5e-20), whereas those in NAcSh
were enriched for neuronal markers (FDR Q-val: 6.6e-6)
(Supplementary Fig. S5b, Supplementary Table TS7). Thus, our
results suggest that fluoxetine may influence distinct cell types
in these two components of the NAc.
Next, we asked if fluoxetine-induced DEGs could elucidate

molecular pathways modulated by the drug. To determine the
global relationship between DEGs, we used k-means clustering
of all 4,447 DEGs to identify co-regulated gene modules (Fig. 2a).
For each module, we detected enriched functional categories
using anRichment (FDR Q-val ≤ 0.05, Supplementary Methods)
and GOrilla (FDR Q-val ≤ 0.05, enrichment ratio ≥ 1.5, Supple-
mentary Methods). We used gene set enrichment analysis (GSEA,
Supplementary Methods) on GO categories functionally related
to the k-mean modules (Fig. 2b). Finally, we complemented the
above module-centric analyses by using Ingenuity Pathway
Analysis (IPA) to identify pathways enriched in region-wise DEGs
(Fig. 2c, Supplementary Table TS9, Supplementary Methods).

Strikingly, we observed two DEG modules (module 3 and 8)
upregulated in almost all 27-brain-regions (Fig. 2a). Module 3 was
enriched for genes with mitochondrial functions (GO:0005739, FDR
Q-val:1.4e-6) such as electron transport complex (ETC) subunits
(Ndufb4, Ndufa7, Uqcrq, Atp5f1, Sdhb), inner and outer mitochondrial
membrane genes (Tomm6, Timm17a), mitochondrial matrix com-
ponents (Mdh2, Mrp15, Mrps7) and transport chaperones (Sirt1,
Dnajc3, Dnajc19) (Fig. 2a, Supplementary Table TS8a, c). Corre-
spondingly, GSEA analysis showed enrichment for gene sets
modulating ETC I-V activity and mitochondrial protein import
(Fig. 2b, Supplementary Table TS8b, c). In parallel, IPA highlighted
pathways related to mitochondrial function as systematically
altered in the majority of brain regions (red arrows, Fig. 2c). In
particular, the oxidative phosphorylation (oxphos) pathway was
significantly upregulated in 19/27 regions, suggesting a widespread
increase in energy production upon fluoxetine administration.
Antidepressant-induced higher energy levels positively regulate
mTOR signalling [78]. Consistent with this, we observed an
upregulation of mTOR signalling across >15 regions. Increased
energy production often leads to cellular damage from oxidative
stress. Accordingly, IPA inferred a significant increase in oxidative
stress response across brain regions (Fig. 2c, Supplementary Table
TS9, P-value ≤ 3.6e-4 in 12/27 regions). Thus, gene-module and
region-wise DEG analysis consistently suggest a near-global
increase in energy production and related antioxidant defences as
one of the most prominent molecular effects of fluoxetine
administration. Importantly, these effects seem primed to oppose
the downregulation of oxphos genes previously reported in MDD
(Atp5j2, Atp5i, Ndufb4, Ndufa5, Mt-atp8) and the well-known
depletion of ATP in MDD brain [79, 80].
The second co-regulated gene cluster that exhibited global

upregulation across brain regions was module 8 (Fig. 2a). 14/195
DEGs within this module are transcription factors (MSigDB). GSEA
showed that upregulated genes were significantly enriched
for roles in covalent chromatin modification (Setdb1, Auts2,
Ctcf, Hdac2/5/8/9, Hist1h1d), histone and DNA methylation
(Jmjd6, Kdm4a) and deubiquitination (Usp22, Kat2a) (Fig. 2b,
Supplementary Table TS8b). Intriguingly, the LC was a notable
exception to the above trend in that it showed downregulation
of genes from the same functional categories (see Discussion).
IPA also highlighted fluoxetine-induced chromatin changes via
the sirtuin signalling pathway (Fig. 2c), which is known to be
energy-metabolism-dependent and represses transcriptional
activity via deacetylation of histones, transcription factors and
cofactors. Sirtuin signalling was differentially altered in most
regions (18/27) and significantly repressed in a majority of these
(13/18). Taken together, our results suggest that fluoxetine
globally influences chromatin organisation by upregulating
multiple genes involved in histone methylation, acetylation,
and deubiquitination.
Lastly, we observed two globally downregulated DEG modules

(module 1 and 2, Fig. 2b), which were enriched for membrane
components (FDR Q-val: 1.36e-4), including ion channels (Kcnj10,
Kcna2, Cacna1i), membrane-bound receptors (Calcrl, Erbb3,
Nr3c2, Lrrtm2), solute transporters (Slc6a11, Slc6a7) and neuro-
modulators (Adcy1, Slitrk2, Gabrg2, Epha6, Notch2). Inhibition of a
number of these genes has been shown to exert therapeutic
effects on depression, anxiety and other CNS disorders [81]. IPA
analysis of region-wise DEGs highlighted brain-region-specific
modulation of opioid, hippo, ephrin and dopamine signalling
(Fig. 2c), suggesting potential molecular mechanisms for these
known antidepressant and anxiolytic effects of SSRIs [82].
In summary, our bulk RNA-seq results indicate that chronic

fluoxetine administration triggers profound and complex gene
expression changes across the entire brain. These include major
alterations in oligodendrocyte- and neuron-specific genes, as
well as genes involved in energy production, chromatin
modification and diverse pathways beyond serotonin.
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Fig. 2 Functional signatures of fluoxetine induced transcriptome alterations. a k-means clustering of the union set of region-wise DEGs.
Top gene ontology terms are shown for each co-regulated gene module. b GSEA enrichment ratios of upregulated (green bubble) and
downregulated (yellow bubble) DEG sets with their corresponding functional activity (normalised enrichment score, NES) per the GO database.
Circle size indicated –Log10(Q-val) and the colour indicates NES. c Pathway enrichment analysis of region-wise DEGs using IPA. Pathways that
had at least five genes in the foreground DEG set and with FDR Q-val < 0.01 in >3 regions are represented in the plot. Green circles denote
positive z-score (pathway activation), red circles denote negative z-score (pathway inhibition) and white denotes neutral score. Red arrows
indicate broadly altered pathways related to energy metabolism, while tan arrow indicates pathways related to chromatin modifications.
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Genome-wide H3K27ac landscape of Fluoxetine action
MDD is marked by reduced histone acetylation in hippocampus and
PFC [31]. Consistently, histone deacetylase inhibitors, which increase
global histone acetylation levels, show strong antidepressant-like
activity [83]. To complement our multi-regional transcriptome map,
we used ChIP-seq to profile genome-wide fluoxetine-induced
histone acetylation changes in each of the 27 brain regions. In this
analysis, we targeted H3K27ac, the most well-studied acetylation
signature of active regulatory elements such as enhancers and
promoters [84]. We used DFilter (Supplementary Methods) to call a
consensus set of 48,006 H3K27ac ChIP-seq peaks across the 27
regions—these peaks represent potential gene regulatory elements.
Reassuringly, as in the case of RNA-seq, the average chromatin
profiles of the 27 brain regions clustered primarily based on
anatomical proximity (Supplementary Fig. S7a). However, the
profiles of treated and untreated samples were clearly distinct
(Supplementary Fig. S7b). Remarkably, 4511 peaks within the
consensus set showed significant differential acetylation between
sham and fluoxetine-treated animals in at least one brain region
(abs log2FC ≥ log2 (1.25), FDRQ-val ≤ 0.1, Supplementary Table TS10,
Supplementary Methods), indicating strong chromatin modulation
by fluoxetine.
Amongst the 27 regions, the dorDG, PLC, raphe, NAcSh, MS and

LC showed the most striking differential acetylation between
fluoxetine-treated and control groups (Fig. 3a, Supplementary
Table TS11). Importantly, raphe, NAcSh and LC were among the six
top-ranked brain regions for differentially acetylated peaks as well
as DEGs (Fig. 1d), suggesting that these were the most prominent
fluoxetine-responsive regions. Of the six brain regions listed
above, the dorDG and LC showed the greatest correlation in fold-
change between DEGs and their corresponding differentially
acetylated promoter peaks (R= 0.59 and 0.55 respectively;
correlation P-val < 0.01 for both, Fig. 3b). As noted in multiple
previous studies, the correlation between differential acetylation
and expression is diminished by multiple factors, including post-
transcriptional regulation, DNA methylation, presence of poised
promoters, and measurement noise [38, 85]. Indeed, out of top 14
regions ranked by differential peaks, seven had higher correlations
while the other seven brain regions showed lower correlation
(P-val > 0.05; Fig. 3b, Supplementary Table TS12).
To examine the functional correlation between differentially

acetylated peaks and DEGs, we applied the GREAT algorithm to IPA
gene sets associated with fluoxetine-responsive DEGs (Fig. 3c,
Supplementary Methods). Differentially acetylated peaks in the top
six regions were enriched for cellular functions such as protein
metabolism (eIF2 signalling, eIF4 signalling, ubiquitination), energy
production (mitochondrial dysfunction, oxidative phosphorylation,
mTOR signalling) and modulation of neuronal signalling (Rho-,
opioid-, ceramide- and dopamine-signalling pathways). A substan-
tial number of IPA annotations associated with DEGs were also
associated with genes near differentially acetylated peaks (magenta
boxes, Fig. 3c, Supplementary Methods). For example, in dorDG,
multiple pathways enriched in downregulated differentially acety-
lated peaks were also identified as repressed in RNA-seq, and
vice versa (magenta boxes, Fig. 3c). These trends were also evident
among upregulated peaks in raphe and NAcSh. These results
suggest strong functional consistency between differentially
acetylated peaks and DEGs.
To identify and characterise differentially acetylated peaks

modulated by fluoxetine in a similar manner across brain regions,
we used k-means clustering to cluster differentially acetylated
peaks by their fold-change profiles (Fig. 3d). For each cluster of
differentially acetylated peaks, we identified enriched functional
categories (GREAT, Supplementary Methods), transcription factor
(TF)-binding motifs (HOMER, Supplementary Methods) and cell-
type-specific markers (BRETIGEA database, Supplementary Meth-
ods). As in the case of DEGs, we observed two differentially
acetylated clusters (Clusters 1 and 7) upregulated in >8 brain

regions that were significantly enriched for ion channels (FDR
Q-val: 5.8e-4), synaptic signalling (FDR Q-val: 0.01) and neuron-
specific markers (FDR Q-val: 1.1e-14) (Fig. 3d, Supplementary
Tables TS13,14). Importantly, TF motifs of Rfx1/2, Mef2d and Atf3,
all of which are implicated in depression and anxiety [86], were
enriched in this cluster (Fig. 3d, Supplementary Tables TS15).
Cluster 3, representing co-regulated differentially acetylated
peaks globally downregulated by fluoxetine, was enriched for
RNA polymerase II transcription corepressor activity (FDR Q-val:
5.8e-4) and for TFs associated with co-repressor functions (Grhl2,
Dmrt6, Bzip:Irf). Cluster 5 consisted of differentially acetylated
peaks upregulated in LC and downregulated in dorDG. This
cluster showed strong enrichment for functional categories and
cell type markers specific for oligodendrocytes. Interestingly,
HOMER identified the Sox family of TFs, which are known to be
dysregulated in MDD [87], as the most strongly enriched in
Cluster 5.
Overall, the above results indicate consistency between

differentially regulated pathways inferred from RNA-seq and
ChIP-seq, namely energy and protein metabolism, ion channels
and synaptic transmission. Analysis of histone acetylation changes
in response to fluoxetine suggests the presence of distinct gene
regulatory modules altered in neurons and glia, and provide
candidate TFs that may contribute to these changes.

Single-cell transcriptome analysis of the hippocampal DG
Thus far, we have used bulk-sample omics assays to characterise
fluoxetine response in 27 brain regions. Though bulk-based assays
are efficient for large-scale sample processing, they cannot resolve
the heterogeneity of cellular responses within a tissue. We
therefore complemented the above-described assays with
scRNA-seq analysis of two brain regions. In this analysis, we
prioritised the dorDG, which ranked first among the 27 regions in
terms of the number of differentially acetylated peaks and third in
the composite ranking based on the sum of log-ranks in ChIP-seq
and RNA-seq (Supplementary Tables TS12). For comparison, we
also included the venDG, a region at the other end of the
hippocampus that shared 39 DEGs with dorDG. Note however that
the majority of DEGs were distinct in these two regions (Fig. 4a).
The relevance of these two regions was further supported by the
fact that they have been widely implicated in MDD and
antidepressant response [88–91].
We generated single-cell gene-expression profiles from dorDG

and venDG micro-punches (n= 5 replicates, each replicate pooled
from three animals). After stringent QC (Supplementary Methods,
Supplementary Fig. S8), we retained 3,517 high quality cells for
further analysis. Using supervised and unsupervised clustering of
single cell transcriptomes [92, 93], we identified 12 distinct cell
types in dorDG and venDG (Fig. 4b, Supplementary Fig. S9,
Supplementary Tables TS16–17 and Supplementary Methods). We
hypothesised that fluoxetine may alter cell type proportions as
well as cell-type-specific gene expression, and that these
alterations may differ between the two dentate gyri. Indeed, we
observed a substantial increase in granule cell counts in the
fluoxetine-treated venDG (P-val: 0.03, Fig. 4c, Supplementary
Tables TS18). This cellular phenotype of treated animals could
potentially have behavioural consequences, since increased
granule cell proliferation has been observed in the ventral
hippocampus of antidepressant responders and stress-resilient
animals [94, 95]. Notably, no such shift was observed in dorDG
(Fig. 4c). Rather, in dorDG, fluoxetine drove a significant decrease
in the number of inhibitory neurons relative to control and an
increase in mossy cells (P-val: 0.03 in both cases). The fluoxetine-
induced shifts observed in dorDG could also have behavioural
consequences, since mossy cell depletion is associated with
increased anxiety in rodents and inhibitory neuron abundance is
positively associated with MDD [96, 97]. In summary, these results
highlight distinct cell types in these two hippocampal brain
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Fig. 3 Histone acetylome-wide status of fluoxetine action. a Statistics of ChIP-seq dataset: Number of significant differentially acetylated
(DA) peaks in the consensus set (FDR Q-val ≤ 0.1). Brain regions are ranked by the number of DA peaks. b Spearman correlations of DEG log2
fold-changes and their associated promoter DA peak log2 fold-changes in the top 6 brain regions (ranked by number of DA peaks). The
intensity of the green denotes a higher correlation value as coloured in the scale bar, **: correlation P-val ≤ 0.01, *: P-val ≤ 0.05. c GREAT
enrichment of region-wise DA peaks for IPA pathways in the top 6 brain regions as in b. Magenta boxes indicate pathway terms that were also
enriched in the corresponding region-wise DEG set. Dot size indicates FDR Q-val and the colour denotes enrichment. d Functional annotation
of the eight DA co-regulated gene clusters: top enriched pathways, enriched cell types and HOMER transcription factor motifs of each cluster
are listed (FDR Q-val ≤ 0.1).
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regions that could be prioritised in studies of the mechanism of
action and therapeutic effects of SSRIs.
Next, we sought to identify the cell types whose transcriptomes

were substantially altered by fluoxetine, i.e. the cell types with a
substantial number of DEGs (Supplementary Tables TS19, Supple-
mentary Methods). In the dorDG, two cell types contributed the vast

majority of DEGs: oligodendrocyte1 (514 up, 301 down) and
inhibitory neurons (308 up, 209 down) (Fig. 4d, Supplementary
Tables TS19). Notably, a substantial number of DEGs were shared
between these two cell types (148 up, 47 down). Although DEGs
may be detectable in additional cell types in larger cohort sizes, this
result nevertheless suggests that these two cell types may be the
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strongest responders in dorDG. The transcriptional response of the
venDG was more modest (Fig. 4d, Supplementary Tables TS19). The
finding that fluoxetine substantially alters gene expression in
oligodendrocytes in dorDG constitutes yet another link to previous
results on depression, namely that glial cell types play a prominent
role in the etio-pathology of MDD [45, 78].
To link cell-type-specific DEGs to known biological pathways, we

tested for enriched gene annotations (FDR Q-val ≤ 0.05, Fig. 4e,
Supplementary Tables TS20 and Supplementary Methods). In both
oligodendrocyte1 cells and inhibitory neurons, upregulated DEGs
showed strong enrichment for cytoplasmic protein translation
machinery (Rps3, Rpl18, Rpl23a), ETC complex and ATP metabolism
genes (Uqcrh, Uqcrq, Ndufsv2, Atp5f1d, Cox6) (Fig. 4e). DEGs
downregulated in oligodendrocyte1 were enriched for synapse
and GTPase regulators (Gabrb1, Gria2, Gria3, Syt1), while those in
inhibitory neurons were enriched for ion channels and glutamater-
gic transmission (Cacna1a, Nlgn2, Epha7, Ntrk2, Gria2). Importantly,
these terms were strongly concordant with the broad trends
inferred from bulk RNA-seq and ChIP-seq (Figs. 2c, 3c). Next, we
used a gene-module-scoring approach (Supplementary Methods)
to examine in a hypothesis-driven manner if these gene sets might
show systematic upregulation in additional cell types. Notably, the
oxidative phosphorylation module score was significantly increased
by fluoxetine administration in 5 of 12 dorDG cell types
(oligodendrocyte1, inhibitory neurons, astrocyte1, oligodendrocyte
precursor cells and microglia2) and in oligodendrocyte1 and
astrocyte1 cells in venDG (FDR Q-val ≤ 0.01, Fig. 4f, Supplementary
Tables TS21). These results consistently suggest that increased
energymetabolismmay constitute a central mechanism of action of
fluoxetine, and that glial subtypes (oligodendrocyte1, astrocyte1
and microglia2) could be potential mediators of this effect.
We examined if these transcriptomic changes would result in

functional alterations in mitochondria and oxphos activity. To assess
the mitochondrial membrane potential gradient generated as a
result of oxidative phosphorylation, we treated the glial line CRL-
2199 with FT, corticosterone (CORT, a glucocorticoid stressor) and
corticosterone+fluoxetine (CORT+ FT) for 3 days (Supplementary
Methods). Following the different treatments, we labelled live cells
with MitoTracker Red, a dye that localises to the mitochondrial
membrane in a membrane potential-dependent manner, and
immunostained for the oxphos membrane protein cytochrome c.
Quantification of the average fluorescence signal revealed that
MitoTracker Red was significantly upregulated in the fluoxetine
group by 1.7-fold relative to vehicle control (P-val < 0.0001) and by
1.6-fold in the CORT+ FT group (P-val < 0.0001, Fig. 4g, Supple-
mentary Methods). This suggests an increase in mitochondrial
abundance. Similarly, there was a 1.7 and 1.4-fold increase in
cytochrome c levels in the FT and CORT+ FT group compared to
vehicle, respectively, suggesting a fluoxetine-induced increase in

oxphos activity. Next, we measured the oxygen consumption rate
(OCR) of cells as a proxy for the oxidative phosphorylation rate. In
the presence of a stressor, the OCR decreased, whereas fluoxetine
administration increased oxygen consumption by 11 percent
relative to the CORT group (P-val: 0.04, FT vs CORT, Fig. 4h),
indicating a shift towards higher oxidative phosphorylation in glial
cells. Taken together, these assays show that fluoxetine upregulates
mitochondrial abundance and mitochondrial ATP pathways in vitro,
which corroborates with the concerted transcriptomic and epige-
nomic regulation of energy metabolism genes as revealed by the
bulk and single-cell analysis.
We next sought to explain the above-described patterns of

differential expression by identifying cell-type-specific ‘regulons’,
which are defined as TFs coupled with their downstream targets.
Using SCENIC (Supplementary Methods), we detected 178
regulons in dorDG and 173 in venDG (Supplementary Tables
TS22a, Supplementary Fig. S10), of which 136 and 131,
respectively, were differentially active in at least one cell type
(FDR Q-val < 0.1, Fig. 5a, Supplementary Tables TS22b). Consistent
with the sharing of DEGs between oligodendrocyte1 and
inhibitory neurons in dorDG, we identified a shared set of
fluoxetine-activated regulons (Atf4, Jun, Crem, Fosb, Ets2, Sox15,
Srebf1, Fos, Spi1) in these two cell types (blue box, Fig. 5a). These
transcription factors drive ATP synthesis, as well as transcription
and translation of cytoprotective genes, in response to mitochon-
drial signalling [98, 99]. Intriguingly, the regulons of four of the
above-mentioned TFs (Crem, Atf4, Fos, Fosb) were also activated by
fluoxetine in venDG astrocyte1 and oligodendrocyte1 cells, albeit
less strongly (Fig. 5b). These are precisely the venDG cell types in
which the oxidative phosphorylation gene module was upregu-
lated (Fig. 4f). Taken together, these results suggest that the
above-mentioned TFs may contribute to hippocampal activation
of energy metabolism genes in response to fluoxetine.
In addition to treatment-specific regulatory programs, we

investigated fluoxetine-induced changes in signalling between
pairs of cell types. We performed signalling analysis using NATMI
(Supplementary Methods), which leverages a literature-curated
catalogue of ligand-receptor pairs to estimate their interaction
strength in pairs of cell types. By comparing fluoxetine-treated vs.
control samples, we detected 22 ligand–receptor combinations
with differential interaction scores in dorDG and 6 in venDG
(Fig. 5c, d, Supplementary Tables TS23, Supplementary Fig. S11).
Interestingly, mossy cells were prominent in dorDG, participating
in 18/20 signalling interactions with higher scores in the
fluoxetine-treated group (Fig. 5c, d). Of these, Pdgfrb stood out
as the receptor with the largest number of differential interac-
tions (5/20 interactions). SSRI treatment in vitro activates Pdgfrb
via serotonin receptors (Htr1a, Htr2b), resulting in increased
neuroprotective growth factor signalling [100]. In addition, mossy

Fig. 4 Cellular landscape of fluoxetine action in dorDG and venDG. a Rank-rank hypergeometric overlap (RRHO) maps show the threshold-
free differential expression comparison between dorsal and ventral DG in this study. Pixels represent the overlap between the transcriptome
of each comparison, with the significance of overlap (–log10 (P-val) of a hypergeometric test) colour coded. Genes along each axis are sorted
from most significantly up-regulated (lower left) to most down-regulated (top right). Venn diagram shows overlap of significant DEGs in
dorDG and venDG. b Heatmap showing 12 cell types obtained by clustering 3,517 single cells from 5 replicates per treatment group. Two-step
clustering using supervised RCA2 clustering, followed by Seurat unsupervised clustering was performed. Top 10 markers specific for each
cluster are plotted. c Cell types with significant changes in proportion between Sham and FT groups in dorDG or venDG (both regions shown
to highlight region-specific differences). *: Wilcoxon P-val ≤ 0.05. d Treatment-specific DEGs (FT vs Sham) for dorDG and venDG cell types.
Single cells from each cell type were aggregated by replicate into an averaged pseudo-bulk expression profile. Pseudo-bulk expression
profiles were then used to calculate DEGs (absolute log2FC ≥ log2(1.25), FDR Q-val < 0.2). e Top GO terms following gene set enrichment
analysis of cell-type-specific pseudo-bulk DEGs (FT vs Sham). f Module-score analysis for the oxidative phosphorylation gene set in dorDG and
venDG cell types. Cell types with significant FT vs Sham module score are plotted. **** indicates: FDR Q-val < 3e-05, ***: FDR Q-val < 5e-03, **:
FDR Q-val < 0.05. g Left, representative images of CRL-2199 glial line treated with vehicle control, corticosterone (CORT), fluoxetine (FT) and
CORT+ FT, stained with DAPI (blue) and MitoTracker Red (red) and immunostained against cytochrome c (green). Scale bars, 20 μm. Right,
quantification of average MitoTracker Red (top) and cytochrome c (bottom) fluorescence signals normalised to vehicle control (n= ~200 cells
per group using three independent experiments; values for individual cells are shown as open circles; error bars denote SEM). SEM, standard
error of the mean. h Oxygen consumption rate (OCR) measurements normalised to cell number measured by Hoechst 33342 fluorescence
signal (mean of 3 biological replicates ±SD, technical replicates =34). SD, standard deviation.
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cells have an established role in adult neurogenesis [101, 102]
and mediate anti-anxiolytic and neurogenic responses to
antidepressants [103]. Together with the observed increase in
mossy cell abundance (Fig. 4c), these results suggest that mossy
cells could be an important mediator, and provide candidate
signalling interactions that may contribute to the mechanism of
action of fluoxetine.
In summary, scRNA-seq analysis of the two hippocampal sub-

regions highlights 1) the substantial differences between dorDG

and venDG in their molecular responses; 2) increased energy
metabolism as a prominent mechanism of fluoxetine action; and
3) glial subtypes, inhibitory neurons and mossy cells as cellular
effectors of fluoxetine.

DISCUSSION
Here we mapped the transcriptomic and epigenomic landscape of
chronic fluoxetine exposure across the rodent brain. Prior studies

Fig. 5 Association of dorDG and venDG cell types with master regulators and cellular cross-talks. a Heatmap of differentially active
regulons identified by SCENIC in dorDG cell types, coloured by fold-change of regulon activity score in FT vs sham. Blue rectangle indicates
regulons related to energy metabolism. Bold indicates the top differential regulon for major cell types. b As in a, but for venDG. c. NATMI-
identified differential ligand-receptor pairs in dorDG cell types between FT and Sham. Top differential interactions (by higher specificity score
and greater difference in specificity score) are labelled. d As in b, but for venDG.
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examined fluoxetine-mediated genome-wide transcriptional altera-
tions in limited brain regions using microarrays [22, 23, 104, 105] or
targeted profiling of candidate genes [106]. Our work expands
current understanding of fluoxetine action by investigating a
broader panel of 27 brain regions, adopting a multimodal approach
of RNA-seq, H3K27ac ChIP-seq profiling, and complementary
scRNA-seq of two hippocampal regions. The unique breadth of
our study enabled comprehensive insights into fluoxetine action
including: a) the occurrence of thousands of region-dependent
molecular changes across the brain, a majority of which are
previously unknown; b) identification of the raphe, nucleus
accumbens (NAc), dorsal dentate gyrus (dorDG), locus coeruleus
(LC) and pre-limbic cortex (PLC) as the most strongly affected
regions; c) increases in chromatin remodelling, energy metabolism
and mitochondrial gene expression; d) cell-type-specific changes
in oligodendrocyte and neuronal subtypes; and e) stark differences
in fluoxetine response along the dorso-ventral axis of the
dentate gyrus.
Fluoxetine treatment produced profound changes in transcrip-

tion and chromatin openness across multiple regions of the brain.
We identified 4447 transcripts and 4511 peaks that underwent

alterations in at least one brain region following fluoxetine
treatment (Figs. 1d, 3a). Of these, we observed significant
enrichment of DEGs for single nucleotide polymorphisms
identified in GWAS studies for MDD, SSRIs and antidepressant
response (Fig. 1g, Supplementary Tables TS5). This study therefore
expands the list of MDD-informative brain regions that warrant
modelling in animal studies of stress and antidepressant
mechanisms. Notably, several region-wise DEGs that coincided
with GWAS and PsyGeNET loci (e.g. Opkr1, Kcnk9, Sst, Slc6a3,
Slc5a7, Slc7a10, Negr1) have been investigated as druggable
targets for improving the efficacy and safety of neuropsychiatric
drugs [107, 108] (Fig. 6). Moreover, 58 differentially regulated
transcripts identified in this study overlapped candidates from
three gene expression studies of MDD [45, 109] (Supplementary
Tables TS24), a vast majority of which were altered in multiple
regions beyond the single region profiled in the respective human
studies (e.g. Arhgef25, Kmt2a, Mettl9, Rhoa, Mgat4c). Consistent
with this, we observed a good overlap of transcriptional changes
between our datasets and antidepressant responses in multiple
stress paradigms. We also identified specific cell types in which
known MDD genes were altered by fluoxetine (e.g. Dock4 in
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dorDG oligodendrocyte1, Prkar1b in venDG granule and Klf26b in
inhibitory neurons) (Supplementary Tables TS24). These analyses
highlight the relevance of fluoxetine-induced alterations identified
in this study to human clinical phenotypes of MDD and treatment
response, and reveal additional brain regions, gene candidates
and cell types for further investigation.
Our composite ranking of the 27 brain regions, based on the

sum of log-ranks in ChIP-seq and RNA-seq (Figs. 1d, 3a,
Supplementary Tables TS4), revealed raphe, NAcSh, dorDG, LC,
NAcC and PLC as the regions with the strongest molecular
response to fluoxetine. The NAcSh and LC showed the next
strongest accumulation of transcriptomic and epigenomic
changes, contrary to a previous microarray study that detected
merely 39 DEGs in LC and ranked the region’s fluoxetine response
as low [22]. Though biochemical studies [110–112] have high-
lighted that neurotransmitter levels in the LC and NAc regulate
fluoxetine-induced behavioural responses, a map of the under-
lying transcriptomic and epigenetic correlates has been missing
hitherto. The extensive alterations in multiple receptor-driven
signalling pathways (Fig. 6) across multiple regions, could explain
molecular adaptations leading to the therapeutic and side effects
of chronic fluoxetine regimes.
To examine the biology underlying these antidepressant-

induced gene regulatory changes, we identified pathways and
co-regulated network modules enriched in differentially expressed
genes and acetylated peaks (Figs. 2a–c, 3c, d). We found evidence
for functional consistency between DEGs and differentially
acetylated loci. Functional enrichment analysis of k-means cluster
modules and region-wise pathway enrichment identified chroma-
tin remodelling, cellular metabolism and mitochondrial themes
across most regions.
Fluoxetine drove an overall increase in the transcription of

genes involved in energy production. MDD patients show both
reduced brain glucose metabolism and mitochondrial impair-
ments [113–116]. Interestingly, antidepressant treatments nor-
malised some of these dysregulated proteins and reversed
depressive behaviour [117–120]. The >100 DEG and DA loci we
identified in this functional category form an unprecedented
candidate list of potential SSRI-induced energy metabolism
regulators (Fig. 6). Of the energy metabolism DEGs, upregulation
of Sdhb, Mdh2, Cox5a, Pfkl, Ck and Aacs transcripts in specific
hippocampal subregions is in agreement with their increased
activity or protein levels in response to antidepressants
[118, 121, 122]. We observed such changes in diverse additional
regions (>9) beyond the hippocampus.
In addition to mitochondrial alterations, we found widespread

regulation of histone modifications and chromatin signatures
(Fig. 6). Studies have shown that chronic stress and depression
reduces H3 histone methylation, resulting in deregulation of
neuronal plasticity [123]. It has been suggested that antidepres-
sants reverse these chromatin alterations, although these reports
are largely limited to modifications at specific gene promoter loci
and single brain regions [123–125]. Here, we find that fluoxetine
pervasively influences chromatin permissiveness by regulating the
expression of a gamut of genes involved in histone methylation,
phosphorylation and deubiquitination. Together with AD-induced
global increases in energy metabolism, these changes in
chromatin remodelling could synergistically drive transcriptional
cascades involved in neurotransmitter and ion transport, vesicular
trafficking, protein synthesis, protein folding and clearance [126].
Antidepressant induced chromatin changes have also been shown
to resemble epigenetic signatures seen in stress-resilient animals
[127]. We propose that further investigation of our genome-wide
candidate loci could potentially reveal fundamentally novel AD
and stress resilience mechanisms.
We then examined specific cell types associated with fluoxetine

response. We found that oligodendrocytes and neurons were the
two major fluoxetine-responsive cell types in our analyses,

however there was a strong heterogeneity across the 27 brain
regions (Supplementary Fig. S5b). Interestingly, oligodendrocyte
subtypes and a subset of the DEGs we identified have been
implicated in a recent single-cell study on the PFC in MDD [45]
(Supplementary Tables TS24). Our scRNA-seq data from dorDG
and venDG provided a higher resolution map of fluoxetine-
induced effects and their regional differences: five cell types in
dorDG and 2 in venDG showed a significant increase in oxidative
phosphorylation scores and shared relevant upstream regulators
(Figs. 4f, 5a, b). Taken together, these five hippocampal cell types
could be prioritised for further investigations of SSRI-induced
metabolic changes. We propose that ligand-receptor interactions
involving mossy cells (Pdgfrb, Megf8/Vtn) could be important
signalling mediators of fluoxetine action in dorDG (Fig. 5c), and
promising candidates for follow-up studies.
Studies on differences in antidepressant efficacy between males

and females have led to inconclusive findings [128]. While some
studies have reported sex-dependence of antidepressant-induced
behavioural and molecular changes [129, 130] others have
concluded that some changes are sex-independent [131, 132].
Due to the known influence of variations in the female rat’s
oestrus cycle on fluoxetine’s efficacy [133, 134] and the additional
resources and handling associated with syncing the oestrus phase
of a large cohort, we chose to focus our study on male rats.
Future studies are needed to investigate sexual dimorphism of
fluoxetine’s response across diverse brain regions to complement
the current dataset [135] leveraging the region-specific effects
reported here.
In summary, our results greatly expand the current under-

standing of the spatial molecular complexity of fluoxetine
response. This dataset highlights understudied brain regions and
provides a framework for selecting candidate genes, pathways
and cell types for further mechanistic analysis and identification of
targetable pathways for depression and anxiety.

DATA AND CODES AVAILABILITY
Raw data have been deposited at the NCBI’s Gene Expression
Omnibus, under the following accession numbers: ChIP-seq-
GSE193040; RNA-seq- GSE194289; scRNA-seq- GSE197622. Codes
for most of the routines are available at Github (https://github.com/
arulrayan/Integrative-multi-omics-landscape-of-fluoxetine-action-
across-27-brain-regions) or upon reasonable request.
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