Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Immediate Communication
  • Published:

Chronic pain causes Tau-mediated hippocampal pathology and memory deficits

Abstract

Persistent pain has been recently suggested as a risk factor for dementia. Indeed, chronic pain is frequently accompanied by maladaptive brain plasticity and cognitive deficits whose molecular underpinnings are poorly understood. Despite the emerging role of Tau as a key regulator of neuronal plasticity and pathology in diverse brain disorders, the role of Tau has never been studied in the context of chronic pain. Using a peripheral (sciatic) neuropathy to model chronic pain in mice—spared nerve injury (SNI) for 4 months—in wildtype as well as P301L-Tau transgenic mice, we hereby demonstrate that SNI triggers AD-related neuropathology characterized by Tau hyperphosphorylation, accumulation, and aggregation in hippocampus followed by neuronal atrophy and memory deficits. Molecular analysis suggests that SNI inhibits autophagy and reduces levels of the Rab35, a regulator of Tau degradation while overexpression of Rab35 or treatment with the analgesic drug gabapentin reverted the above molecular changes leading to neurostructural and memory recovery. Interestingly, genetic ablation of Tau blocks the establishment of SNI-induced hippocampal morphofunctional deficits supporting the mediating role of Tau in SNI-evoked hippocampal pathology and memory impairment. These findings reveal that exposure to chronic pain triggers Tau-related neuropathology and may be relevant for understanding how chronic pain precipitates memory loss leading to dementia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chronic neuropathic pain leads to cognitive impairment and neuronal atrophy which are attenuated by the analgesic drug, gabapentin.
Fig. 2: Prolonged neuropathic pain triggers Tau accumulation and inhibition of autophagy in the hippocampus.
Fig. 3: Rab35 overexpression blocked the SNI-evoked Tau accumulation and related memory deficits.
Fig. 4: Tau ablation blocked memory loss and hippocampal atrophy induced by chronic neuropathic pain.

Similar content being viewed by others

References

  1. Scholz J, Finnerup NB, Attal N, Aziz Q, Baron R, Bennett MI, et al. The IASP classification of chronic pain for ICD-11: chronic neuropathic pain. Pain. 2019;160:53–59.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Whitlock EL, Diaz-Ramirez LG, Glymour MM, Boscardin WJ, Covinsky KE, Smith AK. Association between persistent pain and memory decline and dementia in a longitudinal cohort of elders. JAMA Intern Med. 2017;177:1146–53.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Disease GBD, Injury I, Prevalence C. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392:1789–858.

    Article  Google Scholar 

  4. Malfliet A, Coppieters I, Van Wilgen P, Kregel J, De Pauw R, Dolphens M, et al. Brain changes associated with cognitive and emotional factors in chronic pain: a systematic review. Eur J Pain. 2017;21:769–86.

    Article  CAS  PubMed  Google Scholar 

  5. Tracey I. Can neuroimaging studies identify pain endophenotypes in humans? Nat Rev Neurol. 2011;7:173–81.

    Article  PubMed  Google Scholar 

  6. Leite-Almeida H, Pinto-Ribeiro F, Almeida A. Animal models for the study of comorbid pain and psychiatric disorders. Mod Trends Pharmacopsychiatry. 2015;30:1–21.

    Article  PubMed  Google Scholar 

  7. Cunha AM, Pereira-Mendes J, Almeida A, Guimaraes MR, Leite-Almeida H. Chronic pain impact on rodents’ behavioral repertoire. Neurosci Biobehav Rev. 2020;119:101–27.

    Article  CAS  PubMed  Google Scholar 

  8. Liu Y, Zhou LJ, Wang J, Li D, Ren WJ, Peng J, et al. TNF-alpha differentially regulates synaptic plasticity in the hippocampus and spinal cord by microglia-dependent mechanisms after peripheral nerve injury. J Neurosci. 2017;37:871–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Spillantini MG, Goedert M. Tau pathology and neurodegeneration. Lancet Neurol. 2013;12:609–22.

    Article  CAS  PubMed  Google Scholar 

  10. Avila J, Pallas N, Bolos M, Sayas CL, Hernandez F. Intracellular and extracellular microtubule associated protein tau as a therapeutic target in Alzheimer disease and other tauopathies. Expert Opin Ther Targets. 2016;20:653–61.

    Article  CAS  PubMed  Google Scholar 

  11. Sotiropoulos I, Galas MC, Silva JM, Skoulakis E, Wegmann S, Maina MB, et al. Atypical, non-standard functions of the microtubule associated Tau protein. Acta Neuropathol Commun. 2017;5:91.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Silva JM, Rodrigues S, Sampaio-Marques B, Gomes P, Neves-Carvalho A, Dioli C, et al. Dysregulation of autophagy and stress granule-related proteins in stress-driven Tau pathology. Cell Death Differ. 2019;26:1411–27.

    Article  CAS  PubMed  Google Scholar 

  13. Lopes S, Vaz-Silva J, Pinto V, Dalla C, Kokras N, Bedenk B, et al. Tau protein is essential for stress-induced brain pathology. Proc Natl Acad Sci USA. 2016;113:E3755–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Takahata K, Kimura Y, Sahara N, Koga S, Shimada H, Ichise M, et al. PET-detectable tau pathology correlates with long-term neuropsychiatric outcomes in patients with traumatic brain injury. Brain. 2019;142:3265–79.

    Article  PubMed  Google Scholar 

  15. Decosterd I, Woolf CJ. Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain. 2000;87:149–58.

    Article  PubMed  Google Scholar 

  16. Sotiropoulos I, Lopes AT, Pinto V, Lopes S, Carlos S, Duarte-Silva S, et al. Selective impact of Tau loss on nociceptive primary afferents and pain sensation. Exp Neurol. 2014;261:486–93.

    Article  CAS  PubMed  Google Scholar 

  17. Esteves M, Almeida AM, Silva J, Silva Moreira P, Carvalho E, Pego JM, et al. MORPhA Scale: behavioral and electroencephalographic validation of a rodent anesthesia scale. J Neurosci Methods. 2019;324:108304.

    Article  PubMed  Google Scholar 

  18. Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL. Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods. 1994;53:55–63.

    Article  CAS  PubMed  Google Scholar 

  19. Tanabe M, Takasu K, Kasuya N, Shimizu S, Honda M, Ono H. Role of descending noradrenergic system and spinal alpha2-adrenergic receptors in the effects of gabapentin on thermal and mechanical nociception after partial nerve injury in the mouse. Br J Pharmacol. 2005;144:703–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kusunose N, Koyanagi S, Hamamura K, Matsunaga N, Yoshida M, Uchida T, et al. Molecular basis for the dosing time-dependency of anti-allodynic effects of gabapentin in a mouse model of neuropathic pain. Mol Pain. 2010;6:83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Miranda HF, Noriega V, Zepeda R, Zanetta P, Prieto-Rayo J, Prieto JC, et al. Antinociceptive synergism of gabapentin and nortriptyline in mice with partial sciatic nerve ligation. Pharmacology. 2015;95:59–64.

    Article  CAS  PubMed  Google Scholar 

  22. Leite-Almeida H, Cerqueira JJ, Wei H, Ribeiro-Costa N, Anjos-Martins H, Sousa N, et al. Differential effects of left/right neuropathy on rats’ anxiety and cognitive behavior. Pain. 2012;153:2218–25.

    Article  PubMed  Google Scholar 

  23. Cunha AM, Esteves M, Pereira-Mendes J, Guimaraes MR, Almeida A, Leite-Almeida H. High trait impulsivity potentiates the effects of chronic pain on impulsive behavior. Neurobiol Pain. 2020;7:100042.

    Article  CAS  PubMed  Google Scholar 

  24. Mutso AA, Radzicki D, Baliki MN, Huang L, Banisadr G, Centeno MV, et al. Abnormalities in hippocampal functioning with persistent pain. J Neurosci. 2012;32:5747–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Roberson ED, Scearce-Levie K, Palop JJ, Yan F, Cheng IH, Wu T, et al. Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer’s disease mouse model. Science. 2007;316:750–4.

    Article  CAS  PubMed  Google Scholar 

  26. Minowa-Nozawa A, Nozawa T, Okamoto-Furuta K, Kohda H, Nakagawa I. Rab35 GTPase recruits NDP52 to autophagy targets. EMBO J. 2017;36:2790–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Finnerup NB, Attal N, Haroutounian S, McNicol E, Baron R, Dworkin RH, et al. Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis. Lancet Neurol. 2015; 14:162–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zimmerman ME, Pan JW, Hetherington HP, Lipton ML, Baigi K, Lipton RB. Hippocampal correlates of pain in healthy elderly adults: a pilot study. Neurology. 2009;73:1567–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vaculik MF, Noorani A, Hung PS, Hodaie M. Selective hippocampal subfield volume reductions in classic trigeminal neuralgia. NeuroImage Clin. 2019;23:101911.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zhang JW, Tabassum S, Jiang JX, Long C. Optimized Golgi-Cox staining validated in the hippocampus of spared nerve injury mouse model. Front Neuroanat. 2020;14:585513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tyrtyshnaia A, Manzhulo I. Neuropathic pain causes memory deficits and dendrite tree morphology changes in mouse hippocampus. J Pain Res. 2020;13:345–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wei X, Centeno MV, Ren W, Borruto AM, Procissi D, Xu T, et al. Activation of the dorsal, but not the ventral, hippocampus relieves neuropathic pain in rodents. Pain. 2021;162:2865–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nakamura H, Katayama Y, Kawakami Y. Hippocampal CA1/subiculum-prefrontal cortical pathways induce plastic changes of nociceptive responses in cingulate and prelimbic areas. BMC Neurosci. 2010;11:100.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hoover BR, Reed MN, Su J, Penrod RD, Kotilinek LA, Grant MK, et al. Tau mislocalization to dendritic spines mediates synaptic dysfunction independently of neurodegeneration. Neuron. 2010;68:1067–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Luna-Munoz J, Chavez-Macias L, Garcia-Sierra F, Mena R. Earliest stages of tau conformational changes are related to the appearance of a sequence of specific phospho-dependent tau epitopes in Alzheimer’s disease. J Alzheimer’s Dis. 2007;12:365–75.

    Article  CAS  Google Scholar 

  36. Hampel H, Burger K, Pruessner JC, Zinkowski R, DeBernardis J, Kerkman D, et al. Correlation of cerebrospinal fluid levels of tau protein phosphorylated at threonine 231 with rates of hippocampal atrophy in Alzheimer disease. Arch Neurol. 2005;62:770–3.

    Article  PubMed  Google Scholar 

  37. Pinheiro S, Silva J, Mota C, Vaz-Silva J, Veloso A, Pinto V, et al. Tau mislocation in glucocorticoid-triggered hippocampal pathology. Mol Neurobiol. 2016;53:4745–53.

    Article  CAS  PubMed  Google Scholar 

  38. Vaz-Silva J, Gomes P, Jin Q, Zhu M, Zhuravleva V, Quintremil S, et al. Endolysosomal degradation of Tau and its role in glucocorticoid-driven hippocampal malfunction. EMBO J. 2018;37:e99084.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zempel H, Thies E, Mandelkow E, Mandelkow EM. Abeta oligomers cause localized Ca(2+) elevation, missorting of endogenous Tau into dendrites, Tau phosphorylation, and destruction of microtubules and spines. J Neurosci. 2010;30:11938–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Peter Davies (Albert Einstein College, USA) for kindly providing us the PHF-1 and DA9 antibodies and Dr. Akihiko Takashima (Gakushuin University, Japan) for JM human Tau antibody. Also, we thank Prof. Clarissa Waites (Columbia University, NY, USA) for the Rab35 virus. This work has been funded by Portuguese national funds, through the Foundation for Science and Technology (FCT)—project UIDB/50026/2020 and UIDP/50026/2020; and by the projects NORTE-01-0145-FEDER-000013 and NORTE-01-0145-FEDER-000023, the Project Estratégico co-funded by FCT (PEst-C/SAU/LA0026/2013) and the European Regional Development Fund COMPETE (FCOMP-01-0124-FEDER-037298; POCI-01-0145-FEDER-007038) supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). Additionally, this work has been funded by ICVS Scientific Microscopy Platform, member of the national infrastructure PPBI - Portuguese Platform of Bioimaging (PPBI-POCI-01-0145-FEDER-022122); by National funds, through the Foundation for Science and Technology (FCT)—project UIDB/50026/2020 and UIDP/50026/2020; and by the projects NORTE-01-0145-FEDER-000013 and NORTE-01-0145-FEDER-000023, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). It was also funded by the Foundation for Science and Technology (FCT), under the scope of the project PTDC/NEU-SCC/5301/2014. Researchers were supported by FCT grant numbers: PD/BD/114117/2015 (MRG) and PD/BD/127825/2016 (CD) via Inter-University Doctoral Program in Ageing and Chronic Disease (PhDOC), PD/BD/135271/2017 (PG) via MD-PhD Program. SG integrated the Master Program in Health Sciences of the School of Medicine, University of Minho.

Author information

Authors and Affiliations

Authors

Contributions

IS, HL-A and NS conceived the project. SRG, MRG, JMS, CD, AV-I, RS, PG, AM, CC-M, AMC, AA, performed experiments and analyzed the data. IS and HL-A supervised the study and wrote the manuscript.

Corresponding authors

Correspondence to Hugo Leite-Almeida or Ioannis Sotiropoulos.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guerreiro, S.R., Guimarães, M.R., Silva, J.M. et al. Chronic pain causes Tau-mediated hippocampal pathology and memory deficits. Mol Psychiatry 27, 4385–4393 (2022). https://doi.org/10.1038/s41380-022-01707-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-022-01707-3

This article is cited by

Search

Quick links